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Abstract

In the feature selection of cancer classification prob-
lems, many existing methods consider genes individually
by choosing the top genes which have the most significant
signal-to-noise statistic or correlation coefficient. How-
ever the information of the class distinction provided by
such genes may overlap intensively, since their gene ex-
pression patterns are similar. The redundancy of including
many genes with similar gene expression patterns results in
highly complex classifiers. According to the principle of Oc-
cam’s razor, simple models are preferable to complex ones,
if they can produce comparable prediction performances to
the complex ones. In this paper, we introduce a new method
to learn accurate and low-complexity classifiers from gene
expression profiles. In our method, we use mutual informa-
tion to measure the relation between a set of genes, called
gene vectors, and the class attribute of the samples. The
gene vectors are in higher-dimensional spaces than individ-
ual genes, therefore, they are more diverse, or contain more
information than individual genes. Hence, gene vectors are
more preferable to individual genes in describing the class
distinctions between samples since they contain more infor-
mation about the class attribute. We validate our method
on 3 gene expression profiles. By comparing our results
with those from literature and other well-known classifica-
tion methods, our method demonstrated better or compara-
ble prediction performances to the existing methods, how-
ever, with lower-complexity models than existing methods.
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1 Introduction

The inclusion of irrelevant, redundant and noisy at-
tributes in the model building process phase can result
in poor predictive performance and increased computation

[13]. Gene expression profiles are often noisy and contain
thousands of features, many of these features are not related
to the class distinctions between tissue samples [11]. There-
fore, feature selection is critical for successfully classifying
tissue samples based on gene expression profiles, which are
of very high-dimensionality and insufficient samples. This
is the well-known problem of “the curse of dimensionality”.

In this paper, we construct classification models based
on discriminatory gene vectors in two steps. In the first
step, we use an entropy-based discretization method [7] to
remove noisy genes and effectively find the most discrimi-
natory genes [21]. In the second step, we construct simple
and accurate rules from gene expression profiles with the
Discrete Function Learning (DFL) algorithm [37, 36]. The
DFL algorithm is based on a theorem of information theory,
which says that if the mutual information between a vector
and the class attribute equals to the entropy of the class at-
tribute, then the class attribute is a function of the vector.

The mutual information [29] (Equation 1 in section 2)
can be used to measure the relation between a variable and
a vector. This merit makes it suitable to measure the relation
between a vector of genes, which may have some kind of re-
lations themselves, and the class attribute. As shown in Fig-
ure 1, the individual gene B shares more mutual informa-
tion with the class attribute Y than gene C does, however,
the combination of {A,B} contains less mutual informa-
tion when compared with the combination of {A,C}. This
is due to the fact that there exists a strong correlation be-
tween gene A and gene B. In gene expression profiles, such
strong correlation between gene A and gene B does happen,
e.g., the co-regulated genes tend to have similar expression
patterns. Therefore, they have very strong correlations, or
large mutual information. When one of the co-regulated
genes is responsible for the class distinctions between sam-
ples, all the co-regulated genes of it may also contribute a
lot to the class distinctions individually. However, from the
above analysis, it is obviously neither optimal nor necessary
to include all the co-regulated genes in the classifier.

In comparison, the DFL algorithm efficiently finds the
most discriminatory gene vector by checking whether its
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Figure 1. The advantage of using mutual in-
formation to choose the most discriminatory
gene vectors. The circles represent the en-
tropy [29] of the genes (A, B and C) and class
attribute (Y ). The intersections between the
circles stand for the mutual information [29]
between the genes, or between the genes and
the class attribute. (a) Both gene A and gene
B share very large mutual information with
the class attribute Y . But gene A and gene
B have a large mutual information which indi-
cates similar expression pattern, i.e., strong
relation between them. (b) Gene C share less
mutual information with Y than gene B does.
However, the tuple {A,C} shares larger mu-
tual information with Y than the tuple {A,B}
does.

mutual information with the class attribute satisfy the the-
orem. We name the subset of the attributes (genes) in the
most discriminatory gene vectors as the essential attributes,
or the EAs for short. After the learning process, the DFL
algorithm provides the classifiers as function tables which
contain the EAs and the class attribute. To make use of the
obtained function tables reasonably, the predictions are per-
formed in the space defined by the EAs, called the EA space,
with the 1-Nearest-Neighbor (1NN) algorithm [1]. Specif-
ically, in predicting a new sample, the Hamming distances
[14] (for binary and non-binary cases) of the EAs between
the new sample and each rule of the classifier are calculated.
Then, the classifier selects the class value of the rule which
has the minimum Hamming distance to the new sample as
the predicted class value.

Three gene expression profiles are selected to validate
our method. As to be shown in section 5, the DFL algo-
rithm achieves comparable or more competitive prediction
performances than those of some other well-known classifi-
cation methods with very simple and understandable rules.
Our method also demonstrates comparable or more compet-
itive prediction performance with simpler models than other
methods in the literature [2, 10, 11, 19, 21, 34].

The remainder of this paper is organized as follows.
First, we will review current feature selection methods and

related work of our method in section 2. Second, we will
briefly introduce the DFL algorithm in section 3. Third,
we describe the entropy-based discretization method [7] in
section 4. Fourth, we show the experimental results for the
selected data sets in section 5. Fifth, we discuss the differ-
ences between our methods and other classification meth-
ods and feature selection methods in section 6. Finally, we
summarize this paper in the last section.

2 Background

2.1 Feature Selection Categorization

Feature selection methods fall into two main categories,
those evaluating individual features and those evaluating
feature subsets.

In the individual feature selection methods, the evalua-
tion statistics for each feature are calculated, then a feature
ranking list is provided in predefined order of the statistics.
The statistics used for individual feature selection include
information gain [13, 22, 34], signal-to-noise (S2N) statistic
[2, 10, 11, 30], correlation coefficient (CC) [31], t-statistic
[22], χ2-statistic [19, 22]. The main shortcoming of these
individual feature selection methods lies in that a larger than
necessary number of redundant top features with similar
gene expression patterns are selected to build the models.
Hence, such choice often brings much redundancy to the
models, since the selected features carry similar informa-
tion about the class attribute. According to the principle of
Occam’s razor, these models are not optimal although ac-
curate, since they are often complex and suffer the risk of
overfitting the data sets [34]. In addition, the large number
of genes in the predictors makes it difficult to know which
genes are really useful for recognizing different classes.

In the feature subset selection method, a search algo-
rithm is often employed to find the optimal feature subsets.
In evaluating a feature subset, a predefined score is calcu-
lated for the feature subset. Since the number of feature
subsets grows exponentially with the number of features,
heuristic searching algorithms, such as forward selection,
are often employed to solve the problem. Examples of fea-
ture subset selection methods are CFS (Correlation-based
Feature Selection) [12], CSE (Consistency-based Subset
Evaluation) [23], the WSE (Wrapper Subset Evaluation)
[16]. Most feature subset selection methods use heuristic
scores to evaluate feature subset under consideration, such
as CFS and CSE methods. The WSE method evaluates a
subset of genes by applying a target learning algorithm to
the training data set with cross validation, and selects the
subset of genes which produces the highest accuracy in the
cross validation process. The evaluation with cross vali-
dation makes the WSE very inefficient when meeting the
high-dimensional data sets like gene expression profiles.



There is another popular way of categorizing these algo-
rithms, called “filter” and “wrapper” methods [15], based on
the different nature of the metric used to evaluate features.
In the filter methods, the feature selection is performed as a
preprocessing step and often independent of the classifica-
tion algorithms which will be applied to the processed data
sets later. The WSE method mentioned above is the wrap-
per method.

2.2 Theoretic Background

We will first introduce some notation. We use capital let-
ters to represent discrete random variables, such as X and
Y ; lower case letters to represent an instance of the ran-
dom variables, such as x and y; bold capital letters, like
X, to represent a vector; and lower case bold letters, like
x, to represent an instance of X. The cardinality of X is
represented with |X|. In the remainder parts of this paper,
we denote the attributes except the class attribute as a set
of discrete random variables V = {X1, . . . , Xn}, the class
attribute as variable Y .

The entropy of a discrete random variable X is defined
in terms of probability of observing a particular value x of
X as [29]:

H(X) = −
∑

x

P (X = x)logP (X = x).

The entropy is used to describe the diversity of a variable or
vector. The more diverse a variable or vector is, the larger
entropy they will have. Generally, vectors are more diverse
than individual variables, hence have larger entropy. Here-
after, for the purpose of simplicity, we represent P (X = x)
with p(x), P (Y = y) with p(y), and so on. The mutual
information between a vector X and Y is defined as [29]:

I(X;Y ) = H(Y ) − H(Y |X) = H(X) − H(X|Y )

= H(X) + H(Y ) − H(X, Y ) (1)

Unlike S2N or CC, mutual information is always non-
negative and can be used to measure the relation between
two variable, a variable and a vector (Equation 1), or two
vectors. Basically, the stronger the relation between two
variables, the larger mutual information they will have.
Zero mutual information means the two variables are in-
dependent or have no relation.

The conditional mutual information I(X;Y |Z) [4](the
mutual information between X and Y given Z) is defined
by

I(X;Y |Z) =
∑

x,y,z

p(x, y, z)
p(x, y|z)

p(x|z)p(y|z)
.

The chain rule for mutual information is give by Theo-
rem 2.1, for which the proof is available in [4].

Theorem 2.1

I(X1,X2, . . . , Xn;Y ) =
n∑

i=1

I(Xi;Y |Xi−1,Xi−2, . . . , X1).

(2)

2.3 Related Work

Some feature selection methods based on mutual infor-
mation have been introduced. These methods also fall into
two categories.

In the first category, features are ranked according to
their mutual information with the class label. Then, the first
k features [6] or the features with a bigger mutual informa-
tion than a predefined threshold value [35] are chosen.

The second category is feature subset selection meth-
ods. In this category, the forward selection searching al-
gorithm is often used to find the predefined k features. In
the first iteration, the Xi which shares the largest mutual
information with Y is selected to the target feature sub-
set U. Then, in the next step, the selection criterion is
how much information can be added with respect to the al-
ready existing X(1). Therefore, the X(2) with maximum
I(Xi,X(1);Y ) − I(X(1);Y ) is added to U [32]. Formally,
the features X(1), . . . , X(k) are selected with the following
criteria, X(1) = argmaxiI(Xi;Y ) and

X(l) = argmaxXi∈Pl
minX(j)∈Ul

(I(Xi,X(j);Y ) − I(X(j);Y )) (3)

where ∀l, 1 < l ≤ k, i = 1, . . . , (n − l + 1),
j = 1, . . . , (l − 1), and Pl is the feature pool by remov-
ing X(1), . . . , X(l), P1 = V \X(1), Pl+1 = Pl \X(l), and
Ul is the set of selected features U1 = {X(1)}, Ul+1 =
Ul ∪ {X(l)}.

From Theorem 2.1, we have

I(Xi,X(j);Y ) = I(X(j);Y ) + I(Xi;Y |X(j)),

then

I(Xi;Y |X(j)) = I(Xi,X(j);Y ) − I(X(j);Y ). (4)

Therefore, Equation 3 is equivalent to maximizing condi-
tional mutual information, minX(j)∈UI(Xi;Y |X(j)) [8] in
Equation 4.

Battiti [3] introduced an algorithm to find the feature
subsets. In this method, the mutual information I(Xi;Y )
of a new feature Xi is penalized by a weighted sum of the
I(Xi;X(j)), where X(j) ∈ U. This method is similar to
those in [8, 32], but not theoretically formulated.

The Markov Blanket method [17, 34] is another subset
selection method based on information theory. The Markov



Blanket method tries to find a subset of features which min-
imize the distance between the distribution of the selected
feature subsets and the distribution of all features. The
backward selection algorithm is used to eliminated features
which minimize the expected cross-entropy [17] until some
predefined number of features have been eliminated.

For all subset selection method mentioned above, one
major shortcoming is that the candidate feature is compared
to all the selected features in U, one-by-one. The motiva-
tion underlying Equation 3 and 4 is that Xi is good only if it
carries information about Y , and if this information has not
been caught by any of the X(j) already picked [8]. How-
ever, it can not be known whether the existing features as
a vector have capture the information carried by Xi or not.
In addition, it also introduces some redundant computation
when evaluating the new feature Xi with respect to the al-
ready picked features X(j) ∈ U, which will be discussed
further in section 6.

3 Methods

3.1 Theoretic Motivation and Foundation

We restate a theorem about the relationship between the
mutual information I(X;Y ) and the number of attributes in
X.

Theorem 3.1 I({X, Z};Y ) ≥ I(X;Y ), with equality if
and only if p(y|x) = p(y|x, z) for all (x, y, z) with
p(x, y, z) > 0.

Proof of Theorem 3.1 can be found in [24]. In Theorem
3.1, it can be seen that {X, Z} will contain more or equal
information about Y as X does. Intuitively, it can be illus-
trated in Figure 1, H(A) and H(C) will definitely share no
less information with H(Y ) than H(A) alone, since H(A)
and H(C) can provide at least the part of information about
Y already provided by H(A) alone. To put it another way,
the more variables, the more information is provided about
another variable.

From Theorem 3.1, it can be deduced that individual
genes can not provide more information about the class at-
tribute than gene vectors. As demonstrated in Figure 1, it is
obvious that choosing the top genes will not make sure that
we find the optimal subset of genes which contains maxi-
mum mutual information with the class attribute. Therefore,
it is better to find the optimal subset of genes by considering
the genes as vectors.

To measure which subset of genes is optimal, we restate
the following theorem, which is the theoretical foundation
of our algorithm.

Theorem 3.2 If the mutual information between X and Y
is equal to the entropy of Y , i.e., I(X;Y ) = H(Y ), then Y
is a function of X.

Proof of Theorem 3.2 is given in our early work [36].
The entropy H(Y ) represents the diversity of the variable
Y . The mutual information I(X;Y ) represents the relation
between vector X and Y . From this point of view, Theorem
3.2 actually says that the relation between vector X and Y
are very strong, such that there is no more diversity for Y if
X has been known. In other words, the value of X can fully
determine the value of Y .

3.2 Training of Classifiers

A classification problem is trying to learn or approximate
a function, which takes the values of attributes (except the
class attribute) in a new sample as input and output a cate-
gorical value which indicates the class of the sample under
consideration, from a given training data set. The goal of
the training process is to obtain a function which makes the
output value of this function be the class value of the new
sample as accurately as possible. From Theorem 3.2, the
problem is converted to finding a subset of attributes U ⊆ V
whose mutual information with Y is equal to the entropy of
Y . The U is the EAs which we are trying to find from the
data sets. For n discrete variables, there are totally 2n sub-
sets. Clearly, it is NP-hard to examine all possible subsets
exhaustively. However, in the cancer classification prob-
lems, only a small set of genes of the human genome are
responsible for the tumor cell developmental pathway [25].
Therefore, it is reasonable to reduce the searching space by
considering those subsets with limited number of genes.

The main steps and analysis of the DFL algorithm are
given at the supplementary website 1 and in our early work
[37]. Here, we will briefly introduce the DFL algorithm
with an example, as shown in Figure 2. The DFL algorithm
has two parameters, the expected cardinality k and the ε
value. The ε value will be introduced in the next section.

The k is the expected maximum number of attributes in
the classifier. The DFL algorithm uses the k to prevent the
exhaustive searching of all subsets of attributes by check-
ing those subsets with less than k attributes. When trying
to find the EAs from all subsets, the DFL algorithm will ex-
amine whether I(X;Y ) = H(Y ). If so, the DFL algorithm
will stop its searching process, and obtain the classifiers by
deleting the non-essential attributes and duplicate rows in
the training data sets. In the DFL algorithm, we use the
following definition, called ∆ supersets.

Definition 3.1 Let X be a subset of V = {X1, . . ., Xn},
then ∆i(X) of X are the supersets of X so that X ⊂ ∆i(X)
and |∆i| = |X| + i.

In this example, the set of attributes is V = {A,B,C,D}
and the class attribute is determined with Y = (A · C) +

1Supplements of this paper are available at
http://www.ntu.edu.sg/home5/pg04325488/csb2005.htm.



Table 1. The training data set T of the example
to learn Y = (A · C) + (A · D).

ABCD Y ABCD Y ABCD Y ABCD Y
0000 0 0100 0 1000 0 1100 0
0001 0 0101 0 1001 1 1101 1
0010 0 0110 0 1010 1 1110 1
0011 0 0111 0 1011 1 1111 1

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

Figure 2. Search procedures of the DFL algo-
rithm when learning Y = (A · C) + (A · D).
{A,C,D}∗ is the target combination. The
combinations with a black dot under them are
the subsets which share the largest mutual
information with Y on their layers. Firstly,
the DFL algorithm searches the first layer,
then finds that {A}, with a black dot under
it, shares the largest mutual information with
Y among subsets on the first layer. Then,
it continues to search ∆1(A) on the second
layer. Similarly, these calculations continue
until the target combination {A,C,D} is found
on the third layer.

(A ·D), where “·” and “+” are logic AND and OR operation
respectively. The expected cardinality k is set to 4 for this
example. The training data set T of this example is shown
in Table 1.

As shown in Figure 2, the DFL algorithm searches the
first layer, then it sorts all subsets according to their mu-
tual information with Y on the first layer. It finds that {A}
shares the largest mutual information with Y among subsets
on the first layer. Then, the DFL algorithm searches through
∆1(A), . . ., ∆k−1(A), however it always decides the search
order of ∆i+1 (A) bases on the calculation results of ∆i(A).
Finally, the DFL algorithm finds that the subset {A,C,D}
satisfies the requirement of Theorem 3.2, and will construct
the classifier with these three attributes. Firstly, the B is
deleted from training data set since it is a non-essential at-
tribute. Then, the duplicate rows of {A,C,D} → Y are

Table 2. The learned classifier f of the exam-
ple to learn Y = (A · C) + (A · D).

ACD Y Count ACD Y Count
000 0 2 100 0 2
001 0 2 101 1 2
010 0 2 110 1 2
011 0 2 111 1 2

removed from the training data set to obtain the final classi-
fier f as shown in Table 2. In the meantime, the counts of
different instances of {A,C,D} → Y are also stored in the
classifier, which are used in the prediction process. From
Table 2, it can be seen that the learned classifier f is exactly
the truth table of Y = (A · C) + (A · D) along with the
counts of rules. This is the reason for which we name our
algorithm as the Discrete Function Learning algorithm.

The DFL algorithm will continue to search the ∆1(C),
. . ., ∆k−1(C), ∆1(D), . . ., ∆k−1(D) and so on if it can not
find the target subset in ∆1(A), . . ., ∆k−1(A).

We use k∗ to denote the actual cardinality of the EAs.
After the EAs with k∗ attributes are found in the subsets of
cardinalities ≤ k, the DFL algorithm will stop its searching.
In our example, the k is 4, while the k∗ is only 3, since there
are only 3 EAs for the example.

The time complexity of the DFL algorithm is approxi-
mately O(k∗ · n · (N + logn)) on the average, where N is
the sample size and logn is for the sort step to find the subset
which shares the biggest mutual information with Y in each
layer of Figure 2. For detailed analysis of the complexity,
see our prior work [37, 36].

In our implementation of the DFL algorithm, the k value,
which can be assigned by the user, is set to a default value of
10. As to be shown in section 5, the DFL algorithm achieves
good prediction performances when k∗ is very small in all
the experiments performed.

3.3 The ε Value Criterion

In Theorem 3.2, the exact functional relation demands
the strict equality between the entropy of Y , H(Y ) and the
mutual information of X and Y , I(X;Y ). However, this
equality is often ruined by the noisy data, like microarray
gene expression data. In these cases, we have to relax the
requirement to obtain a best estimated result. As shown in
Figure 3, by defining a significant factor ε, if the difference
between I(X;Y ) and H(Y ) is less than ε×H(Y ), then the
DFL algorithm will stop the searching process, and build
the classifier for Y with X at the significant level ε.

Because the H(Y ) may be quite different for various
classification problems, it is not appropriate to use an ab-
solute value, like ε, to stop the searching process or not.
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Figure 3. The Venn diagram of H(X),H(Y ) and
I(X, Y ), when Y = f(X). (a) The noiseless
case, where the mutual information between
X and Y is the entropy of Y . (b) The noisy
case, where the entropy of Y is not equal
to the mutual information between X and Y
strictly. The shaded region is resulted from
the noises. The ε value method means that
if the area of the shaded region is smaller
than or equal to ε × H(Y ), then the DFL algo-
rithm will stop searching process, and build
the classifier for Y with X.

Therefore, we use the relative value, ε×H(Y ), as the crite-
rion to decide whether to stop the searching process or not.

The main idea of the ε value criterion method is to find
a subset of attributes which captures not all the diversity
of the class attribute H(Y ), but the major part of it, i.e.
(1−ε)×H(Y ), then to build classifiers with these attributes.
The features in vectors, which have strong relations with Y ,
are expected to be selected as EAs in the ε value method.

3.4 Prediction Methods

After the DFL algorithm obtaining the classifiers as
function tables of the pairs {u → y}, the most reasonable
way to use such function tables is to check the input values
u, then find the corresponding output values y. Therefore,
we perform predictions in the EA space, with the 1NN al-
gorithm based on the Hamming distance defined as follows.

Definition 3.2 Let 1(a, b) be an indicator function, which is
0 if and only if a = b, otherwise is 1. The Hamming distance
between two arrays A = [a1, . . . , an] and B = [b1, . . . , bn]
is Dist(A,B) =

∑n
i=1 1(ai, bi).

Note that the Hamming distance [14] is dedicated to binary
arrays, however, we do not differentiate between binary or
non-binary cases in this paper. We use the Hamming dis-
tance as a criterion to decide the class value of a new sam-
ple, since we believe that the rule with minimum Hamming
distance to the EA values of a sample contains the maxi-
mum information of the sample. Thus, the class value of
this rule is the best prediction for the sample.
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Figure 4. The noisy rules in the one-
dimensional space. The rules below the two
characters C1 and C2 are the genuine rules.
Other rules are resulted from the noise in the
data set. The vertical axis represents the fre-
quencies of the rules in the training data sets.
The rules are arranged according to their dis-
tance to the genuine rules. The solid and
dashed curves are the distributions of rules
for two class C1 and C2. In the real data sets,
the frequencies of rules are represented by
the histograms of solid and dashed lines.

In the prediction process, if a new sample has same dis-
tance to several rules, we choose the rule with the biggest
count values. The reason can be interpreted with the exam-
ple shown in Figure 4. In Figure 4, it can be seen that a new
sample in the region covered by two types of histograms
can be of either classes. However, it is more reasonable to
believe the sample has the class value of a rule with higher
frequency in the training data set.

There exists the probability that there are some instances
of the EAs in the testing data set that are not covered by the
training data set. In this situation, the 1NN algorithm still
gives the most reasonable predictions for such samples.

For convenience, we will express the proposed classifi-
cation method as the DFL algorithm hereafter when it does
not result in misunderstanding.

4 The Discretization Method

Gene expression data are continuous and noisy. As dis-
cussed early, to remove noisy genes, we use a widely used
discretization method [7] based on entropy to discretize the
expression data.

Following the notation in [5, 7], we will briefly summa-
rize the discretization algorithm. Let partition boundary T
separate set S into S1 and S2. Let there be k classes C1,
· · · , Ck. Let P (Ci, Sj) be the proportion of examples in Sj

that have class value Cj . The class entropy of a subset Sj ,
j = 1, 2 is defined as:



Ent(Sj) = −
k∑

i=1

P (Cj , Sj)logP (Cj , Sj).

Let S1 and S2 be induced with the boundary T of at-
tribute A, then the class information entropy of the partition
is given by:

E(A, T ;S) =
|S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2).

For a given attribute A, the boundary Tmin is chosen
to minimize E(A, T ;S) as a binary discretization bound-
ary. This method is recursively used to the two partitions
induced by Tmin, until some stop criteria is reached, there-
fore creating multiple intervals on the attribute A.

The Minimum Description Length principle is used as
the stop criterion of the partitioning by [7]. The recursive
partitioning within a set of values S stops iff

Gain(A, T ;S) <
logc(N − 1)

N
+

δ(A, T ;S)
N

where N is the number of instances in the set S,
Gain(A, T ;S) = Ent(S) − E(A, T ;S), δ(A, T ;S) =
log2(3k −2)− [k ·Ent(S)−k1 ·Ent(S1)−k2 ·Ent(S2)],
and ki is the number of class labels represented in set Si.

After the discretization process, a substantial number of
genes, which are not contributing to the class distinction, are
assigned with only one expression state. Meanwhile, the
remaining discriminatory genes are assigned with limited
expression intervals. For example in our experiments, the
Zyxin gene in the ALL data set is one of the genes most
highly correlated with the ALL-AML class distinction [11].
In the discretization process, the expression values of the
Zyxin gene are discretized into two intervals, (−∞ − 994]
and (994 − ∞). This method has been implemented by
the Weka software [33, 9]. The Weka software, available at
http://www.cs.waikato.ac.nz/∼ml/weka/, is written with the
Java language and is an open source software issued under
the GNU General Public License.

5 Experiments and Results

We implement the DFL algorithm with the Java language
version 1.4.1. All experiments are performed on an HP Al-
phaServer SC computer, with one EV68 1GHz CPU and
1GB memory, running the Tru64 Unix operating system.
We choose 3 data sets listed in Table 3 to verify the DFL
algorithm in this paper. The implementation software, data
sets and their details (Table S1) are available at the supple-
mentary website of this paper.

Table 3. The summary of the selected data
sets. The column name Att.#, C.#, Trn.#,Tst.#
and Lit. are the number of attributes, the num-
ber of classes, training sample size, testing
sample size and literature of the data sets.

Data Set Att.# C.# Trn.# Tst.# Lit.
ALL 7129 2 38 34 [11]
MLL 12582 3 57 15 [2]
DLBCL 7129 2 55 22 [30]

Table 4. The summary of the number of genes
in the selected data sets.

Data Set Original # # After Discret. # Chosen by DFL (k∗)
ALL 7129 866 1
MLL 12582 4411 2
DLBCL 7129 761 1

We will first present the discretization results. The dis-
cretization is carried out in such a way that the training data
set is first discretized. Then the testing data set is discretized
according to the cutting points of genes determined in the
training data set. The number of genes with more than one
expression intervals, and the number of genes chosen by the
DFL algorithm, i.e. the actual cardinality k∗ of our classi-
fiers, are shown in Table 4. As expected, the discretization
method remove substantial amount of genes which are irrel-
evant to the class distinctions.

Then, we show the results of the DFL algorithm. To get
optimal model, we change the ε value from 0 to 0.6, with
a step of 0.01. For each ε value, we train a model with
the DFL algorithm, then validate its performance for the
testing data sets. The ε vs prediction error is given in sup-
plementary Figure S1. In our implementation of the DFL
algorithm, the optimal model can be automatically chosen.
As shown in Table 5, the DFL algorithm learns the optimal
classifier of three rules for the ALL data set. The optimal
classifiers for other data sets, prediction details, correspond-
ing settings of the DFL algorithm (Table S2), and genes in
the classifiers (Table S3), are available at the supplemen-
tary website. The incorrect predictions and the number of
genes in the corresponding classifiers are given in Table 6
and Table 4 respectively. As shown in Table 6 and Table 4,
the DFL algorithm finds the most discriminatory gene vec-
tors with only a few genes, and achieves good prediction
performances.

Figure 5 shows the expression values of the genes chosen
by the DFL algorithm in the ALL and MLL data sets. As
shown in Figure 5 (a), the classifier in Table 5 only makes
two incorrect predictions in the ALL testing data set. CST3
(Cystatin C, M27891) is one of the 50 genes most highly



Table 5. The classifier for the ALL data set
learned with the DFL algorithm.

CST3 Class Count
(−∞− 1419.5] ALL 27
(1419.5 −∞) AML 10
(−∞− 1419.5] AML 1

Table 6. The comparison of prediction er-
rors from the DFL algorithm and some well-
known classification methods. The numbers
shown are the incorrect predictions on dis-
cretized/continuous data sets.

Data Set DFL1 C4.5 NB 1NN kNN2 SVM
ALL 2 3/3 5/4 8/9 6/11 6/5
MLL 0 2/3 2/0 2/3 3/2 0/0
DLBCL 1 1/4 1/4 1/4 1/2 1/1
Average 1 2/3 3/3 4/5 3/5 2/2

1 The results are for the discretized data sets. 2 The k value of the kNN

algorithm is set to 5.

correlated with the ALL-AML class distinction in the clas-
sification model of Golub et al. [11]. In Figure 5 (b), it can
be seen that the samples in the MLL testing data set are all
correctly classified in the EA space defined by the two genes
POU2AF1 and ADCY9. POU2AF1 is one of the genes re-
quired for the appropriate B-cell development and one of
the genes that are specifically expressed in MLL, ALL or
AML [2]. From Figure 5 (b), it can be seen that most AML,
MLL and ALL samples are located in the left, central and
right regions divided by the cutting points of the POU2AF1
expression values respectively. ADCY9 is not as discrimina-
tive as POU2AF1, however, it serves as a good complement
to POU2AF1. POU2AF1 captures 77% diversity (entropy)
of the class attribute in the MLL training data set, but the
combination of POU2AF1 and ADCY9, as a vector, captures
94.7% of the same measurement. For the DLBCL data set,
the DFL algorithm selects MCM7 (CDC47 homolog) gene,
which is associated with cellular proliferation and one of the
genes highly correlated with the class distinctions[30]. The
comparison of expression values of MCM7 gene is given in
supplementary Figure S2.

We use the Weka software (version 3.4) to evaluate the
performances of other classification methods. Specifically,
we compare the DFL algorithm with the C4.5 algorithm by
Quinlan [27], the Naive Bayes (NB) algorithm by Langley
et al. [18], the 1NN and k-Nearest-Neighbors (kNN) algo-
rithm by Aha et al. [1] and the Support Vector Machines
(SVM) algorithm by Platt [26]. All these methods are im-
plemented in the Weka software. The comparison of the
incorrect predictions from these algorithms and the DFL al-
gorithm are shown in Table 6.

(a)

(b)

Figure 5. The comparisons of the expression
values of the genes chosen by the DFL algo-
rithm. ALL, AML and MLL samples are repre-
sented with circles, triangles and diamonds
respectively. In part (b), Hollow and solid
samples are from training and testing data
sets respectively. The black solid lines are
the cutting points of the genes introduced in
the discretization preprocessing. (a) The ex-
pression values of CST3 in the ALL data set.
The two samples pointed by arrows are the
incorrect predictions. (b) The expression val-
ues of POU2AF1 and ADCY9 in the MLL data
set.

As shown in Table 6, when other methods are dealing
with continuous data sets, their performances are not better
than those of the DFL algorithm in most cases. For the dis-
cretized data sets, the performance of the DFL algorithm is
still the best for the ALL and MLL data sets among all com-
pared methods. For the DLBCL data set, the DFL algorithm
achieves comparable performances to other methods.

In Table 7, we also compare our results with those in the
literature. Golub et at. [11] employed a weighted-voting al-
gorithm on the ALL data set, and made 5 prediction errors
with a model of 50 genes. Furey et al. [10] used the SVM
algorithm with 1000 selected genes to classify the ALL data
set, and produced 2 to 4 prediction errors. Li et at. [21]
made 3 prediction errors with a method called emerging
patterns (EP) on the ALL data set. Xing et at. [34] found an



Table 7. The comparison of the DFL algo-
rithm and other methods in literature. The
column names E., Al., M. and k∗ stand for
the number of incorrect predictions, the al-
gorithm used, the relation measures used
to do feature selection and the number of
genes in the classifiers respectively. For Al.
column, the WV, SVM, EP, kNN, C45, PCL
and NB represent the weighted-voting, sup-
port vector machine, emerging pattern [21],
k-nearest-neighbors, C4.5, Prediction by Col-
lective Likelihoods [19] and Naive Bayes al-
gorithm respectively. For the M. column, the
S2N, E, MB and χ2 are the signal-to-noise statis-
tic [11], entropy [7], Markov Blanket [34] and
χ2-statistic respectively. For all columns, NA
stands for not available. For all data sets,
the training/testing samples are the same as
those in Table 3.

DFL Methods in Literature
Data Set E. E. Al. M. k∗ Literature
ALL 2 5 WV S2N 50 [11]

2-4 SVM S2N 1000 [10]
3 EP E 1 [21]
0 kNN MB 42 [34]

MLL 0 1 kNN1 S2N 40 [2]
3 C45 χ2 20 [19]
1 SVM χ2 20 [19]
1 kNN χ2 20 [19]
0 PCL χ2 20 [19]
0 NB χ2 20 [19]

DLBCL 1 NA

1 The kNN classifier in [2] misclassified 1 sample out of 10 independent

testing samples.

optimal feature subsets of about 40 genes chosen by Markov
Blanket [17] and made 0 errors with the kNN classifier for
the ALL data set.

Armstrong et at. [2] chose 40 to 250 genes, then ap-
plied the kNN algorithm to an independent testing data of
10 samples and misclassified 1 out of the 10 testing samples.
For the MLL data set, Li et al. [19] selected 20 top-ranked
gene by the χ2 method, and made 3, 1, 1, 0 and 0 errors
with the C4.5, SVM, kNN, PCL (Prediction by Collective
Likelihoods) [19] and NB algorithm respectively.

We do not compare the results for the DLBCL data set
with that in literature, since the evaluation data set used by
us is different from that of Shipp et al. [30].

As shown in Table 7, the models with many top genes
(methods in line 1-2,5-8) make more prediction errors than
simple gene vectors of a few genes found by the DFL al-
gorithm for the ALL and MLL data sets. For the rest cases
(methods in line 3, 4, 9 and 10), the prediction performances
of our approach is comparable to those in the literature.

Table 8. The training times for discretized data
sets of different classification methods. The
unit is second.

Data Set DFL C4.5 NB 1NN kNN SVM
ALL 0.02 0.10 0.03 0.12 0.12 0.21
MLL 0.48 0.34 0.12 0.73 0.75 1.11
DLBCL 0.01 0.13 0.03 0.14 0.14 0.23

As mentioned early, the prediction performance is only
one aspect of the classifiers, but not all. Next, we compare
the model complexities of different methods. From Table 4,
it can be seen the classifiers of our method are very simple,
with only a few genes. The model from the C4.5 algorithm
is comparable to our models (details available at the supple-
mentary Table S4), but the performances of the C4.5 algo-
rithm are not better than our method. The NB, 1NN, kNN
and SVM algorithms build very complex models, using all
genes of the data sets. The complex models from these al-
gorithms make it difficult for the users to understand which
set of genes is really important in contributing to the class
distinctions between samples. When meeting multi-class
data sets, such as the MLL data sets, the SVM algorithm
and the NB algorithm solve the problems by building in-
dividual one-vs-all (OVA) pairwise classifiers for each class
[28]. Although effective in practice, this method also makes
the model even more complex than individual classifiers ob-
tained from the SVM algorithm and the NB algorithm. In
comparison, the DFL algorithm just builds one model for
multi-class data sets. By comparing the number of genes
(k∗) used by different classification models in Table 4 and
Table 7, it can be seen that the models in the literature are
also more complex than the classifiers obtained by the DFL
algorithm, with the only one exception of the model by Li et
al. [21] for the ALL data set. For the ALL data set, although
the two models use the same number of genes, our model
only produces 2 prediction errors, but the model from [21]
made 3 errors.

Finally, the training times of different methods are com-
pared in Table 8. Since all compared algorithms are im-
plemented with the Java language and all experiments are
performed on the same computer, the comparisons of their
efficiency are meaningful. From Table 8, it can be seen that
the DFL algorithm is more efficient than other methods in
most cases.

6 Discussion

The fundamental difference between the DFL algorithm
and other classification methods lies in the underlying phi-
losophy of the algorithms, as shown in Figure 6. What the
DFL algorithm does is to estimate the classification func-
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Figure 6. The philosophy of the DFL algorithm
and other classification algorithms. Y = f(X)
is the generation function. The 1, 2, 3 and 4
are four steps in the production of data sets.
The arrows on the left represent the produc-
tion process of the data sets. In the first step,
the generation function generates the original
data sets. In the second and the third step,
irrelevant features and noise are introduced
into the data sets respectively. The arrows
on the right stand for the learning philoso-
phy of different algorithms. Other algorithms,
like Multi-Layer Perceptrons and SVMs, are
approximating the generation function with
complex models from noisy data sets. The
feature selection process is an optional step
for these algorithms. However, the DFL algo-
rithm directly estimates the generation func-
tion with low-complexity models. As indi-
cated by the dotted arrow, when the data
sets are noisy or noiseless, the DFL algo-
rithm uses the positive or zero ε values. The
discretization step [7] is optional for all algo-
rithms, and helps to remove some irrelevant
features from continuous data sets.

tions directly (based on Theorem 3.2) with low-complexity
models, as demonstrated in Table 2. However, other classi-
fication methods are trying to approximate the classification
functions with complex models, like what have been done
by the Multi-Layer Perceptrons and the SVMs with differ-
ent kernels.

The DFL algorithm can be categorized as a feature sub-
set selection method and a filter method. However, the DFL
algorithm is also different from other feature subset selec-
tion methods, like the CFS, CSE and WSE methods. Based
on Theorem 3.2, the DFL algorithm can produce function
tables for the training data sets, while other subset feature
selection methods only generate a subset of features. Partic-
ularly, the DFL algorithm is different from existing feature

subset selection methods based on information theory in the
following four aspects.

First, the stopping criterion of the DFL algorithm is dif-
ferent from those of existing methods. The DFL algorithm
stops the searching process based on Theorem 3.2. The ex-
isting methods stop the searching process with a predefined
k or threshold value of the mutual information. Hence, the
feature subsets selected by existing methods may be sensi-
tive to the k or threshold value of the mutual information.

Second, the feature subset evaluation method of the DFL
algorithm is also different from those in existing methods.
I(X;Y ) is evaluated with respect to H(Y ) in the DFL algo-
rithm. Suppose that X is the already selected feature subset
in U, and the DFL algorithm is trying to add a new feature
Z to U, X(1) = argmaxiI(Xi;Y ), i = 1, . . . , n and

X(l) = argmaxZI(X, Z;Y ), (5)

where ∀l, 1 < l ≤ k, U1 = {X(1)}, and Ul+1 = Ul ∪
{X(l)}. From Theorem 2.1, we have

I(X, Z;Y ) = I(X;Y ) + I(Z;Y |X). (6)

In Equation 6, note that I(X;Y ) does not change when try-
ing different Z. Hence, the maximization of I(X, Z;Y )
in the DFL algorithm is actually maximizing I(Z;Y |X),
the conditional mutual information of Z and Y given the
already selected features X, i.e., the information of Y not
captured by X but carried by Z. Equation 6 is different
from Equation 4 used in [8], where the new feature is evalu-
ated with respect to individual features in U. As intuitively
shown in Figure 1, by considering the selected features as
vectors, the redundancy introduced by new features to be
added to U is automatically eliminated.

Let us further investigate the measure, I(Z;Y |X). From
Equation 1, we have

I(Z;Y |X) = H(Y |X) − H(Y |Z,X). (7)

Similar to Equation 6, H(Y |X) does not change when try-
ing different Z. As pointed out by Fleuret [8], the ultimate
goal of feature subset selection is to find {Z, X} which min-
imizes H(Y |Z,X). But H(Y |Z,X) can not be estimated
with a training set of realistic size as it requires the estima-
tion of 2k+1 probabilities [8]. Hence, the authors of [8, 32]
proposed the estimated increase of the information content
of the feature subset using Equation 3 and 4. However,
from Equation 6 and 7, it can be seen that it is not nec-
essary to compute the H(Y |Z,X), as the problem can be
directly solved by maximizing I(X, Z;Y ) as implemented
in the DFL algorithm.

Furthermore, the evaluation of the feature subsets is
more efficient than penalizing the new feature with respect
to every selected features, as done in [3, 8, 32]. To evalu-
ate I(X;Y ), O(n · N) operations are needed when adding



each feature, and O(k · n · N) operations are necessary to
choose k features in the DFL algorithm. However, in calcu-
lating I(Xi,X(j);Y ) − I(X(j);Y ) [8, 32], since there are
already (l − 1) features in U in the l iteration, there would
be (l−1)×O(n ·N) operations in this iteration. Therefore,
it needs

∑k
l=1(l − 1) × O(n · N) ≈ O(k2 · n · N) opera-

tions to select k features, which is less efficient. The com-
putational cost of the backward selection for the Markov
Blanket is at least O(2k · n · N) [17], which is even worse
than the O(k2 · n · N) of the forward selection in [8, 32].
In addition, the correlation matrix of all features needs to
be computed in the Markov Blanket method, which costs
O(n2(logn + N)) operations.

Third, the searching method used by the DFL algorithm
is also different from the forward selection searching or the
backward selection searching used by methods discussed
above. In the DFL algorithm, the exhaustive search of all
subsets with ≤ k features is guaranteed.

Fourth, the methods in [8, 32] can only deal with binary
features, however, the DFL algorithm can deal with multi-
value discrete features as well.

In the feature selection for cancer classification prob-
lems, we show that it is better to choose top gene vectors,
or subsets of genes, not top individual genes. It is demon-
strated in Figure 1 that to select the top genes individually
will not make sure that we find the optimal subset of genes.
From Theorem 3.1, it is known that gene vectors may con-
tain more information about the class distinction between
samples than individual genes, hence are more discrimina-
tory than individual genes. By selecting the best gene vec-
tors, low ranked genes can also be selected as EAs of our
classifiers. As reported by Li et al. [20], low ranked genes
are important components in building significant rules, and
included in their classifiers for many data sets.

7 Conclusion

In this paper, we have validated the DFL algorithm on
3 benchmark gene expression profiles. We have presented
that by considering the genes as vectors, the DFL algorithm
can efficiently find accurate and low-complexity models on
the selected data sets. Since gene vectors are more discrim-
inatory than individual genes, the DFL algorithm avoids
the redundancies of including genes with similar expression
patterns in the classifiers.

In the current implementation, the DFL algorithm will
stop its searching when it finds the first feature subset to sat-
isfy I(X;Y ) = H(Y ) or I(X;Y ) ≥ (1−ε)×H(Y ) in the ε
value method. In gene expression profiles, it is possible that
there exist several subsets of genes which are biologically
meaningful and can give good prediction performance. In
the future, the DFL algorithm can be used to find all feature
vectors which capture H(Y ) or at least (1 − ε) × H(Y )

with less than or equal to k features, and to find the predic-
tion performances of the classifiers built over these feature
vectors, by continuing the search process after the DFL al-
gorithm finds the first satisfactory gene subset.

In addition, the DFL algorithm is a quite general method
for learning functional dependencies from data sets. In an-
other work [36], we demonstrated that the DFL algorithm,
with minor modification, can be used to find gene regulatory
networks from time-series gene expression data.
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