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Abstract 

 
Image Skeletonization promises to be a powerful 

complexity-cutting tool for compact shape description, 
pattern recognition, robot vision, animation, 
petrography pore space fluid flow analysis, 
model/analysis of bone/lung/circulation, and image 
compression for telemedicine.  The existing image 
thinning/skeletonization techniques using boundary 
erosion, distance coding, and Voronoi diagram are 
first overviewed to assess/compare their feasibility of 
extending from 2D to 3D.  An efficient distance-based 
procedure to generate the skeleton of large, complex 
3D images such as CT, MRI data of human organ is 
then described. The proposed 3D Voxel Coding 
(3DVC) algorithm, is based on Discrete Euclidean 
Distance Transform.  Instead of actual distance, each 
interior voxel (3D pixel) in the 3D image object is 
labeled with an integer code according to its relative 
distance from the object border for computation 
efficiency.   All center voxels, which are the furthest 
away from the object border, are then collected and 
thinned to form clusters. To preserve the topology of 
the 3D image object, a cluster-labeling heuristic is 
then applied to order the clusters, and to recursively 
connect the next nearest clusters, gradually reducing 
the total number of disjoint clusters, to generate one 
final connected skeleton for each 3D object. The 
algorithm provides a straightforward computation 
which is robust and not sensitive to noise or object 
boundary complexity.  Because 3D skeleton may not be 
unique, several application-dependent skeletonization 
options will be explored for meeting specific 
quality/speed requirements, and perhaps to 
incorporate automatic machine intelligence decisions.  
Parallel version of 3DVC is also introduced to further 
enhance skeletonization speed.  
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1. 2D and 3D Image Skeletonization 
 

The generation of a digital image skeleton is often 
one of the first processing steps taken by a computer 
vision system when attempting to extract features from 
an object in an image. Due to its compact shape 
representations, image skeletonization has been studied 
for a long time in computer vision, pattern recognition 
and Optical Character Recognition. It is a powerful 
tool for intermediate representation for a number of 
geometric operations on solid models. An image 
skeleton is presumed to represent the shape of the 
object in a relatively small number of pixels/voxels, all 
of which are, in some sense, structural and therefore 
necessary. The skeleton of an object is, conceptually, 
defined as the locus of center voxels in the object. 
Unfortunately, no generally agreed upon definition of 
a digital image skeleton exists. Of the literally 
hundreds of papers on the subject of thinning which 
are in print, the vast majority are concerned with the 
implementation of a variation on an existing thinning 
method, where the novel aspects are related to the 
performance of the algorithm [11][14][17]. But for all 
definitions, at least 4 requirements below must be 
satisfy for skeleton objects: 
• Centeredness satisfaction: Skeleton is 

geometrically centered within the object boundary 
or as close as possible. 

• Connectivity preservation: The output skeleton 
should have the same connectivity as the original 
object and should not contain any background 
element. 



• Topology must remain constant 
• As thin as possible: 1-voxel thin is the requirement 

for a 2D skeleton, and in 3D, as thin as possible. 
 

2. 3D Image Skeletonization Challenges 
 

There are a variety of methods proposed for image 
skeleton extraction in the literature. In general, they 
can be classified in 3 categories: 

 
2.1. Boundary peeling/erosion 
 

This method iteratively peels off the boundary 
voxel-by-voxel, layer-by-layer from outside to inside 
of the object where removal does not affect the 
topology of the object. This is a repetitive, time-
intensive process of testing and deletion each voxel. 
The difficulty of this method is that the set of rules 
defined for removing voxel is dependent highly on the 
type of image and that different set of rules will be 
applied for different type of images. However, this 
method is good for connectivity preservation. [1][2][3]  
 
2.2. Euclidean Distance coding/transform  
 

This method is based on the distance of each voxel 
to the boundary, and tries to directly extract skeleton 
voxels by finding the local maximum voxels (voxels in 
the center of object). The distance coding is based on 
Euclidean distance or the approximation to Euclidean 
distance. This method is faster and can be done in high 
degree of parallelism, however the output is not 
guaranteed to preserve connectivity [5][6][10][12]. 

The main problem of this method is connectivity. 
Niblack et al. [13] provided a solution in 2D. In order 
to connect local maxima using uphill climbing rules, 
they added saddle points, which are local minima 
along a skeleton, to the skeletal point set. However, 
direct extension of this algorithm to 3D is difficult 
because there are not necessarily unique sequences of 
voxels around a given voxel. Helman and Hesselink 
[15] detected saddle points in a 2D vector field by 
computing the eigenvalues of the Jacobian matrix of 
the field. The accuracy of saddle points depends on the 
accuracy of the vector field generated from a distance 
transform. In 3D, noisy, complex data would have too 
many voxels been taken as saddle points, resulting in 
either erroneous skeleton parts or very thick skeletons. 
Y. Zhou [5] recently proposed a fast, template-based 
skeleton and centerline extraction method, which is 
based on 2 coding operations: boundary-seeded (BS) 
voxel coding and single point seeded (SS) voxel 
coding. From BS, all local maxima will be detected to 

generate center clusters, from SS, all center clusters 
will be connected to generate skeleton using Local 
Maximum Path concept. His algorithm works well on 
MRI and CT images, which have pipe or torus shape. 
For other shapes such as cube, polygon block, the 
result is a plane instead of a single line. 

This method takes 3 steps: 
• Generate the minimum distance field of the object. 
• Detect all local maxima in term of distance field to 

generate center clusters. From now on, the object 
is considered as a set of clusters instead of a set of 
voxels. 

• Reconnect all clusters to generate the skeleton.  
 
2.3 Distance transform - Voronoi Diagram 
 

This method [7][8][9], theoretically, guarantees 
connected skeletons, is best suited for polygonally 
defined objects. However, real image data such as CT, 
MRI with large amount of voxels and noise, cause 
Voronoi diagram to be very dense and the computation 
time to be expensive because they generate too many 
nodes and lines. Computing by this method is also 
impossible for small computer with small memory 
since the whole image data (with 256 x 256 x 128) 
requires at least 8M of memory to load the image. 

So far, no algorithm works well with a general 
image, nor satisfies the accuracy and time performance 
requirements. Voronoi method produces good result, 
but the computing time is large, Border erosion method 
is faster than Voronoi, but is also less accurate. 
Distance Transform method gives the best 
performance, but also is difficult in implementation 
and programming to preserve connectivity. 
Connectivity step (or how to connect all clusters) is 
also the most difficult step that many authors have 
proposed algorithms to solve but ended up either too 
complicated or inefficient. We are proposing a simple 
and efficient algorithm to solve this problem as 
discussed in later sections. Most notations and terms 
used in this project are kept the same as used by 
authors in [1][5][16]. 

 
3. Center Clusters and Connectivity 
 
3.1. Binary Image 
 

The term binary image refers to the image with all 
voxels carrying the value of 0 or 1. A 3D binary image 
with size M x N x P can be represented as a 3D array, 
IMG ≡ {v(i, j, k) | 1≤ i ≤ M, 1≤ j ≤ N, 1 ≤ k ≤ P} with 
M, N, P being positive integers and v(i, j, k) ∈ {0, 1}. 



In image visualization, 0’s voxel will be displayed 
as black and 1’s voxel will be white.   
 
3.2. Euclidean Distance 
 

Euclidean Distance refers to the actual distance 
between voxels in the image: 
 

 
Figure 1: Euclidean distance 

 
Figure 2 shows an example of the distance from 

every voxels to a given voxel (shaded): 
 

 
 
 
 
 
 
 
 

Figure 2: Example of Euclidean distances 
 
3.3. Geometrical Connectivity 

 
Euler’s formula provided a means for checking the 

connectivity for 3D objects. For each single closed 
netted surface, if n denotes the number of nodal points 
in the net, f denotes the number of faces, and e denotes 
the number of edges, we have: 
 n – e + f  = 2 
More generally, when handles or cavities are present in 
object, the formula becomes: 
 n – e + f  = 2 – 2 * h,  
where h is the number of handles. 
For the entire 3D image, one may define the 
connectivity number N as 
 N = ∑(2 – 2hi) 
In order to preserve the connectivity, the value N 
should not be changed during skeletonization as in [3]. 
 
3.4. Notations used in this project 

 
• Background voxel: A voxel with value = 0 black. 
• Object voxel: Voxel with value = 1 white. 

• Boundary voxel: Voxel with at least one of its 
neighbor being a background voxel. 

• Outside Voxel: Voxel with all of its neighbors = 0. 
• Inside Voxel: Voxel with all of its neighbors = 1. 
• F-connected: Two voxels Pi and Pj are called F-

connected if they shared a face. And Pj is an F-
neighbor of Pi.  There are 6 F-connected voxels of 
a given voxel 
 

 
 
 
Figure 3: F-connected voxels 
 

• E-connected: Two voxels Pi and Pj are called E-
connected if they share an edge. And Pj is an E-
neighbor of Pi.  There are 12 E-connected voxels 
of a given voxel 

 
 
 
 
 
Figure 4: E-connected voxels 

 
• V-connected: Two voxels Pi and Pj are called V-

connected if they share a vertice. And Pj is a V-
neighbor of Pi .  There are 8 V-connected voxels of 
a given voxel. 

  
   
 

 
 
 
Figure 5: V-connected voxels 

 
• Definitions: 

 
Distance Value - Is the value assigned to a voxel 
based on the approximate Euclidean distance of 
that voxel from the border. A voxel is call n-voxel 
if it’s distance value = n. 

 
Figure 6: Distance code progression 

 
Coding Vector or Matrix – [f,e,v], eg., [1,2,3]. 



 
Local Maximum Voxel - Is the voxel that has the 
distance value not less than those of all its E/F-
neighbors [4].  
 

 
 
 
 

Figure 7. Example of Local Maximum 
Voxel 

 
Cluster - Is defined as a set of F/E/V-connected 
local maximum voxels that have the same distance 
value. 
       
 
 
 
 

Figure 8. Example of cluster 
 
The Shortest Path P ≡ {pi | i = 1  n} is a 
sequence of voxel pi such that: 
i. Each pi has at least one F-Neighbor with a 
distance greater than that of pi 
ii. Voxel p1 and pn have only 1 neighbor – they are 
2 ends of the path, voxel pi (1 < i < n) has exactly 
2 neighbors. 
iii. pi and pi+1  are connected, pi and pi+2 are 
disconnected. 
In this paper, the shortest path is used to connect 2 
separate clusters and will be discussed in more 
detail later. 

 
4. 3D Voxel Coding and Cluster Labeling 
 

Our algorithm proposed here works well in 2D and 
is also extendable to 3D. The method belongs to the 
second category, which uses a discrete coding method 
of Euclidean transform. The reason to use this method 
is because when we process large image with millions 
of voxels, the accuracy of a few voxels does not affect 
the whole result, but the reduction in process time is 
important. Beside the four main requirements 
mentioned above for skeletons, some more 
characteristics are also considered in the project: 
• Straightforward computation: This requirement is 

to speed up the computation time. 
• Work well with many kinds of images. 
• Efficient object hole detection: Some application 

requires designated hole detection. 

• No sensitivity to object boundary complexity, 
where Noise removal / Image enhancement is 
required. 

• Visualization. 
The proposed 3D Voxel Coding and Cluster 

Labeling skeletonization method includes 8 steps: 
1. Preprocess image data and remove noise if 

necessary. 
2. Detect the boundary. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Border detect  
 

3. Determine minimum distance field for the 
object by using voxel-coding method (Figure 
10). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Voxel-coding  

 

 



 
4. Generate clusters based on result from step 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Cluster generation 
 

5. Refine the clusters to be as thin as possible: 
Each voxel should have only 2 neighbors 
except end voxels.  No voxels share same 
neighbors except branch voxel. Keep only 
voxels on the shortest path. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Cluster thinning 

 
6. Detect for holes in the object. 
7. Connect all clusters to generate the skeleton. 

Clusters are randomly ordered and labeled 
with sequential numbers from #2, #3, and so 
on (0 and 1 are reserved for the background 
and the thinned clusters) as the example in 
Figure 13.  Starting at a seed cluster, say 
cluster #2 (or multiple seed clusters in 
parallel), shell (expand layer by layer) cluster 
#2 until touching the next nearing cluster, say 
#3.  Connect both touching clusters #2 and #3 
using shortest path, and then name the newly 
connected cluster with the larger cluster 
number as in Figure 14.  Snowballing the 
clusters connection recursively until all 
clusters are connected to one final cluster #5.  
Note that the shelling layer voxels are 
temporary labeled with numbers larger than 
the largest cluster label number (#6,7,8,9 etc. 
> #5) to avoid confusion between cluster and 
non-cluster voxels.  
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 13: Cluster labeling #2,3,4,5 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14: Extend cluster #2 by shelling until 

touching to join the nearest cluster #3 
 

8. Output skeleton to a file and display the 
result. 

 
The steps above can be done either in sequential or 

parallel. In parallel, the first three functions can be 
split out to many processes because each process can 
work independently. The fourth function can be 
divided to the maximum of processes equal to the 
number of clusters found. The fifth function can be 
divided to (the number of clusters / 2) processes. The 

level of parallelism of this method is also higher than 
previous methods as discussed above.  
 
5. Efficient 2D and 3D Skeletonization 
 

We have tested many data sets with this algorithm, 
from a simple 2D image to complex, large MRI image. 
The result is good in both 2D and 3D, see Figure 15. 
The 2D display is integrated in the windows 
environment tool developed in C++ and the 3D images 
are displayed using Matlab version 5.3 or later. 

The execution speed in sequential version also 
surpasses all current algorithms as shown in Table 1: 

 
Table 1. Skeletonization speed increase 
Image Size Boundary 

Peeling time 
3DVC 

(second) 
64 x 64 0.03 0.02 

256 x 256 0.47 0.19 
512 x 512 2.98 0.61 

1024 x 1024 18.98 2.64 
64 x 64 x 64  1.59 

128 x 128 x 27  4.52 
Test on Pentium 500 MHz, 256 M RAM 

 

 
 

 
 

 
 

a. 2D skeleton example (256 x 256) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

b. 2D skeleton example 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. 2D skeleton example 

 
 

 
d. 3D skeleton example (64 x 64 x 64) 

 
 



 
 

 
 

e. 1 slice of MRI image (128 x 128 x 27) 
 

 

 
f. The whole MRI image 

Figure 15: Results of 2D/3D skeleton 
 

6. Intelligent Image Skeleton extractor 
 

The Algorithm developed above works well with 
many kinds of image data set including MRI, CT and 
Polygon Object. But the Cluster Refinement routine 
can be modified depending on the shape of the objects 
to satisfy particular requirement.  Certain images, with 
the pipe/round shape like cylinder, torus, CT, MRI, 
generate a smooth skeleton without refinement step. 
Others need to be smoothed and refined many times. It 
is difficult to find a general rule that satisfies all kinds 
of image.  A promising solution would be to 
incorporate automatic application-dependent image 
thinning decisions based on machine intelligence.   

 
7. Improved Skeletonization Performance  
 

We have presented the Euclidean Distance 
Transform Based skeleton extraction for skeletons 
consisting of clusters and paths. Current 
Skeletonization methods are overviewed and 
compared. The advantage of this 3D Voxel Coding 
method is the high performance compared to other 
methods. The disadvantage is the lost of connectivity 
of the skeleton. The efficient cluster labeling heuristic 
algorithm proposed overcomes that disadvantage; 
generates a smooth, thin, connected skeleton that 
satisfied most of 3D data sets. Some limitations of this 
project are also discussed for further investigation and 
improvement. 
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