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Abstract

Image Skeletonization promises to be a powerful
complexity-cutting tool for compact shape description,
pattern  recognition, robot vision, animation,
petrography  pore space fluid flow analysis,
model/analysis of bone/lung/circulation, and image
compression for telemedicine. The existing image
thinning/skeletonization techniques using boundary
erosion, distance coding, and Voronoi diagram are
first overviewed to assess/compare their feasibility of
extending from 2D to 3D. An efficient distance-based
procedure to generate the skeleton of large, complex
3D images such as CT, MRI data of human organ is
then described. The proposed 3D Voxel Coding
(3DVC) algorithm, is based on Discrete Euclidean
Distance Transform. Instead of actual distance, each
interior voxel (3D pixel) in the 3D image object is
labeled with an integer code according to its relative
distance from the object border for computation
efficiency.  All center voxels, which are the furthest
away from the object border, are then collected and
thinned to form clusters. To preserve the topology of
the 3D image object, a cluster-labeling heuristic is
then applied to order the clusters, and to recursively
connect the next nearest clusters, gradually reducing
the total number of disjoint clusters, to generate one
final connected skeleton for each 3D object. The
algorithm provides a straightforward computation
which is robust and not sensitive to noise or object
boundary complexity. Because 3D skeleton may not be
unique, several application-dependent skeletonization
options will be explored for meeting specific
quality/speed  requirements, —and  perhaps to
incorporate automatic machine intelligence decisions.
Parallel version of 3DVC is also introduced to further
enhance skeletonization speed.
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1. 2D and 3D Image Skeletonization

The generation of a digital image skeleton is often
one of the first processing steps taken by a computer
vision system when attempting to extract features from
an object in an image. Due to its compact shape
representations, image skeletonization has been studied
for a long time in computer vision, pattern recognition
and Optical Character Recognition. It is a powerful
tool for intermediate representation for a number of
geometric operations on solid models. An image
skeleton is presumed to represent the shape of the
object in a relatively small number of pixels/voxels, all
of which are, in some sense, structural and therefore
necessary. The skelefon of an object is, conceptually,
defined as the locus of center voxels in the object.
Unfortunately, no generally agreed upon definition of
a digital image skeleton exists. Of the literally
hundreds of papers on the subject of thinning which
are in print, the vast majority are concerned with the
implementation of a variation on an existing thinning
method, where the novel aspects are related to the
performance of the algorithm [11][14][17]. But for all
definitions, at least 4 requirements below must be
satisfy for skeleton objects:

e  Centeredness satisfaction: Skeleton is
geometrically centered within the object boundary
or as close as possible.

e Connectivity preservation: The output skeleton
should have the same connectivity as the original
object and should not contain any background
element.



o Topology must remain constant
e  As thin as possible: 1-voxel thin is the requirement
for a 2D skeleton, and in 3D, as thin as possible.

2. 3D Image Skeletonization Challenges

There are a variety of methods proposed for image
skeleton extraction in the literature. In general, they
can be classified in 3 categories:

2.1. Boundary peeling/erosion

This method iteratively peels off the boundary
voxel-by-voxel, layer-by-layer from outside to inside
of the object where removal does not affect the
topology of the object. This is a repetitive, time-
intensive process of testing and deletion each voxel.
The difficulty of this method is that the set of rules
defined for removing voxel is dependent highly on the
type of image and that different set of rules will be
applied for different type of images. However, this
method is good for connectivity preservation. [1][2][3]

2.2. Euclidean Distance coding/transform

This method is based on the distance of each voxel
to the boundary, and tries to directly extract skeleton
voxels by finding the local maximum voxels (voxels in
the center of object). The distance coding is based on
Euclidean distance or the approximation to Euclidean
distance. This method is faster and can be done in Aigh
degree of parallelism, however the output is not
guaranteed to preserve connectivity [S][6][10][12].

The main problem of this method is connectivity.
Niblack et al. [13] provided a solution in 2D. In order
to connect local maxima using uphill climbing rules,
they added saddle points, which are local minima
along a skeleton, to the skeletal point set. However,
direct extension of this algorithm to 3D is difficult
because there are not necessarily unique sequences of
voxels around a given voxel. Helman and Hesselink
[15] detected saddle points in a 2D vector field by
computing the eigenvalues of the Jacobian matrix of
the field. The accuracy of saddle points depends on the
accuracy of the vector field generated from a distance
transform. In 3D, noisy, complex data would have too
many voxels been taken as saddle points, resulting in
either erroneous skeleton parts or very thick skeletons.
Y. Zhou [5] recently proposed a fast, template-based
skeleton and centerline extraction method, which is
based on 2 coding operations: boundary-seeded (BS)
voxel coding and single point seeded (SS) voxel
coding. From BS, all local maxima will be detected to

generate center clusters, from SS, all center clusters
will be connected to generate skeleton using Local
Maximum Path concept. His algorithm works well on
MRI and CT images, which have pipe or torus shape.
For other shapes such as cube, polygon block, the
result is a plane instead of a single line.
This method takes 3 steps:
e  Generate the minimum distance field of the object.
e Detect all local maxima in term of distance field to
generate center clusters. From now on, the object
is considered as a set of clusters instead of a set of
voxels.
e Reconnect all clusters to generate the skeleton.

2.3 Distance transform - Voronoi Diagram

This method [7][8][9], theoretically, guarantees
connected skeletons, is best suited for polygonally
defined objects. However, real image data such as CT,
MRI with large amount of voxels and noise, cause
Voronoi diagram to be very dense and the computation
time to be expensive because they generate too many
nodes and lines. Computing by this method is also
impossible for small computer with small memory
since the whole image data (with 256 x 256 x 128)
requires at least 8M of memory to load the image.

So far, no algorithm works well with a general
image, nor satisfies the accuracy and time performance
requirements. Voronoi method produces good result,
but the computing time is large, Border erosion method
is faster than Voronoi, but is also less accurate.
Distance  Transform method gives the best
performance, but also is difficult in implementation
and programming to preserve connectivity.
Connectivity step (or how to connect all clusters) is
also the most difficult step that many authors have
proposed algorithms to solve but ended up either too
complicated or inefficient. We are proposing a simple
and efficient algorithm to solve this problem as
discussed in later sections. Most notations and terms
used in this project are kept the same as used by
authors in [1][5][16].

3. Center Clusters and Connectivity

3.1. Binary Image

The term binary image refers to the image with all
voxels carrying the value of 0 or 1. A 3D binary image
with size M x N x P can be represented as a 3D array,
IMG = {v(i,j, k) | 1Si< M, 1<j <N, 1 <k < P} with
M, N, P being positive integers and v(i, j, k) € {0, 1}.



In image visualization, 0’s voxel will be displayed
as black and 1’s voxel will be white.

3.2. Euclidean Distance

Euclidean Distance refers to the actual distance
between voxels in the image:

d=1

d='\/2_

Figure 1: Euclidean distance

Figure 2 shows an example of the distance from
every voxels to a given voxel (shaded):
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Figure 2: Example of Euclidean distances
3.3. Geometrical Connectivity

Euler’s formula provided a means for checking the
connectivity for 3D objects. For each single closed
netted surface, if » denotes the number of nodal points
in the net, f denotes the number of faces, and e denotes
the number of edges, we have:

n—et+f =2
More generally, when handles or cavities are present in
object, the formula becomes:

n—et+f=2-2%h
where % is the number of handles.
For the entire 3D image, one may define the
connectivity number N as

N=2302-2h)
In order to preserve the connectivity, the value N
should not be changed during skeletonization as in [3].

3.4. Notations used in this project

e  Background voxel: A voxel with value = 0 black.
o Object voxel: Voxel with value = 1 white.

Boundary voxel: Voxel with at least one of its
neighbor being a background voxel.

Outside Voxel: Voxel with all of its neighbors = 0.
Inside Voxel: Voxel with all of its neighbors = 1.
F-connected: Two voxels P; and P; are called F-
connected if they shared a face. And P;is an F-
neighbor of P;. There are 6 F-connected voxels of

a given voxel
--’j

Figure 3: F-connected voxels

E-connected: Two voxels P; and P; are called E-
connected if they share an edge. And P; is an E-
neighbor of P; There are 12 E-connected voxels
of a given voxel

— 1
Figure 4: E-connected voxels

V-connected: Two voxels P; and P; are called V-
connected if they share a vertice. And P;is a V-
neighbor of P; There are 8 V-connected voxels of
a given voxel.

Figure 5: V-connected voxels

Definitions:

Distance Value - Is the value assigned to a voxel
based on the approximate Euclidean distance of
that voxel from the border. A voxel is call n-voxel
if it’s distance value = n.

ntv

n+f

nte
Figure 6: Distance code progression

Coding Vector or Matrix — [f,e,v], eg., [1,2,3].



No sensitivity to object boundary complexity,

where Noise removal / Image enhancement is

required.

Local Maximum Voxel - 1s the voxel that has the

distance value not less than those of all its E/F-

neighbors [4].

Visualization.
The proposed 3D Voxel Coding and Cluster

Labeling skeletonization method includes 8 steps:

Local Maximum Voxel

Preprocess image data and remove noise if

necessary.
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are connected, p; and p;., are

i. Each p; has at least one F-Neighbor with a
ii. Voxel p; and p, have only 1 neighbor — they are

2 ends of the path, voxel p; (1 <i < n) has exactly
separate clusters and will be discussed in more

In this paper, the shortest path is used to connect 2
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4. 3D Voxel Coding an

Determine minimum distance field for the
object by using voxel-coding method (Figure

10).

3.

Our algorithm proposed here works well in 2D and
is also extendable to 3D. The method belongs to the
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requires designated hole detection.
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Generate clusters based on result from step 3.
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number as in Figure 14.
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Figure 11

all

recursively until

connection

clusters are connected to one final cluster #5.
Note that the shelling layer voxels are

Refine the clusters to be as thin as possible:

5.

Each voxel should have only 2 neighbors

temporary labeled with numbers larger than

No voxels share same

neighbors except branch voxel. Keep only
voxels on the shortest path.

except end voxels.

the largest cluster label number (#6,7,8,9 etc.
> #5) to avoid confusion between cluster and

non-cluster voxels.
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a. 2D skeleton example (256 x 256)

number of clusters found. The fifth function can be
divided to (the number of clusters / 2) processes. The
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c. 2D skeleton example

b. 2D skeleton example

T e g

d. 3D skeleton example (64 x 64 x 64)
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f. The whole MRI image
Figure 15: Results of 2D/3D skeleton

6. Intelligent Image Skeleton extractor

The Algorithm developed above works well with
many kinds of image data set including MRI, CT and
Polygon Object. But the Cluster Refinement routine
can be modified depending on the shape of the objects
to satisfy particular requirement. Certain images, with
the pipe/round shape like cylinder, torus, CT, MRI,
generate a smooth skeleton without refinement step.
Others need to be smoothed and refined many times. It
is difficult to find a general rule that satisfies all kinds
of image. A promising solution would be to
incorporate automatic application-dependent image
thinning decisions based on machine intelligence.

7. Improved Skeletonization Performance

We have presented the FEuclidean Distance
Transform Based skeleton extraction for skeletons
consisting of clusters and paths. Current
Skeletonization methods are overviewed and
compared. The advantage of this 3D Voxel Coding
method is the high performance compared to other
methods. The disadvantage is the lost of connectivity
of the skeleton. The efficient cluster labeling heuristic
algorithm proposed overcomes that disadvantage;
generates a smooth, thin, connected skeleton that
satisfied most of 3D data sets. Some limitations of this
project are also discussed for further investigation and
improvement.
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