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Abstract 

Experimental processes to collect and process  
proteomics data are increasingly complex, while the 
computational methods to assess the quality and 
significance of these data remain unsophisticated. 
These challenges have led to many biological 
oversights and computational misconceptions. We 
developed a complete empirical Bayes model to 
analyze multi-protein complex (MPC) proteomics 
data derived from peptide mass spectrometry 
detections of purified protein complex pull-down 
experiments. Our model considers not only bait-prey 
associations, but also prey-prey associations missed 
in previous work. Using our model and a yeast MPC 
proteomics data set, we estimated that there should 
be an average of 28 true associations per MPC, 
almost ten times as high as was previously estimated. 
For data sets generated to mimic a real proteome, 
our model achieved on average 80% sensitivity in 
detecting true associations, as compared with the 3% 
sensitivity in previous work, while maintaining a 
comparable false discovery rate of 0.3%. 

 
1. Introduction 
 
Proteomics studies in post-genome eras are crucial 

to the understandings of hidden links between genetic 
predispositions and phenotypes of an organism. For 
the past two decades, researchers have made 
significant progress in collecting and analyzing 
genome sequences from various organisms [1, 2]. To 
gain a “holistic” view of how particular genetic 
information plays out in living cells, however, 

requires researchers to continue to invest in collecting, 
analyzing, and integrating new types of high-
throughput experimental data, e.g., global 
gene/protein expressions and molecular (protein-
DNA, protein-protein) interactions. Proteomics 
provides researchers with the opportunity to observe 
the post-transcriptional states (presence/absence) of 
hundreds of gene products—proteins. Therefore, it is 
possible to deduce a minimal set of “protein 
biomarkers” as indicators of certain diseases’ early 
prognosis. Interaction-based proteomics, on the other 
hand, provides biologists with molecular binding 
information between proteins. This information 
enables computational scientists to build computer 
models of protein complexes and molecular pathways, 
which enables biomedical researchers to explain and 
find cures to complex human diseases. However, 
dealing with interaction-based proteomics data is 
significantly more challenging than common 
genomics tasks, because brute-force analysis and 
visualization methods cannot reveal novel insights 
into biological pathways due to inherent experimental 
data noise/inconsistency, and complexity of the 
problem [3]. 

In this work, we are interested in the study of 
interaction-based proteomics data, inspired primarily 
by the recent progress of high-throughput system-
scale protein-protein interaction mapping projects. 
These projects can be categorized into four broad 
categories of experimental techniques: (i) yeast two-
hybrid (Y2H) methods, which seek to measure direct 
physical interaction among protein pairs in mated 
yeast hybrid strains [4-7]; (ii) multi-protein complex 
(MPC) experimental methods, coupled with a series 
of protein complex purification, separation, and 
identification methods often involving liquid 
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chromatography and peptide mass spectrometry 
techniques [8, 9]; (iii) genetic interactions methods, 
for example, synthetic lethality, which aims to 
identify closely related proteins in parallel pathways 
by testing whether cells would die when introduced 
with double mutations [10]; and (iv) computational 
protein pairing methods, which assign protein pairs 
either when there is conserved gene co-evolution 
patterns found in different genomes, or when there is 
conserved mRNA co-expression patterns under a 
variety of controlled stimulatory conditions [11]. 
Other approaches also exist, including [12-14]. Note  
that only Y2H and MPC methods provide direct 
evidence of physical protein-protein interactions. In 
recent related work, we presented several ideas on 
how to assess and analyze Y2H data using 
frequentists’ statistical methods [15]. In this paper, 
we want to concentrate on the study of interaction-
based proteomics data from MPC methods. 

The general strategy of MPC can be described as 
follows. First, a pre-selected protein (called “bait”) is 
modified to have a “tag” peptide inserted into the 
protein’s 3’-terminus using DNA recombination. The 
DNA vector containing encoded tagged bait proteins 
is subsequently introduced into target expression cells. 
Next, the bait proteins are profusely expressed in 
target expression cells, harvested, purified, and 
affixed to solid-state surfaces through protein tags. 
These bait proteins are used to “pull down”, or 
associate by protein affinity, all the protein extracts 
from cell lysates eluting through the solid-state media. 
The transient protein complexes formed from this 
“pull down of all proteins” are therefore called Multi-
protein Complexes (MPC, as abbreviated previously). 
Since each MPC may contain hundreds of associated 
proteins (called “preys”), it needs to go through 
careful protein separation procedures such as 2-D gel 
electrophoresis or liquid chromatography until each 
separated aliquot contains much smaller number of 
possible types of proteins. Finally, peptide Mass 
Spectrometers (MS) are used to determine the peptide 
constitutes in each aliquot. Bioinformatics data 
analysis tools, such as SEQUEST and MASCOT, are 
available to identify the proteins that these peptides 
come from. 

It is not surprising to note that a complex method 
such as MPC could be subject to many sources of 
experimental errors. This has presented itself a huge 
challenge in the practical use of MPC proteomics data 
for subsequent biological pathway studies. For 
example, system errors could be introduced if 
samples are contaminated; random errors are also 
unavoidable, since the quality of final prey protein 
identifications are subject to accurate collection and 
interpretation of MS peaks. As observed in [16] and 
[17], errors produced from several high throughput 

MPC proteomics projects remain high, or at least 
uncertain. However, the only available general 
practice to assess the quality of this type of data is to 
resort a “degree of overlap” method, in which a newly 
collected MPC proteomics data set is compared with 
another existing experimental data and/or curated 
protein interaction records to seek agreement between 
data sets for the identification of interacting proteins 
[16, 18]. Sprinzak et al. [19] used cellular co-
localization and annotation term co-occurrence of 
interacting proteins to assess true positive interactions 
from various experiments. However, this type of 
assessment has been questioned because high-
throughput protein interaction data sets may bring 
together novel proteins whose functions are 
previously presumed to be unrelated [7]. To our best 
knowledge, there has been no reported success in 
setting up a complete quantitative model that can help 
biologists answer the following question:  

“How do we assess and discover true protein 
interactions from noisy proteomics data sets?” 

The main thesis of this work is to introduce an 
effective statistical framework to gauge the random 
errors found in MPC proteomics data sets. We will 
describe how to develop such an effective model 
using previously missed information. Surprisingly, 
using our model and a yeast protein interaction data 
set from [8], we found that the previous estimate of 2-
3 “true protein associations” per MPC experiment (a 
“trial”) by Gilchrist et al. [20] were off by almost 10 
times—our estimate came at approximately 28 “true 
protein associations”. In Section 2, we will first 
provide some background on Gilchrist et al.’s model, 
followed by concept introduction and model details. 
We then apply our model to one high-throughput data 
and validate advantages of our approach in Section 3. 
Finally, we conclude this paper with a discussion. 

 
2. A statistical framework 
 
2.1. Background 
 
Gilchrist et al. [20] recently described a novel 

method to estimate “global association prior” (ρ), the 
percentage of interacting protein pairs among an 
implicitly defined group of protein pairs. The 
investigators incorporated the observed association 
between the single bait protein and all the prey 
proteins “pulled down” by the bait protein in each 
MPC experiment into the construction of a Binomial-
Bernoulli model (the “BB” model). They applied 
empirical Bayes approach to estimate the global 
association prior for two yeast MPC protein 
interaction data sets, TAP [8] and HMS-PCI [9]. In 
the study, the authors concluded that both 



experiments have a ρ= 31088.1 −× . For the TAP data 
set, the total number of protein pairs under  
consideration is 5108.6 × (see Section 3), which 
suggests 1278 true interacting pairs among the 533 
multi-protein complexes based on the estimated 
global association prior. Therefore, there “should be” 
on average 2.4 (1278/533) true positive interactions 
per MPC. This result seems alarmingly low! If it were 
true, this estimate could invalidate the majority of 
today’s MPC experiments, which often are known to 
contain dozens up to hundreds of proteins in our 
experience. Yarmush et al. [21] also pointed out 
recently that a bait protein in an MPC experiment is 
generally associated with more than 50 proteins in 
yeast. 

What could have gone wrong? As we soon describe, 
we believe the fundamental cause of such a low 
estimate of true positives for each MPC experiment 
lies in the fact that a lot of protein-protein interaction 
information among prey proteins was ignored by the 
BB model. Such a simple “spoke” (bait as the “center 
of spoke”) data representation scheme of MPC 
proteomics pull-down data is a common practice, and 
can be found in such analysis as in [18]. This over-
simplification translates into a highly restrictive 
(likely incorrect) biological assumption, which states 
that all prey proteins must be directly associated with 
the bait protein (no secondary/indirect associations 
among prey proteins are allowed). For the rest of the 
paper, we will explain these concepts in detail, and 
present a complete empirical Bayes model that 
includes all protein-protein interaction information 
embedded within each MPC experiment. 

 
2.2. Concepts 
 

Similar to the concept of “global association prior” 
(ρ), we introduce the concepts of true association and 
true association rate (ρ) of a proteome (the total 
collection of proteins in a given cell):  

True association: two proteins have a true 
association if they are located in the same protein 
complex within a biological system;  

True association rate: the probability that two 
proteins randomly selected from a proteome have a 
true association. 
True association cannot be observed in any 
proteomics experiments; however, the association of 
proteins in MPC experiments can be observed.  In 
general, there are two types of “observable” 
associations from these experiments: bait-prey 
association (type I) and prey-prey association (type 
II). Specifically, 

Bait-prey association (type I): proteins A and B 
have type I association if and only if both proteins are 

observed in the same MPC trial, and one of the 
proteins is the bait protein;  

Prey-prey association (type II): proteins A and B 
have type II association if and only if both proteins 
are observed in the same MPC trial, and both proteins 
are prey proteins. 

In type I association, we concern primarily with 
protein-protein interactions between the bait protein 
and prey proteins in the MPC. Obviously, such 
interactions provide direct evidence of true 
associations between the bait and the preys. In type II 
association, we concern primarily with the protein-
protein interactions among prey proteins in the MPC, 
which provide indirect, yet important, information of 
true association status among prey proteins. 
Intuitively, we would expect two truly associated 
proteins to behave in a concordant manner when a 
third protein serves as the bait (both in the preys or 
none in the preys). As shown later, type II association 
fills in the technology inadequacy that not every 
protein is used as bait. We illustrate these two 
concepts in Figure 1. As shown in next section, the 
BB model only includes type I association and loses a 
fairly large number of protein-protein interactions 
embedded within the type II association. 
  

 
    
Figure 1. Schematic drawing of a hypothetical multi-
protein complex pull-down trial using a bait shown as the 
node labeled “B”. Preys P1, P2, P3, and P4 are also shown 
as labeled nodes. Solid lines connecting the bait and preys 
are type I associations and dotted lines connecting preys are 
type II associations 
 

The imperfection of any experimental technique is 
due to the random errors associated with it. We first 
define the following two error terms: 

Type I false positive rate ( 0r ): probability that 
two proteins have a type I association given that they 
do NOT have a true association; 

B 
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Type I false negative rate ( 0s ): probability that 
two proteins do NOT have a type I association given 
that they have a true association.  
Hence, 0r  and 0s  describe the error when going from 
the true association status to type I association status. 
To connect the true association status with type II 
association, we further define two extra terms:  

Type II false positive rate ( 1r ): probability that 
two proteins have a type II association, given that 
they do NOT have a true association;  

Type II false negative rate ( 1s ): probability that 
two proteins do NOT have a type II association, given 
that they have a true association. 

To summarize the definitions of these parameters in 
a more rigorous manner, suppose that A, B and C are 
three proteins randomly selected from a proteome. 
We have 
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2.2. A complete empirical Bayes model 
 

The ρ in the BB model is solely based on the type I 
association and consequently fails to represent the 
true association rate among all protein pairs within a 
proteome. To elucidate this, suppose that there are 
totally N proteins within a proteome, among which n 
proteins are selected as the bait proteins. We are 
interested in estimating the true association rate 
among the N(N-1)/2  protein pairs and identifying 
those protein pairs. What Gilchrist et al. tried to 
estimate is the true association rate among the n(n-
1)/2+n(N-n) protein pairs, ignoring those potentially 
associated pairs within the N-n proteins that do not 
serve as baits. In Figure 2, the shadowed area is the 
total protein pairs under Gilchrist et al.’s 
consideration and their true association rate (ρ) is 
defined for this population. Hence, it does not reflect 
the intended true association rate, which should be 
defined for the shadowed and the blank area above 
the diagonal line in Figure 2. For the same reason, 
their model does not provide the posterior probability 
of having a true association for the (N-n)(N-n-1)/2 
protein pairs in the blank area.  

Now we introduce a complete empirical Bayes 
model to account for the information embedded 
within both type I and type II associations, which 
enables us to define the true association rate for the 
total N(N-1)/2 protein pairs and estimate the posterior 
probability of any two specific proteins having a true 
association. It is called the Complete Binomial-
Bernoulli model (CBB) in the sense that it models 
the association of all possible protein pairs. 
Parameters in the CBB are estimated by the 
Expectation-Maximization (EM) algorithm [22], 
which automatically provides the posterior 
probability of two proteins having a true association 
at convergence.  

 
 

Figure 2.  Illustration of the space of interacting protein 
pairs. Proteins 1 to n serve as bait proteins and proteins n+1 
to N only appear in the preys. The shadowed area refers to 
the total protein pairs under Gilchrist et al.’s consideration, 
upon which ρ is defined. 
 

We will use ρ to denote the true association rate, 
which is equal to the probability that two proteins 
randomly selected from a proteome of N proteins 
have a true association. Practically, N is defined to be 
the union of the bait proteins and their preys. To write 
out the likelihood function, we need some extra 
notations. We first label the N proteins by numbers 1, 
2 … N such that the first n proteins correspond to the 
baits. For k=1, 2,…,n; i, j=1, 2,…, N ( ji ≠ ) and t=1, 
2…, nk (nk is the number of trials with bait k), define 
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Conditional on Z, the outcomes from each trial with a 
particular bait protein can be treated as independent. 
Hence, the model for Y and Z is  
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and the corresponding log-likelihood function is   
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Since we do not observe Z, it is treated as missing 
data in our EM algorithm. This algorithm is 
composed of two steps: the Expectation step (E) and 
the Maximization (M) step. During the E step of the 
mth iteration, Z is updated by the conditional 
expectation given the estimate of θ  from last 
iteration ( )1( −mθ ) and Y, that is, ],|[ )1()( −= mm YZEZ θ ; 

then in the M step, we find )(mθ  that maximizes 
).,;( )(mZYl θ This procedures is repeated until 

convergence. The advantage of this algorithm in our 
case is that we can obtain a closed form solution 
during the M step, which greatly enhances the 
computation speed. Another bonus is that we 
automatically obtain the probability of two proteins 
having a true association given Y, or, Pr[Zij=1|Y]. 
 
3. Analysis of MPC proteomics data  
 
3.1. Analysis of a high-throughput data set 
 

We applied the proposed model (CBB) to the study 
by Gavin et al. [8], in which high-throughput protein 
complex data sets for yeast Saccharomyces cerevisiae 
were generated by tandem affinity purification (TAP). 
Gavin et al. processed 1739 genes and ultimately 
purified protein assemblies that cover 1550 proteins. 
Among the 1550 proteins, 533 serve as the bait 
protein once and 1017 of them only present 
themselves as preys. Hence, Gilchrist et al. only 
considered the 5108.610175332/532533 ×=×+×  
protein pairs, which is 57% of the total number of 
pairs formed by the 1550 proteins ( 6102.1 × ).  

In Table 1, we compare the parameter estimates 
from the BB model and the CBB model just described. 
Clearly, estimate of the true association rate from the 
CBB is much higher than that from the BB, which 
indicates that a large amount of true associations 
within the 1017 proteins that never serve as the bait 
proteins have been ignored by the BB. Essentially, the 
CBB postulates that there are 

165601038.1102.1 26 =××× −  true associations, 
which suggests that on average about 28 (16560/533) 



true associations are identified for each MPC 
experimental trial.  Note that this number is about 10 
times as large as that from the BB model (2.4). Thus, 
substantial true associations are missed in the BB 
model by ignoring the prey-prey association in each 
MPC trial. 
 
Table 1. Parameter estimates from BB [20] and CBB for 
the high-throughput experiment in [8]；ρ: true association 
rate, r0: type I false positive rate, s0: type I false negative 
rate 
 

model ρ r0 s0 

BB 1.88 × 10-3 1.07 × 10-3 0.346 

CBB 1.38 × 10-2 5.44 × 10-3 0.588 

 
The type I false positive rate and type I false 

negative rate from the CBB are higher than that from 
the BB. Roughly speaking, the CBB says that for 
every 1000 pairs that do NOT have a true association, 
5 of them will have a type I association when one 
member of the pair serves as the bait; and for every 2 
pairs that have a true association, one of them will 
NOT have a type I association. Moreover, the CBB 
estimates the type II false positive rate and false 
negative rate to be 5105 −× and 0.993, respectively. 
Thus, it is extremely unlikely for two proteins that do 
not have a true association to appear in the same MPC 
as “preys” of a third protein. On the other hand, there 
is 0.7% probability for two truly associated proteins 
to be “fished” by a third protein, mainly due to few 
bait proteins that truly interact with the two proteins 
of interest (see Section 4). 
 
3.2. Statistical validation 
 

To identify which pairs have a true association, a 
routine practice is to apply a cutoff point to the 
posterior probability of the Zij being equal to 1. For 
example, if we use 0.8 as the cutoff point, 15560 
positive pairs (1.3%) will be identified based on the 
CBB model. Then we are interested in what 
proportion of the true associations is covered in these 
15560 positive pairs (the sensitivity or SEN) and what 
proportion of these 15560 positive pairs actually do 
not have true associations (false discovery rate or 
FDR). SEN and FDR provide measurements on the 
prediction quality. Clearly, a model with lower FDR 
and higher SEN is desirable. Usually, one index is 
improved at the price of the other one by applying 
different cutoff points. FDR and SEN can be readily 

estimated when we know the true association status of 
each protein pair. Therefore, we generate a 
hypothetical true association map that mimics the 
cluster structure in Saccharomyces cerevisiae as 
demonstrated by Gavin et al. [8]. We will assume that 
we know the true association status for every pair of 
protein and compare the FDR and SEN of the CBB 
with that of the BB. The data generation process can 
be divided into two steps. First, we generate the data 
of the true association status of a proteome (the 
“unobserved” Z data). Second, we generate the MPC 
data based on data from step 1 (the “observed” Y 
data). 

Step1: Gavin et al. categorized proteins in their 
MPC experiment into 232 complexes, while some 
complexes also share certain proteins. We first 
postulate a proteome (2660 proteins) composed of 
232 complexes with the same distribution of cluster 
size as Gavin et al’s; yet none of the complexes 
shares any proteins.  Based on this proteome, we 
generate a proteome of 1000 proteins, which 
possesses similar cluster sizes and the number of 
clusters with a fixed size is reduced proportionally. In 
Table 2, we show the distribution of the cluster size 
of the 79 clusters formed by the 1000 proteins.  

Step 2:  we set the type I false positive rate and 
type I false negative rate to be 0.5% and 50%, which 
mimic what we found for Gavin et al.’s experiment. 
330 proteins are randomly selected as the bait 
proteins with each one having one trial to mimic the 
real data (330/1000 ≈ 533/1550 ≈ 1/3).  

 
Table 2. Distribution of cluster size within a hypothetical 
proteome of 1000 proteins 

 

Size # Size # Size # Size # 
1 1 9 2 17 1 38 1 
2 16 10 2 18 2 39 1 
3 19 11 1 19 1 41 1 
4 2 12 2 20 1 76 1 
5 2 13 1 22 1 83 1 
6 6 14 1 30 1 90 1 
7 2 15 2 33 1 93 1 
8 3 16 1 35 1   
 
After we obtain the posterior probability of having 

a true association from the CBB and BB, a pair of 
proteins are claimed positive if its posterior 
probability is greater than 0.85. We repeatedly 
generate 200 data sets and the results are shown in 
Table 3, where numbers in the parenthesis are the 
standard errors (S.E.).  On average, while the CBB 
maintains a similar FDR as BB, much more truly 



associated protein pairs are identified by the CBB 
(82.7% vs. 2.7%). Applying smaller cutoff points to 
BB will not enhance the sensitivity substantially, 
mainly due to the limited coverage of protein pairs by 
this approach (Figure 2). 
 
Table 3. Simulation results based on 200 runs for 
CBB and BB (cutoff=0.85) 

 

model FDR (S.E.) SEN (S.E.) 

CBB 0.32% (0.12%) 82.7% (1.4%) 

BB 0.25% (0.21%) 2.7% (0.2%) 

 
We conducted another study by fixing the bait 

proteins (330) and applying various cutoff points (0.1 
to 0.99, step width=0.01). The bait proteins are 
chosen so that each cluster has at least one bait 
protein and larger clusters have more bait proteins. In 
Figure 3, we show the graph of SEN versus FDR. The 
CBB reaches about 90% sensitivity at the price of 
10% FDR, whereas the best BB can reach is 30% at 
the price of a FDR greater than 20%. Hence, it is 
clear that the CBB has more power to identify truly 
associated protein pairs than the BB, while in the 
meantime maintaining a reasonable small FDR. 
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Figure 3. Sensitivity (SEN) versus false discovery rate 
(FDR) for the CBB and BB in identifying truly associated 
protein pairs with a fixed set of bait proteins. Different 
points are obtained by applying different cutoff points (0.1 
to 0.99 by 0.01, # of points=90) to the posterior probability 
of having true association. 
 
4. Discussion 
 

In this work, we developed a complete empirical 
Bayes model to analyze MPC proteomics data that are 
prone to random errors. We treat each MPC as an 

experimental trial to observe bait-prey and prey-prey 
interactions that are subject to two types of random 
errors: type I for bait-prey interaction and type II for 
prey-prey interaction. Maximum likelihood 
estimation with EM algorithm is utilized to estimate 
model parameters. We apply our model to one high-
throughput data set and obtain an estimate of the 
number of true positive pairs per MPC that is about 
10 times as large as that estimated by Gilchrist et al. 
It clearly demonstrates that a large amount of protein-
protein association pairs are recovered by the CBB 
model by accounting for the prey-prey interactions. 
Moreover, the validation study further confirms that 
our model is more powerful in detecting true 
associations. 

The major contributions of our work include: (i) 
definition of the true association rate of a proteome 
and its estimate adjusting for random errors; (ii) 
development of both type I and II associations from 
an MPC experiment into a statistical model; (iii) 
assignment of a probability of having true association 
to each protein pair; and (iv) enhanced sensitivity 
with fairly small false discovery rate. von Mering et 
al. [17] pointed out that when assessing the quality of 
interaction data, coverage and accuracy need to be 
considered together. Similarly, when analyzing 
interaction data, a good prediction model should have 
high sensitivity (coverage) and low FDR (accuracy). 
Therefore, (iv) is of great significance in terms of 
prediction quality. We believe both our statistical 
framework and results will guide future researchers in 
this domain to extract fruitful knowledge from protein 
interaction data. 

Our definition of “type II false negative rate” needs 
some additional clarification. Whether or not two 
truly associated proteins (A and B) are preys of a 
particular bait (C) depends on the true association 
status of C and A (and B). If C occurs in the same 
complex with A and B, then it is very likely that it 
can “fish” both A and B. On the other hand, if C is 
not located within the same complex as A and B, then 
it is likely that C will “fish” neither A nor B, which is 
not due to experiment error. Hence, although we use 
the term “type II false negative rate”, it does not 
necessarily reflect experiment error exclusively. 
Ideally, we can define two distinct 1s for the scenario 
when C has a true association with A and B and the 
scenario when C does not. However, this will 
seriously complicate the likelihood function that is 
used to estimate those parameters. Hence we use only 
one 1s  to indicate an averaged effect, that is, a 
randomly selected protein C is used as the bait. Since 
only a small proportion of the whole proteome have 
true associations with the two proteins of interest, 1s  
usually is quite close to 1. 



We plan to extend this model to estimate the 
probability of any proteins physically interacting with 
each other given an MPC proteomics data set. Unlike 
yeast two-hybrid high-throughput data that provide 
information on direct physical interaction of two 
proteins, mass spectrometry of purified complexes 
only presents us information on whether or not two 
proteins are located within the same complex. 
Therefore, we cannot tell directly from the data 
whether an observed association indicates a real 
physical contact, even when there are no random 
errors. Nevertheless, we can construct a more delicate 
statistical model that allows us to estimate the 
likelihood that two proteins interact directly given the 
data. Certainly, a multi-protein complex is the result 
of the physical contact of relevant proteins. Suppose 
two randomly selected proteins have probability p to 
interact directly and let Wij be the direct interaction 
indicator of protein i and j. Then Zij (true association 
indicator) is entirely determined by the Wij’s. 
Therefore, we can replace ρ and Zij in our current 
model with p and Wij, respectively. However, such a 
model is much more complicated than the current one 
and the computation can be very intensive. Hence, it 
would require further investigation for its theoretical 
and numerical feasibility. 
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