
An Approach to Distributed Interactive Simulation and Visualization of
Complex Systems using Cluster Computing

Denis Gračanin
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

gracanin@vt.edu

Abstract

When dealing with complex systems, interactive, real-
time simulations require significant computational capabil-
ities that can be provided by cluster computing. Current
cluster computing based techniques are mostly focused on
batch jobs. However, it is possible to use clusters so that an
application can run and directly communicate with the re-
mote client(s). Direct communication enables, without loss
of accuracy or frame rate, real time visualization of and
interaction with much larger models compared to a single
machine implementation. The degree of coupling between
the dependent variables in the model determines the degree
of parallelization that can be achieved by evaluating the so-
lution for each dependent variable in parallel. A distrib-
uted mass-spring simulation system was developed to serve
as an open platform that can be used to improve the scala-
bility of the simulation computation. Several techniques are
used to improve scalability, both in terms of the problem
size and number of clients. The developed system provides
support for large scale mass-spring simulations to leverage
available cluster computing and visualization resources. It
can be applied to a wide range of problems related to de-
formable solids including many biologically related like hu-
man organ modeling and medical animation where real-
time feedback is required.

1 Introduction

The widespread use of parallel and grid computing, com-
bined with the tremendous advances in graphics capabili-
ties, enables manipulation and visualization of large data
sets. Those data sets are usually simulation results, dynam-
ically generated as a result of interactions with users.

Interactive simulation and visualization applications use
computational steering as a way to integrate modeling, sim-

ulation, data analysis, and visualization [16]. Visualization
and simulation applications cover many areas such as fluid
flow modeling [6], cloth modeling [7], soft tissue model-
ing [8], and deformable solids in general [11]. In order to
improve interactivity and usability of visualization applica-
tions, several issues need to be addressed. Those include
control structures, data distribution, data presentation, and
user interfaces [16].

Parallel (cluster) computing requires efficient parallel al-
gorithms and models that can exploit parallelism in a prob-
lem structure. The challenge is how to partition the prob-
lem to best utilize computational resources. In other words,
the question is what work can be done concurrently and
what communication among concurrent processes is re-
quired [18]. Message-Passing Interface (MPI) [2] is a com-
munication library that provides a support for communica-
tion among the processes participating in a parallel compu-
tation.

A mass-spring model is frequently used in simulation
of deformable solids. The model primarily demonstrates
springs applying forces to masses and the resulting move-
ment of those masses (particles). Typically, it also includes
environmental effects. Some mass-spring simulations allow
springs to have a fixed oscillation period. This feature al-
lows a spring to be a source of energy. Mass-spring simula-
tions are used to model the physical behavior of deformable
solids such as cloth, soft tissue, marshmallows, or metal.
The designer controls the physical behavior of the modeled
solid by adjusting the strength of the springs and the inter-
connection geometry [14, 25].

Bioinformatics [22] and biomedical computing [17] re-
lated simulation often include soft tissue modeling where
the mass spring model can be effectively used to achieve
realistic soft tissue modeling in medical and related simula-
tions [10].

A distributed mass spring simulation tool was developed
to provide for large-scale, multi user mass spring simula-



tions [14, 29] in real time, with distributed interactions for
multiple clients. It uses MPI and a custom communication
protocol to combine cluster computing and visualization re-
sources.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of related work in parallel com-
puting, bioinformatics/medicine, and interactive simulation
visualization. Section 3 describes the mass spring model
used for simulation. Section 4 describes the implementa-
tion of the developed distributed simulation and visualiza-
tion system and its use. Section 5 concludes the paper and
provides directions for future work.

2 Related Work

Before describing the mass spring model used and the
developed tool, an overview of related work in parallel com-
puting, bioinformatics/medicine, and interactive simulation
visualization is provided.

2.1 Parallel Computing

The need for high performance computing exists in many
areas of science, engineering, medicine, and commerce.
The availability of powerful processors and high-speed net-
works, as well as the rapidly maturing software compo-
nents, provide support for high performance and high avail-
ability applications. The research on cluster computing,
grid computing, and related parallel computing mechanisms
provides a foundation for many simulation based applica-
tions [2, 15], ranging from atomic particles modeling to
information visualization [13]. Cluster computing is often
based on combining commercial off-the-shelf (COTS) com-
puting nodes with high speed networks to form a powerful
computing resource. However, visualization in grid com-
puting environments provide a challenge for system design-
ers [4].

One of the particularly interesting problems is a fast sim-
ulation of deformable objects [11]. Two widely used ap-
proaches are Finite Element Modeling and Mass Spring
Systems. While finite element modeling is very accurate,
it is also very slow. The mass spring systems approach is
not as accurate but it is fast, simple and general enough
to be used in many simulation applications. Modeling de-
formable objects is important for many bioinformatics and
medicine related problems involving soft tissue modeling.

2.2 Bioinformatics and Medicine

Bioinformatics [9, 20, 21, 22] is one of the scientific
disciplines that benefited from advances in computing ca-
pabilities [1]. However, unlike more traditional high-
performance computing application areas, biology related

problems are often difficult to parallelize. Huge data sets
may cause even efficient, polynomial time algorithms, to
execute very slowly. Many problems, like protein fold-
ing, are NP-hard. However, sufficient cluster computing
capabilities may help in evaluation or in solving of some
instances of the problems. Problem solving environments
like SCIRun and BioPSE [17] provide support for large-
scale computations, including interactive creation, investi-
gation and steering. Another class of applications includes
information rich virtual environments for biological simu-
lations [26].

Medical simulations often require realistic modeling of
soft tissues [10, 28] for scientific analysis, surgery planning,
[3] and surgery procedure training [8]. Soft-tissue deforma-
tion accuracy and computation time are the main criteria
used in modeling and determine the ability to provide for
the real-time soft tissue deformation computation [24]. The
latency (or delay) caused by longer computation time may
significantly reduce or even disable the immersion of the
operator and its ability to learn.

2.3 Interactive Simulation Visualization

Traditionally, visualization was used to display data that
were generated “off-line” as a result of a long simulation run
[6]. Interactive visualization displays data on the fly, usually
during simulation, while allowing a user to select visualiza-
tion parameters like levels of detail, viewpoints, angles, etc
[12]. Computational steering and interactive visualization
can be implemented in an immersive virtual environment
[30] that provides users with a better insight and a sense of
immersion.

Modeling virtual humans [23] provides an example of
a class of problems that are computationally intensive but
need to be solved in real-time while maintaining good vi-
sual perception [5]. Some topics include body deforma-
tions, hair simulation, cloth simulation [7], facial deforma-
tion models, speech animation, etc.

3 Mass Spring Model

Mass spring simulations model a particle as a simple cir-
cle or sphere. A particle’s minimal intrinsic property is its
mass. Most mass spring simulations are a specialized form
of a particle system. In other words, the simulation does not
track or calculate the rotations or moments of inertia of in-
dividual masses. The only concern is a translational motion
of particles. All other types of motion are ignored. Particles
may also have an elasticity property.

A spring’s minimal intrinsic properties are its rest length
and its spring constant. Additionally, a damping constant
may be assigned to each spring. The rest length of a spring
is the natural length of the spring when it is neither being



stretched or compressed. The spring constant determines
the stiffness of a spring. The higher the spring constant, the
more difficult it is to stretch or compress the spring.

A springs damping constant is a measure of friction
forces within the spring when it is changing shape. The
friction forces resulting from damping dissipate some of the
energy involved in changing the springs length. Without
damping, a spring could oscillate forever trying to return to
its rest length.

The springs in a mass spring simulation are simplified
versions of real springs and behave according to the sim-
plest spring equations. A real spring behaves according
to the basic spring equations when not stretched or com-
pressed too far; but when distorted beyond a certain amount
a real spring behaves in a much more complex manner. The
simplified springs in most mass spring simulations follow
the basic spring equations even when distorted well beyond
normal ranges.

3.1 Simulation

In the case of mass spring simulation, the goal is to sim-
ulate the motion of particles according to the well known
laws of physics. Using a formula for the position �r of a
particle as a function of time, such that:

�r = �P (t)

then finding the formula for velocity of the particle is a sim-
ple matter of taking the derivative of the function �P with re-
spect to time. The simulator can calculate all of the forces,
and thus the resulting net force a particle is experiencing at
any given moment.

The problem is to determine the motion of the particle
based on those forces. For simple forces, it is sometimes
possible to solve the differential equations analytically, but
for a mass spring system, the simulator must solve the prob-
lem numerically. Mass spring simulations first calculate the
resulting net force on each particle. The net force deter-
mines the net acceleration, which the simulation then nu-
merically integrates to find the velocity.

A second numerical integration finds the new position
of the particle at some (usually very short) time in the fu-
ture. This process repeats for each (visualization) frame.
The new forces are calculated that determine new accelera-
tions, which then determine the new velocities, and so the
new positions.

The problem can be expressed as an ordinary differential
equation initial value problem (ODEIVP) [27]. There are
two possible sources of parallelism in ODEIVP algorithms.
Those are parallelism across the method (time) and paral-
lelism across the system (space).

Parallelism across time involves dividing the time range
into smaller ranges to improve accuracy, provided it is fea-

sible to solve each of the smaller ranges in parallel. How-
ever, the solutions for one time range typically require the
solution of the neighboring range as input. This coupling
and dependency between consecutive time ranges makes it
rather impractical [27]. In addition to dividing the time do-
main into sub domains, the solution for each sub domain is
solved using multiple evaluations of the derivative within
that range. Each of these evaluations is called a stage.
Therefore, it may be possible to compute each derivative
evaluation within a stage in parallel.

In most ODEIVP algorithm formulations there is a high
degree of coupling between these evaluations [15]. For ex-
ample, the classic fourth-order Runge-Kutta algorithm has
four stages and each stage requires the output from the pre-
vious stage. Consequently, due to internal coupling, it is not
possible to leverage parallelism across the method.

Parallelism across the system attempts to evaluate the
solution for each dependent variable in parallel [2]. The
degree of coupling between the dependent variables deter-
mines the degree of success this approach may achieve.
Higher degrees of coupling either limit parallelism or in-
crease communication overhead between processes. The
problem is how to determine the optimal distribution of
computation among the available processes.

It is often possible to take advantage of the structure of
many problems to formulate a good or perhaps even optimal
solution to the mapping problem. A regularly tessellated
geometry model with highly structured spring connections,
like a rectangular cloth patch, or soft tissue, can be divided
into two equal pieces along the smallest dimension and use
two processors in parallel.

This technique minimizes the number of springs span-
ning the two processors while providing each processor an
equal number of masses to track. This technique can be
used recursively, subdividing each patch along its smallest
dimension at each step, provided the number of processors
is always an integral power of two [14].

This partitioning technique work well for distributing the
work involved with each mass in the simulation. However,
the computations for the spring force are not trivial. In a
simple simulation involving only gravity and spring forces,
the spring force requires the most computation. In most
mass spring models there are more springs than masses.

Springs can be divided into two categories based on the
mapping. The first category includes springs that connect
masses assigned to the same processor. They are mapped to
the same processor as the two masses they connect.

The second category includes springs that connect
masses assigned to different processors and communication
overhead cannot be avoided. The system must communi-
cate the position of one of the two masses connected by
the spring to the processor that owns the other mass. With-
out this communication, the relative positions of the two



masses, and thus the length of the spring, cannot be calcu-
lated [14, 29].

4 Implementation

The Distributed Mass Spring Simulation system (DMSS)
has been developed to serve as an open platform that can
take advantage of new cluster and visualization systems as
they become available. It has been designed with three main
goals mind: [29]:

1. Analyze and develop software and hardware solutions
to improve the scalability of the simulation computa-
tion.

2. Analyze and develop a communication protocol to
support multiple interacting clients within the simula-
tion space.

3. Develop and test client visualization and interaction
models.

The first goal is to attempt to scale the simulation to
make use of as many masses and springs as possible. The
solution reduces the amount of calculation by adapting to
the variable complexity of the simulation model. It provides
more computation where necessary to maintain accuracy,
but limits the amount of calculation when feasible. Addi-
tionally, a numerical integration algorithm was adapted to
work in parallel.

The second goal is to provide for the real time distributed
interaction and visualization of the simulation results. That
required the development of the network architecture and
the design of the communication protocol for use between
clients and the server. Many factors were considered, in-
cluding the amount of traffic that would be necessary as the
size of the server simulation is increased. In addition, the
protocol enables the visualizations and interactions that are
required by the client interface during the simulation [29].

The third goal is to improve the user’s experience by pro-
viding mechanisms for visualization and interaction. One of
the results is a textured visualization that allows the client
to view the textured mass spring system model. In addition,
alternate methods of interaction are available, including the
use of first person perspective and the use of hardware de-
vices such as a SpaceBall.

The DMSS has a client-server architecture designed to
enable real time interaction with a large scale mass spring
simulation and use of distributed cluster computing re-
sources. Clients connect individually to the simulation
server through a network connection and interact with the
server by sending updates to their client-controlled interac-
tion device. The server incorporates this updated informa-
tion into the virtual model, and performs simulation steps

based on the physical model. As simulation steps are com-
pleted, updated mass information is distributed to all par-
ticipating clients. The key components in this architecture
are the server, the clients, and the network architecture and
protocol that connect them.

4.1 DMSS Server

The main purpose of the DMSS Server is to “execute”
the physical model that drives the simulation and is dis-
played at DMSS Client applications that are connected to
the DMSS server. The clients are driven by streaming scene
updates from the server at the end of each animation step
completed at the server.

The server application is executed at the command line
with only two parameters, the port to listen to for client con-
nections and the port that updates will be sent out to clients
on. All other configurable parameters of the simulation are
set by way of XML-based scene files that are uploaded by
the client prior to the execution of a new simulation. All
models that are to be simulated by the server are loaded
during runtime by a client.

The DMSS server is responsible for performing the nu-
merical integration step required to animate the mass spring
model. A number of physically modeled forces are allowed
by this animation model, including viscosity, gravity, elec-
tromagnetic forces, and spring forces.

The current animation routines are fairly rudimentary,
and thus in order to satisfy the first goal, a number of im-
proved integration techniques have been examined to im-
prove performance characteristics. The integration model
that is of most interest is an adaptive algorithm that is able
to adjust the number of computations necessary to achieve
a result that is sufficiently accurate. The accuracy of the
computation can be adjusted as necessary to speed up the
calculations.

In addition, work is being done to further satisfy the first
goal of the DMSS by migrating the animation server to a
clustered architecture consisting of anywhere from tens to
thousands of processing units. The implementation is based
on the freely available MPI software library, which is avail-
able for a variety of platforms and operating systems.

The clustered server implementation is designed to han-
dle mass spring systems that are far more complex than are
possible on a single processor desktop machine. This speed
is necessary in order to allow for real time interaction with
a large scale simulation. It has always been possible, given
enough time, to simulate the types of large scale simulations
that will be possible with the clustered DMSS; however, the
computation generally had to be done offline before real-
time viewing was possible. With the clustered DMSS server
it is hoped that simulations that previously were too com-
plex to be interactive will now allow for real time interac-



Figure 1. DMSS deployment [29].

tion from multiple clients.

4.2 DMSS Client

The DMSS Client is a graphical application that creates
a virtual environment by provided a 3D visualization of ac-
tive simulations and allows users to interact. The client ap-
plication is designed to run in an immersive CAVE based
environment or on a regular workstation using a keyboard
and mouse for interaction.

The client application has a number of options which are
used to control the visualization; however, the main options
that must be specified when the client is executed is the IP
address of the server and the port that it is listening on.
From this point onward communication with the server is
transparent to the user.

Figure 2 shows the interface that is presented in the cur-
rent DMSS client implementation. The two spherical ob-
jects represent the probes manipulated by two users in order
to interact with a deformable object, in this case a cloth. All
movements of other users probes are reflected in the visu-
alization that is displayed to each user. Other interactions
such as starting and stopping the simulation and opening a
new scene file are carried out through keyboard operations.

4.3 Implementation Issues

In the initial implementation of the server, the Client
Handler Thread would block after receiving a probe update
until an animation step was completed and the scene data
area was released by the Animation Thread. This caused
the responsiveness of the server to probe updates to be very

Figure 2. DMSS user interface [29].

jumpy at times, especially when many updates were sent
over a short period of time. The Update Queue improved re-
sponsiveness by eliminating the block; thereby allowing the
Update Queue to respond to pending updates more quickly.
The addition of the Update Queue had no effect on the qual-
ity of simulation results.



Another problem that was discovered in the initial imple-
mentation of the protocol was that the original Probe Update
message sent by clients over the Control Channel was to
cause a confirmation message to be sent from the server to
the client. Because probe updates are such a frequent mes-
sage sent out by the client, this caused excess network traf-
fic to be generated. As a result, the protocol was modified
so that no confirmation message from the server is required
when a Probe Update message is sent.

The issue of how to ensure that client probes are removed
from other clients scenes when a client exits presented some
challenges as well. Ideally the server would send out a mes-
sage to all clients whenever a new client probe has been
added or removed from the scene. However, the current
protocol does not provide for any reliable communication
initiated by the server to the clients; all communication from
the server to the client goes out over the unreliable Update
Channel.

As a result, the server sends out a heartbeat message to
each client for any inactive probes, and that the client should
simply remove probes that have not been updated within a
prescribed timeout period. As a consequence, the client can
reliably remove any other client probe that has exited the
simulation, and at worst a clients probe may flicker on and
off if a heartbeat message is missed. Regardless, the server
is always aware of what probes exist in the simulation, so
there is never any affect on the simulation itself.

The newest client implementation will be based on the
DIVERSE (Device Independent Virtual Environments—
Reconfigurable, Scalable, Extensible). It is a highly mod-
ular collection of complimentary software packages, con-
taining both end-user programs and C++ APIs, designed to
integrate distributed simulations with heterogeneous virtual
environments (VEs) [19]. The main characteristics include:

• Allows an application to be run, unmodified, on all
supported platforms,

• Supports application-independent interfaces optimized
for each platform, (For example, a desktop interface
can be used on a desktop system, and an immersive
interface can be used in an immersive system, without
needing to modify the underlying application.)

• Provides emulators of immersive systems to support
development and debugging of immersive systems on
non-immersive systems, and,

• Includes tools that allow non-programmers to display
and interact with their data.

Diverse automatically handles most of the details of
graphics display and device access and supports the sepa-
rate development of applications and user interfaces.

The Diverse Toolkit (DTK) [19] provides many utilities,
the most distinguishing of which is a novel implementa-
tion of remote shared memory. In addition to providing
a general Inter-Process Communication (IPC) application-
programming tool, DTK remote shared memory is the IPC
method with which DTK provides the seamless distribution
of DTK I/O device services. It provides a standard coding
interface to I/O device data for local (same computer) and
remote access, without requiring that local and remote ac-
cess to be coded differently.

5 Conclusion and Future Work

The developed DMSS tool provides support for large
scale mass spring simulations to leverage available cluster
computing and visualization resources. Several techniques
are used to improve scalability, both in terms of the prob-
lem size and number of clients. Users can collaborate in
manipulation of the mass spring simulation models.

This approach can be applied to a wide range of prob-
lem related to deformable solids including many biologi-
cally related like protein decomposition, human organ mod-
eling, interactive surgery simulation and medical animation
where real-time feedback is required. Collaboration and
team training aspects of the tool are of particular impor-
tance.

The biologically related problems are the focus of future
research. The effect of latency on multi user collaboration
will be evaluated to see how effectively collaborative tasks,
including manipulation of complex biological systems, can
be performed in real time.

Acknowledgements

Christopher L. Hines, Kevin A. Reichert, and Jason Du-
dash worked on the development, implementation, and test-
ing of the DMSS as a part of their graduate studies at Vir-
ginia Tech.

References

[1] D. A. Bader. Computational biology and high-performance
computing. Commun. ACM, 47(11):34–41, 2004.

[2] R. H. Bisseling. Parallel Scientific Computation: A struc-
tured approach using BSP and MPI. Oxford University
Press, Oxford, 2004.

[3] M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, and H. Con-
nacher. VR simulation of abdominal trauma surgery. In J. D.
Westwood, H. M. Hoffman, D. Stredney, and S. J. Weghorst,
editors, Proceedings of the Medicine meets virtual reality:
Art, science, and technology, pages 117–203, Amsterdam,
1998. IOS Press.



[4] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and
J. Wood. Visualization in grid computing environments. In
VIS ’04: Proceedings of the conference on Visualization ’04,
pages 155–162, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[5] V. Bruce, P. R. Green, and M. A. Georgeson. Visual Per-
ception: Physiology, Psychology and Ecology. Psychology
Press, Hove and New York, 2003.

[6] J. X. Chen, D. Rine, and H. D. Simon. Advancing interac-
tive visualization and computational steering. IEEE Compu-
tational Science and Engineering, 3(4):13–17, Winter 1996.

[7] L. Chittaro and D. Corvaglia. 3D virtual clothing: from
garment design to web3D visualization and simulation. In
Web3D ’03: Proceeding of the eighth international confer-
ence on 3D Web technology, pages 73–ff, New York, NY,
USA, 2003. ACM Press.

[8] K. S. Choi, H. Sun, P. A. Heng, and J. C. Y. Cheng. A scal-
able force propagation approach for web-based deformable
simulation of soft tissues. In Web3D ’02: Proceeding of
the seventh international conference on 3D Web technology,
pages 185–193, New York, NY, USA, 2002. ACM Press.

[9] J. Cohen. Bioinformatics— an introduction for computer
scientists. ACM Comput. Surv., 36(2):122–158, 2004.

[10] H. Delingette. Towards realistic soft tissue modeling in med-
ical simulation. Proceedings of the IEEE, 86(3):512–523,
Mar. 1998.

[11] A. Duysak and J. J. Zhang. Fast simulation of deformable
objects. In Proceedings of the Eighth International Confer-
ence on Information Visualisation, pages 422–427, 14–16
July 2004.

[12] C. D. Hansen and C. R. Johnson, editors. The Visualization
Handbook. Elsevier, Amsterdam, 2005.

[13] M. C. Hao, U. Dayal, D. Cotting, T. Holenstein, and
M. Gross. Accelerated force computation for physics-based
information visualization. In VISSYM ’03: Proceedings of
the symposium on Data visualisation 2003, pages 59–66,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[14] C. L. Hines. Parallel mass-spring simulation. Technical
report, Virginia Polytechnic Institute and State University,
Falls Church, VA, Jan. 5 2004.

[15] C. Hughes and T. Hughes. Parallel and Distributed Pro-
gramming Using C++. Addison-Wesley, Boston, 2004.

[16] C. Johnson, S. G. Parker, C. Hansen, G. L. Kindlmann, and
Y. Livnat. Interactive simulation and visualization. IEEE
Computer, 32(12):59–65, Dec. 1999.

[17] C. R. Johnson, R. MacLeod, S. G. Parker, and D. Weinstein.
Biomedical computing and visualization software environ-
ments. Commun. ACM, 47(11):64–71, 2004.

[18] G. E. Karniadakis and R. M. Kirby II. Parallel Scientific
Computing in C++ and MPI: A Seamless Approach to Par-
allel Algorithms and Their Implementation. Cambridge Uni-
versity Press, Cambridge, United Kingdom, 2003.

[19] J. Kelso, S. G. Satterfield, L. E. Arsenault, P. M. Ketchan,
and R. D. Kriz. DIVERSE: A framework for building exten-
sible and reconfigurable device-independent virtual environ-
ments and distributed asynchronous simulations. Presence,
12(1):19–36, Feb. 2003.

[20] D. E. Krane and M. L. Raymer. Fundamental Concepts of
Bioinformatics. Benjamin Cummings, San Francisco, 2003.

[21] S. A. Krawetz and D. D. Womble. Introduction to Bioinfor-
matics: Theoretical and Practical Approach. Humana Press,
Totowa, New Jersey, 2003.

[22] A. M. Lesk. Introduction to Bioinformatics. Oxford Univer-
sity Press, Oxford, UK, 2002.

[23] N. Magnenat-Thalmann and D. Thalmann, editors. Hand-
book of Virtual Humans. John Wiley & Sons, Ltd, West
Susses PO19 8SQ, England, 2004.

[24] K. Montgomery, C. Bruyns, S. Wildermuth, C. Hasser,
S. Ozenne, D. Bailey, and L. Heinrichs. Surgical simula-
tor for hysteroscopy: A case study of visualization in surgi-
cal training. In Proceedings of the IEEE Visualization 2001
(VIS’01), pages 449–587, 21–26 Oct. 2001.

[25] H. Ohanian. Physics. W. W. Norton & Company, New York,
1985.

[26] N. F. Polys, D. A. Bowman, C. North, R. Laubenbacher,
and K. Duca. Pathsim visualizer: an information-rich vir-
tual environment framework for systems biology. In Web3D
’04: Proceedings of the ninth international conference on
3D Web technology, pages 7–14, New York, NY, USA, 2004.
ACM Press.

[27] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press, Cambridge, 1988.

[28] A. Radetzky, A. Rnberger, M. Teistler, and D. Pretschner.
Elastodynamic shape modeling in virtual medicine. In Pro-
ceedings of the International Conference on Shape Model-
ing and Applications, pages 172–178, 1999.

[29] K. A. Reichert. Construction of a large-scale distributed
mass-spring simulation. Technical report, Virginia Polytech-
nic Institute and State University, Falls Church, VA, Jan. 6
2004.

[30] L. Renambot, H. E. Bal, D. German, and H. J. W. Spoelder.
CAVEStudy: an infrastructure for computational steering in
virtual reality environments. In Proceedings of the Ninth
International Symposium on High-Performance Distributed
Computing, pages 239–246, 1–4 Aug. 2000.


