
Efficient 3D Binary Image Skeletonization

Son Tran and Liwen Shih
Computer Engineering, University of Houston - Clear Lake (UHCL)

shih@uhcl.edu

Abstract

Image Skeletonization promises to be a powerful

complexity-cutting tool for compact shape description,
pattern recognition, robot vision, animation,
petrography pore space fluid flow analysis,
model/analysis of bone/lung/circulation, and image
compression for telemedicine. The existing image
thinning/skeletonization techniques using boundary
erosion, distance coding, and Voronoi diagram are
first overviewed to assess/compare their feasibility of
extending from 2D to 3D. An efficient distance-based
procedure to generate the skeleton of large, complex
3D images such as CT, MRI data of human organ is
then described. The proposed 3D Voxel Coding
(3DVC) algorithm, is based on Discrete Euclidean
Distance Transform. Instead of actual distance, each
interior voxel (3D pixel) in the 3D image object is
labeled with an integer code according to its relative
distance from the object border for computation
efficiency. All center voxels, which are the furthest
away from the object border, are then collected and
thinned to form clusters. To preserve the topology of
the 3D image object, a cluster-labeling heuristic is
then applied to order the clusters, and to recursively
connect the next nearest clusters, gradually reducing
the total number of disjoint clusters, to generate one
final connected skeleton for each 3D object. The
algorithm provides a straightforward computation
which is robust and not sensitive to noise or object
boundary complexity. Because 3D skeleton may not be
unique, several application-dependent skeletonization
options will be explored for meeting specific
quality/speed requirements, and perhaps to
incorporate automatic machine intelligence decisions.
Parallel version of 3DVC is also introduced to further
enhance skeletonization speed.
Keyword: 3D Image Skeleton, Euclidean Distance
Transform, Parallel Algorithm, Heuristics

Acknowledgement: Partially sponsored by TX HECB
ARP/ATP grants, the project started when working to
cut complexity in University of Houston professor
Kishore Mohanty’s pioneer work on oil/water/gas flow
analysis through petrography pore spaces.

1. 2D and 3D Image Skeletonization

The generation of a digital image skeleton is often
one of the first processing steps taken by a computer
vision system when attempting to extract features from
an object in an image. Due to its compact shape
representations, image skeletonization has been studied
for a long time in computer vision, pattern recognition
and Optical Character Recognition. It is a powerful
tool for intermediate representation for a number of
geometric operations on solid models. An image
skeleton is presumed to represent the shape of the
object in a relatively small number of pixels/voxels, all
of which are, in some sense, structural and therefore
necessary. The skeleton of an object is, conceptually,
defined as the locus of center voxels in the object.
Unfortunately, no generally agreed upon definition of
a digital image skeleton exists. Of the literally
hundreds of papers on the subject of thinning which
are in print, the vast majority are concerned with the
implementation of a variation on an existing thinning
method, where the novel aspects are related to the
performance of the algorithm [11][14][17]. But for all
definitions, at least 4 requirements below must be
satisfy for skeleton objects:
• Centeredness satisfaction: Skeleton is

geometrically centered within the object boundary
or as close as possible.

• Connectivity preservation: The output skeleton
should have the same connectivity as the original
object and should not contain any background
element.

• Topology must remain constant
• As thin as possible: 1-voxel thin is the requirement

for a 2D skeleton, and in 3D, as thin as possible.

2. 3D Image Skeletonization Challenges

There are a variety of methods proposed for image
skeleton extraction in the literature. In general, they
can be classified in 3 categories:

2.1. Boundary peeling/erosion

This method iteratively peels off the boundary
voxel-by-voxel, layer-by-layer from outside to inside
of the object where removal does not affect the
topology of the object. This is a repetitive, time-
intensive process of testing and deletion each voxel.
The difficulty of this method is that the set of rules
defined for removing voxel is dependent highly on the
type of image and that different set of rules will be
applied for different type of images. However, this
method is good for connectivity preservation. [1][2][3]

2.2. Euclidean Distance coding/transform

This method is based on the distance of each voxel
to the boundary, and tries to directly extract skeleton
voxels by finding the local maximum voxels (voxels in
the center of object). The distance coding is based on
Euclidean distance or the approximation to Euclidean
distance. This method is faster and can be done in high
degree of parallelism, however the output is not
guaranteed to preserve connectivity [5][6][10][12].

The main problem of this method is connectivity.
Niblack et al. [13] provided a solution in 2D. In order
to connect local maxima using uphill climbing rules,
they added saddle points, which are local minima
along a skeleton, to the skeletal point set. However,
direct extension of this algorithm to 3D is difficult
because there are not necessarily unique sequences of
voxels around a given voxel. Helman and Hesselink
[15] detected saddle points in a 2D vector field by
computing the eigenvalues of the Jacobian matrix of
the field. The accuracy of saddle points depends on the
accuracy of the vector field generated from a distance
transform. In 3D, noisy, complex data would have too
many voxels been taken as saddle points, resulting in
either erroneous skeleton parts or very thick skeletons.
Y. Zhou [5] recently proposed a fast, template-based
skeleton and centerline extraction method, which is
based on 2 coding operations: boundary-seeded (BS)
voxel coding and single point seeded (SS) voxel
coding. From BS, all local maxima will be detected to

generate center clusters, from SS, all center clusters
will be connected to generate skeleton using Local
Maximum Path concept. His algorithm works well on
MRI and CT images, which have pipe or torus shape.
For other shapes such as cube, polygon block, the
result is a plane instead of a single line.

This method takes 3 steps:
• Generate the minimum distance field of the object.
• Detect all local maxima in term of distance field to

generate center clusters. From now on, the object
is considered as a set of clusters instead of a set of
voxels.

• Reconnect all clusters to generate the skeleton.

2.3 Distance transform - Voronoi Diagram

This method [7][8][9], theoretically, guarantees
connected skeletons, is best suited for polygonally
defined objects. However, real image data such as CT,
MRI with large amount of voxels and noise, cause
Voronoi diagram to be very dense and the computation
time to be expensive because they generate too many
nodes and lines. Computing by this method is also
impossible for small computer with small memory
since the whole image data (with 256 x 256 x 128)
requires at least 8M of memory to load the image.

So far, no algorithm works well with a general
image, nor satisfies the accuracy and time performance
requirements. Voronoi method produces good result,
but the computing time is large, Border erosion method
is faster than Voronoi, but is also less accurate.
Distance Transform method gives the best
performance, but also is difficult in implementation
and programming to preserve connectivity.
Connectivity step (or how to connect all clusters) is
also the most difficult step that many authors have
proposed algorithms to solve but ended up either too
complicated or inefficient. We are proposing a simple
and efficient algorithm to solve this problem as
discussed in later sections. Most notations and terms
used in this project are kept the same as used by
authors in [1][5][16].

3. Center Clusters and Connectivity

3.1. Binary Image

The term binary image refers to the image with all
voxels carrying the value of 0 or 1. A 3D binary image
with size M x N x P can be represented as a 3D array,
IMG ≡ {v(i, j, k) | 1≤ i ≤ M, 1≤ j ≤ N, 1 ≤ k ≤ P} with
M, N, P being positive integers and v(i, j, k) ∈ {0, 1}.

In image visualization, 0’s voxel will be displayed
as black and 1’s voxel will be white.

3.2. Euclidean Distance

Euclidean Distance refers to the actual distance
between voxels in the image:

Figure 1: Euclidean distance

Figure 2 shows an example of the distance from

every voxels to a given voxel (shaded):

Figure 2: Example of Euclidean distances

3.3. Geometrical Connectivity

Euler’s formula provided a means for checking the

connectivity for 3D objects. For each single closed
netted surface, if n denotes the number of nodal points
in the net, f denotes the number of faces, and e denotes
the number of edges, we have:
 n – e + f = 2
More generally, when handles or cavities are present in
object, the formula becomes:
 n – e + f = 2 – 2 * h,
where h is the number of handles.
For the entire 3D image, one may define the
connectivity number N as
 N = ∑(2 – 2hi)
In order to preserve the connectivity, the value N
should not be changed during skeletonization as in [3].

3.4. Notations used in this project

• Background voxel: A voxel with value = 0 black.
• Object voxel: Voxel with value = 1 white.

• Boundary voxel: Voxel with at least one of its
neighbor being a background voxel.

• Outside Voxel: Voxel with all of its neighbors = 0.
• Inside Voxel: Voxel with all of its neighbors = 1.
• F-connected: Two voxels Pi and Pj are called F-

connected if they shared a face. And Pj is an F-
neighbor of Pi. There are 6 F-connected voxels of
a given voxel

Figure 3: F-connected voxels

• E-connected: Two voxels Pi and Pj are called E-
connected if they share an edge. And Pj is an E-
neighbor of Pi. There are 12 E-connected voxels
of a given voxel

Figure 4: E-connected voxels

• V-connected: Two voxels Pi and Pj are called V-

connected if they share a vertice. And Pj is a V-
neighbor of Pi . There are 8 V-connected voxels of
a given voxel.

Figure 5: V-connected voxels

• Definitions:

Distance Value - Is the value assigned to a voxel
based on the approximate Euclidean distance of
that voxel from the border. A voxel is call n-voxel
if it’s distance value = n.

Figure 6: Distance code progression

Coding Vector or Matrix – [f,e,v], eg., [1,2,3].

Local Maximum Voxel - Is the voxel that has the
distance value not less than those of all its E/F-
neighbors [4].

Figure 7. Example of Local Maximum
Voxel

Cluster - Is defined as a set of F/E/V-connected
local maximum voxels that have the same distance
value.

Figure 8. Example of cluster

The Shortest Path P ≡ {pi | i = 1 n} is a
sequence of voxel pi such that:
i. Each pi has at least one F-Neighbor with a
distance greater than that of pi
ii. Voxel p1 and pn have only 1 neighbor – they are
2 ends of the path, voxel pi (1 < i < n) has exactly
2 neighbors.
iii. pi and pi+1 are connected, pi and pi+2 are
disconnected.
In this paper, the shortest path is used to connect 2
separate clusters and will be discussed in more
detail later.

4. 3D Voxel Coding and Cluster Labeling

Our algorithm proposed here works well in 2D and
is also extendable to 3D. The method belongs to the
second category, which uses a discrete coding method
of Euclidean transform. The reason to use this method
is because when we process large image with millions
of voxels, the accuracy of a few voxels does not affect
the whole result, but the reduction in process time is
important. Beside the four main requirements
mentioned above for skeletons, some more
characteristics are also considered in the project:
• Straightforward computation: This requirement is

to speed up the computation time.
• Work well with many kinds of images.
• Efficient object hole detection: Some application

requires designated hole detection.

• No sensitivity to object boundary complexity,
where Noise removal / Image enhancement is
required.

• Visualization.
The proposed 3D Voxel Coding and Cluster

Labeling skeletonization method includes 8 steps:
1. Preprocess image data and remove noise if

necessary.
2. Detect the boundary.

Figure 9: Border detect

3. Determine minimum distance field for the
object by using voxel-coding method (Figure
10).

Figure 10: Voxel-coding

4. Generate clusters based on result from step 3.

Figure 11: Cluster generation

5. Refine the clusters to be as thin as possible:
Each voxel should have only 2 neighbors
except end voxels. No voxels share same
neighbors except branch voxel. Keep only
voxels on the shortest path.

Figure 12: Cluster thinning

6. Detect for holes in the object.
7. Connect all clusters to generate the skeleton.

Clusters are randomly ordered and labeled
with sequential numbers from #2, #3, and so
on (0 and 1 are reserved for the background
and the thinned clusters) as the example in
Figure 13. Starting at a seed cluster, say
cluster #2 (or multiple seed clusters in
parallel), shell (expand layer by layer) cluster
#2 until touching the next nearing cluster, say
#3. Connect both touching clusters #2 and #3
using shortest path, and then name the newly
connected cluster with the larger cluster
number as in Figure 14. Snowballing the
clusters connection recursively until all
clusters are connected to one final cluster #5.
Note that the shelling layer voxels are
temporary labeled with numbers larger than
the largest cluster label number (#6,7,8,9 etc.
> #5) to avoid confusion between cluster and
non-cluster voxels.

Figure 13: Cluster labeling #2,3,4,5

Figure 14: Extend cluster #2 by shelling until

touching to join the nearest cluster #3

8. Output skeleton to a file and display the
result.

The steps above can be done either in sequential or

parallel. In parallel, the first three functions can be
split out to many processes because each process can
work independently. The fourth function can be
divided to the maximum of processes equal to the
number of clusters found. The fifth function can be
divided to (the number of clusters / 2) processes. The

level of parallelism of this method is also higher than
previous methods as discussed above.

5. Efficient 2D and 3D Skeletonization

We have tested many data sets with this algorithm,
from a simple 2D image to complex, large MRI image.
The result is good in both 2D and 3D, see Figure 15.
The 2D display is integrated in the windows
environment tool developed in C++ and the 3D images
are displayed using Matlab version 5.3 or later.

The execution speed in sequential version also
surpasses all current algorithms as shown in Table 1:

Table 1. Skeletonization speed increase
Image Size Boundary

Peeling time
3DVC

(second)
64 x 64 0.03 0.02

256 x 256 0.47 0.19
512 x 512 2.98 0.61

1024 x 1024 18.98 2.64
64 x 64 x 64 1.59

128 x 128 x 27 4.52
Test on Pentium 500 MHz, 256 M RAM

a. 2D skeleton example (256 x 256)

b. 2D skeleton example

c. 2D skeleton example

d. 3D skeleton example (64 x 64 x 64)

e. 1 slice of MRI image (128 x 128 x 27)

f. The whole MRI image

Figure 15: Results of 2D/3D skeleton

6. Intelligent Image Skeleton extractor

The Algorithm developed above works well with
many kinds of image data set including MRI, CT and
Polygon Object. But the Cluster Refinement routine
can be modified depending on the shape of the objects
to satisfy particular requirement. Certain images, with
the pipe/round shape like cylinder, torus, CT, MRI,
generate a smooth skeleton without refinement step.
Others need to be smoothed and refined many times. It
is difficult to find a general rule that satisfies all kinds
of image. A promising solution would be to
incorporate automatic application-dependent image
thinning decisions based on machine intelligence.

7. Improved Skeletonization Performance

We have presented the Euclidean Distance
Transform Based skeleton extraction for skeletons
consisting of clusters and paths. Current
Skeletonization methods are overviewed and
compared. The advantage of this 3D Voxel Coding
method is the high performance compared to other
methods. The disadvantage is the lost of connectivity
of the skeleton. The efficient cluster labeling heuristic
algorithm proposed overcomes that disadvantage;
generates a smooth, thin, connected skeleton that
satisfied most of 3D data sets. Some limitations of this
project are also discussed for further investigation and
improvement.

8. Reference

[1] Y.F. Tsao and K.S. Fu, “A Parallel Thinning Algorithm
for 3-D Pictures”, CGIP no. 17, 1981, pp. 315-331.

[2] C.M. Mao and M. Sonka, “A Fully Parallel 3D Thinning
Algorithm and Its Applications”, Computer Vision and
Image Understanding, vol. 64, no. 3, 1996, pp. 420-433.

[3] S.Lobregt, P.W. Verbeek, and F.C.A. Groen, “Three-
Dimensional Skeletonization: Principle and Algorithm”,
IEEE Transaction on PAMI, vol. 2, 1980, pp.75-77.

[4] C. Arcelli and G. Saniti di Baja, “Finding Local Maxima
in a Pseudo-Euclidean Distance Transform”, Computer
Vision, Graphics and Image Processing, vol. 43, 1988, pp.
361-367.

[5] Y. Zhou, A. Kaufman, and A.W. Toga, “3D skeleton and
Centerline Generation Based on an Approximate Minimum
Distance Field”, The Visual Computer, vol.14, no. 7, 1998,
pp 303-314.

[6] L. Dorst, “Pseudo-Euclidean Skeletons”, Proc. Eighth
Int’l Conf. Pattern Recognition, 1986, pp. 286-289.

[7] R.L. Ogniewicz and O. Kubler, “Hierarchic Voronoi
Skeletons”, Pattern Recognition, vol. 28, no. 3, 1995, pp.
343-359.

[8] R.L. Ogniewicz and M. Ilg, “Voronoi skeletons: Theory
and applications”, Proc. Conf. On CVPR, 1992, pp. 63-69.

[9] R.L. Ogniewicz, “Skeleton-Space: a Multiscale Shape
Description Combining Region and Boudary Information”,
Proc. CVPR, 1994, pp. 746-751.

[10] G. Borgefors, “Distance Transformation on Digital
Images”, Computer Vision Graphics Image Processing, vol
34, 1986, pp. 344-371.

[11] Itoh T, Yamaguchi Y, Koyamada K, “Volume thinning
for automatic isosurface propagation. IEEE Proceeding of
Visualization’96, San Francisco, CA, Assoc. for Computing
Machinery, New York, NY, 303-310.

[12] Payne BA, Toga AW, “Distance field manipulation of
surface models”, IEEE Comput Graph Appl 121992, pp.65-
71.

[13] C. W. Niblack, P.B. Gibbons, D. W. Capson,
“Generating Skeletons and Centerlines from the Distance
Transform,” CVGIP, vol. 54 no. 5, sept. 1992, pp. 420-437.

[14] N. Gagvani, “Skeleton and Volume Thinning in
Visualization” MS Thesis, Dept. of Electrical and Computer
Engineering, Rutgers Univ., New Brunswick, N.J. June, 1997

[15] J.L. Helman, L. Hesselink, “Visualization of Vector
Field Topology in Fluid Flows”, IEEE Computer Graphics
and Application, vol. 11, no.3, 1991, pp. 36-46.

[16] Y. Zhou, A.W. Toga, “Efficient Skeletonization of
Volumetric Objects”, IEEE Trans on Visualization and
Computer Graphics, vol.5, no. 3, 1999, pp 196-209.

[17] F. Leymarie, M.D. Levine, “Simulating the Grass Fire
Transform Using an Active Contour Model”, IEEE Trans on
Pattern Analysis and Machine Intelligence, vol.14, no. 1, Jan
1992, pp. 56-75.

