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Abstract 
Quantum Intelligence System for Drug Discovery 

(QIS D2) is a unique adaptive learning system 
designed to predict potential large-scale drug 
characteristics such as toxicity and efficacy. BioSpice 
is a set of software tools designed to represent and 
simulate cellular processes funded by DARPA.  We 
show a QIS D2 model is successfully trained, tested 
and validated on experimental data sets for predicting 
the potential in vivo effects of drug molecules in 
biological systems.  QIS D2 is interoperable with 
BioSpice. The workflow and visualization are built-in 
capabilities for easy-of-use. The integration of QIS D2 
and BioSpice draw on diversified technologies to 
deliver unique benefits for simulation and screening of 
potential drugs and their targets. We show that our 
approach leverages both structured and unstructured 
bioinformatics databases such as BioWarehouse and 
GeneWays in BioSpice to greatly enhance a QIS D2 

model. We show QIS D2 models data from seven 
sources for 37,330 chemicals, performs an automatic 
sequence clustering using 1234 structure fragments, 
and accurately predict 1829 targets simultaneously. 
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1. Introduction 
 

QIS D2 (Quantum Intelligence System for Drug 
Discovery) is designed to predict large-scale drug 
characteristics such as toxicity and efficacy.  BioSpice 
is a bioinformatics tool set produced by the DARPA 
biology community. The objective of this paper is to 
show how to use both tools in conjunction with 

publicly available data to demonstrate an innovative in 
silico screening procedure for predicting large-scale 
biochemical functions of potential drugs in various 
contexts.  

Given known information of a chemical, for 
example, its 3D structure, it is important to predict its 
biochemical functions in various contexts.  For 
example, in a drug discovery context, the predictive 
targets are often the specific defined therapeutic 
efficacies, as well as so-called drug-able or drug-like 
properties such as pharmacologic absorption, 
distribution, metabolism, excretion, toxicity 
(ADME/tox) properties.  The prediction of efficacy 
and ADME/tox has been intensively studied in the area 
of bioinformatics for drug discovery, of particular, via 
the methodology of Structure Activity Relationship 
(SAR) modeling[1].  

More recently, predicting a chemical’s associations 
with biological targets, more interestingly, with 
molecular targets like proteins and genes, has become 
increasingly important for variety of applications.  A 
drug-molecular target association can be either an 
interaction in a traditional biochemical sense or a 
relationship measured in a much broader way. For 
example, how often a drug and a protein might be 
mentioned in the same context (sentence, paragraph or 
article) across a large collection of publications can be 
defined a measure of association between the two. 
Obviously, understanding and predicting such 
associations can be very useful for screening 
innovative therapeutic agents for drug discovery. For 
environmental protection, predicting drug-molecular 
target associations can help understand long time toxic 
effects of chemicals to human and environment. For 
bio-threat countermeasures discovery, such predictive 
targets can be used for screening countermeasures 
against bio-threat like bacteria or virus.   



Further more, the molecular targets can be grouped 
according to their functions and positions in a 
biochemical pathway.  To predicting the cascading 
interactions and associations of a chemical along 
a pathway is also important for many 
applications. 

One of the challenges for bioinformatics is to 
accurately screening the potentials for a large 
number of predictive targets. QIS D2 is a unique 
adaptive learning system which is a capable of 
large scale association discovery and predictions. 
The focus of this paper is to apply QIS D2 to pre-
dict a large number and variety of targets includ-
ing traditional efficacy, ADME/tox properties as 
well as drug-molecular targets associations and 
drug-pathway associations. We also show how to 
integrate QIS D2 with BioSpice. 

 
2. QIS D2 Methodology Overview 
 

The current version of QIS D2 is based on a 
previous version of QIS for predicting drug 
toxicity and efficacy funded by DARPA.  QIS D2 

is an adaptive learning system, in other words, a QIS 
D2 model can be successfully trained, tested and 
validated on experimental data sets for predicting the 
potential in vitro or in vivo effects of drug molecules in 
biological systems, with the predictive targets defined 
as interested for different applications. For the 
purpose, we first divide the samples of experimental 
data sets into the  

o Training set: will be used to discover statisti-
cal predictive rules, patterns and associations 
between known information and targets 

o Test set: will be held-out initially and used to 
validate the rules, patterns and associations 

QIS D2 is interoperable with DARPA BioSpice. 
The workflow and visualization are built-in 
capabilities for easy-of-use biochemical professionals 
as shown Figure 1.  

 
3. Data Model 
 
3.1 Chemical Structures 
 

Structures of drugs in the training set and test set 
will be coded into structure fragment sequences using 
the QIS D2 proprietary method.  The method is similar 
to other chemical fragment based models used for 
structure-activity relationship (SAR) modeling [1] 
except the fragments are ordered in sequence.  The 
input to the coding method is a Corina[2] formatted 
drug structure. Each fragment is a structural descriptor. 

The number of fragments of the method is in the order 
of thousands. 

 

 
3.2 Efficacy 
 

We use the NCI anti-cancer databases, which 
include the evidence of anti-cancer efficacy measures 
for 41,000 compounds, which are the concentrations 
required to inhibit growth by 50% for 60 cancer cell 
lines.  It is the only public database that contains data 
of a large number of molecular target (gene and 
protein) profiles against a large set of compounds. We 
have selected 208 proteins and 1000 genes as anti-
cancer molecular targets in this paper. 
 
3.3 Toxicity 
 

We use the toxicity data from Registry of Toxic Ef-
fects of Chemical Substances (RTECS). About 500 
toxic unique effects across a wide range of categories, 
including primary irritation, mutagenic effects, repro-
ductive effects, and tumorigenic effects, have been 
collected by The National Institute for Occupational 
Safety and Health (NIOSH) from 70s’ for 150,000 
chemicals. 

 
3.4 Associations with Molecular Targets 
 

The molecular targets considered in the paper 
include proteins and genes. We have selected 208 
molecular targets and 1000 genes from the NCI anti-
cancer databases. The association of a drug with a 

 
Figure 1: QIS D2 is interoperable with DARPA BioSpice. The 
workflow and visualization are built-in capabilities for easy-
of-use 
 



molecular target is defined as their correlation along 
the 60 cancer lines[3].  
3.4.1 BioSpice BioWarehouse. BioWarehouse in 
BioSpice has extracted, transformed and loaded (ETL) 
the contents of popular biomedical databases such as 
KEGG [4], HumanCyc [5] and GenBank [6] using a 
uniform schema. Therefore, it is very convenient for 
BioSpice interoperable tools to use these databases 
with little work on ETL. We have focused pathway 
related databases KEGG and HumanCyc in 
BioWarehouse for pathway scoring in QIS D2 
 
3.4.2 BioSpice GeneWays. BioSpice GeneWays [7] is 
a bio-text mining tool which is capable of extracting 
specific gene and gene interaction from a large collec-
tion of literature. For example, given a gene name, tnf-
receptor, it generates “tnf-receptor phosphorylate 
glo1”. GeneWays is based natural language rules to 
extract the gene and gene interaction from 
publications, which can be viewed as discovering 
associations in a logic level. We use the tool to extract 
gene-gene associations and then use them to induce 
new pathways that are not previously directly 
discovered from the experimental data. 

 
 
3.4.3 Pathway Scoring. This is a unique QIS D2 
capability that takes the output of the drug-molecular 
targets correlation from the above and adds up the 
absolute value of the drug-molecular target correlation 
along a pathway found by BioWarehouse and 
GeneWays. Error! Reference source not found. 
illustrates Pathway j for Drug i and molecular targets 
k=1,2,…,K found along a pathway. Suppose that 
Pathway j contains K molecular targets labeled as MT 
1, MT 2, MT 3, …and MT K, and that the correlation 

value for each Molecular Target k with Drug i is ikc , 

where k=1,2,…,K.  The association between Drug i and 
Pathway j can be computed as follows: 

Association between Drug i and Pathway j = ∑
=

K

k
ikc

1
   

In a summary, Table 1 shows the total number of 
features after the integration of data described above.  
The structure sequence information is used as the input 
for predictive modeling, all the others are used 
predictive targets. 
 
Table 1: The features in the QIS data model 
Feature Dimensions # of features 
Structures (QIS) 1234 
Toxicity (QIS) ~500 
Molecular Targets (QIS) 208 proteins 

1000 genes 
Pathway Scores (Biowarehouse – 
HumanCyc & KEGG) 

57 

Pathway Scores (GeneWays) 3 
 
 

 
4. Large Scale Prediction 
 

QIS D2 is designed to simultaneously predict 
large scale posterior probabilities based on a tied-
mixture EM [11, 12] method. EM stands for 
Expectation and Maximization. It is a statistical 
method used to compute maximum likelihood 
estimates given incomplete samples[13]. Comparing 
to traditional statistical regression, pattern 
recognition and data mining algorithms such as 
logistic regression, decision trees or neural networks 
[14] for prediction, this method is especially capable 
of predicting large scale targets.   

Using QIS D2 sequence clustering, chemicals are 
first clustered into characteristic groups based on 
their known structures. Each group is quantitatively 

represented as a fingerprint o (o=1,…,K). A drug is 
then measured for how much it assembles the finger-
prints. 

QIS D2 also cluster predictive targets into 
characteristic groups group j (j=1,…,M) based on the 
similarity of the targets’ properties. Each group also 
represents a target fingerprint or a target class.  A new 
target will be compared quantitatively with the 
fingerprints and then classified into the right class 
where it belongs to.  

For new and unseen chemical, QIS D2 predicts a 
target based on the statistical patterns discovered from 
the training and validation process. In other words, the 

Molecular Target k

MT 2
MT 3

......

MT K

MT 1

Cj2 Cj3

CjK

Cj1

Pathway j

Drug i

 
Figure 2. Illustration of Pathway j for Drug i, where Drug i 
is correlated with molecular target labeled as “MT k” with 
the correlation value as cik where k=1, 2, …, K. The drug-
pathway association is the sum of the absolute value of the 
correlations. 



goal is to predict if a drug cluster o is associated with a 
target class j, defined as P(o|j)/P(o), where P(o|j) is the 
probability of a potential drug classified to cluster o 
given that it associates with a target class j; P(o) is the 
probability of a potential drug classified to cluster o in 
the population as a whole. This statistical association 
measures how tight an input class o is associated with 
a target class j. Each P(o|j)/P(o)( where o=1,…,K  and 
j=1,…,M) could represents a mode of input-target 
association.  The tied-mixture EM in QIS D2  is to 
accurately compute the association between an actual 
drug x and a predictive target y P(x|y)/P(x) by tying all 
of the modes P(o|j)/P(o) (where o=1,…,K  and 
j=1,…,M) together.  

 
5. Results 
 

We have used the system to predict the efficacy, 
toxicity, association with molecular targets and 
pathways of 146 anti-cancer standard agents, which are 
either already FDA approved chemotherapy drugs or 
in the pipeline. Our system can successfully screen 
30% of the candidates containing 80% of standard 
agents.  The resultant system is in the process of being 
integrated in a DOD application of search for biothreat 
countermeasures. 

 
6. Conclusions 
 

In this paper, we show QIS D2 is an adaptive learn-
ing system. A QIS D2 model is successfully trained, 
tested and validated on experimental data sets for pre-
dicting the potential large-scale in vivo effects of drug 
molecules in biological systems. QIS D2 is interoper-
able with DARPA BioSpice. The integration of QIS D2 
and BioSpice draw on diversified technologies to de-
liver unique benefits for simulation and screening of 
potential drugs and their targets with innovative use of 
structured and unstructured bioinformatics databases. 
We show a QIS D2 models diversified data from seven 
sources for 37,330 chemicals, performs an automatic 
sequence clustering using 1234 structure fragments, 
and accurately predict 1829 targets simultaneously. 
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