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Abstract

Affymetrix high-density oligonucleotide microarrays
measure expression of DNA transcripts using probesets, i.e.
multiple probes per transcript. Usually, these multiple mea-
surements are transformed into a single probeset expres-
sion level before data analysis proceeds; any information
on variability is lost. In this work we demonstrate how
individual probe measurements can be used in a statistic
for differential expression. Furthermore, we show how this
statistic can serve as a clustering criterion. A novel clus-
tering algorithm using this maximum significance criterion
is demonstrated to be more efficient with the measured data
than competing techniques for dealing with repeated mea-
surements, especially when the sample size is small.

1. A linear model

Suppose there are K conditions in a microarray study.
Let the number of arrays measured under each condition be
Ak, k = 1, . . . , K and A =

∑K
k=1 Ak. Each probeset g

(g = 1, ..., G) is represented on each array by Pg probes.
The following ANOVA model can be applied to the nor-
malised, log2-transformed intensity measured for probe p
on array a under condition k:

log2(X
p,k
a (g)) = µg + αg,p + βg,k + εg,p,k,a (1)

The expression level of probeset g under condition k is then
eg,k = µg + βg,k. An F -ratio can be used to assess the sig-
nificance level at which the null hypothesis of no condition
effect, H0(g) : eg,1 = eg,2 = . . . = eg,K , can be rejected.
Under H0, this ratio is Fisher distributed with K − 1 df for
the numerator and Pg(A − K) df for the denominator.

2. Maximum significance clustering

In calculating the F -ratio, it is assumed it is known
which samples belong to a condition k. However, in cluster-
ing, the goal is exactly to find this membership. To this end
we can introduce an A×K membership matrix Q, in which
Qak = 1 if array a belongs to cluster k, and 0 otherwise.
This allows us to write (X·,k

· )1 as XQ. For notational pur-
poses, it is more convenient to use a slightly different mem-
bership matrix M, with Mak = 1/

√
Ak if array a belongs

to cluster k, and 0 otherwise: M = Q(QTQ)−
1
2 . The F -

ratio can then be written as (with M > 0, M1 = 1):

F (X(g),M) = (A − K)
1T XMMTX1

tr (X(I− MMT )XT )
(2)

Maximising (2) w.r.t. M, subject to the constraints on
M, will find an assignment of the arrays to clusters, such
that the difference in expression between clusters is maxi-
mally significant. However, as the number of probes (and
hence the df of the Fisher distribution under H0) may dif-
fer between probesets, this cannot easily be extended to as-
signing cluster labels based on the data of multiple genes.
Assuming independence between probeset expression lev-
els, we therefore minimise the log of the combined p-values
instead:

log [p(H0|X,M)] =
G∑

g=1

log [p(H0|X(g),M) + r] (3)

with r an arbitrarily small non-zero regularisation factor; in
all experiments here, r = 10−300.

In [4], a hill-climbing algorithm is proposed maximising
(2) w.r.t. a crisp membership matrix M. This algorithm is
called MSCK, for maximum significance K-clustering.



Although we are not aware of any previous model-based
approaches to clustering oligonucleotide microarray data
based on probe data, there is literature on the use of re-
peated measurements in clustering in general. In [7] an
error-weighted clustering method is proposed using weights
based on different measures of variability (denoted D0, Ds

and Dc here); and two possible distance measures based on
the Kullback-Leibler divergence between two distributions
are given in [5] (denoted DJeffreys and DResistor).

3. Experiments

We applied the MSCK algorithm on both simulated data
and some real-world data sets, and compared it to a number
of standard clustering algorithm – k-means and hierarchical
clustering with complete, average and single linkage – using
the five distance measures D outlined above.

Our simulations (data not shown, see [4]) showed that
MSCK performs well for small sample sizes A, seemingly
combining the advantage of k-means (working well for
small A) with that of the hierarchical methods (working
well for larger K). It is most useful when the number of
differentially expressed probesets and their expression dif-
ference is relatively small. For clearer differences between
conditions, using variability information is not necessary.

The real-world datasets used were: (a) a small subset of
the Yeoh precursor B-ALL dataset [6], containing 16 BCR-
ABL and 21 MLL samples, measured by HG-U95Av2 mi-
croarrays (A = 37, K = 2); (b) Pomeroy dataset A [3],
containing 42 cases of five types of central nervous sys-
tem embryonal tumor, measured on Hu6800 microarrays
(A = 42, K = 5) and (c) a dataset of 7 development stages
of T-cells [1] measured on two HG-U133A microarrays
each (A = 14, K = 7)1. For all datasets, array background
was first removed, arrays were quantile normalised [2] and
the Gs probesets with most variation in probeset expression
level over the A arrays were selected for use in clustering
(“variation filtering”).

Figure 1 shows the results as Jaccard indices between the
known labels and the cluster assignments (mean ± sd over
10 random initialisations; 1 indicating perfect agreement,
0 none), as a function of Gs. On all datasets, MSCK per-
forms reasonably well, especially for small Gs, showing it
to be more efficient with the data than traditional methods.
For larger Gs performance decreases, as the method starts
to fit noise. Although for each dataset a clustering algo-
rithm/distance measure combination can be found for which
performance is comparable to that of MSCK, no single

1For the HG-U133A microarrays in the T-cell dataset, which carry less
probes per probeset, we found that a few outlier probes could have a very
large influence. We therefore pre-processed this data for all methods by
removing 3 outlier probesets, i.e. those with the highest average absolute
deviation from average probe rank over all arrays.
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(a) Yeoh data, BCR-ABL vs MLL: A1 = 16, A2 = 21
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(b) Pomeroy dataset A: A1 = 8, A2 = 4, A3 = A4 = A5 = 10
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(c) T-cell development data: Ai = 2, K = 7

Figure 1. Experimental results (see text).

combination consistently outperforms it. On the Pomeroy
and T-cell data, MSCK gives the best results; in fact, only
MSCK is able to perfectly cluster the T-cell data.
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