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Abstract 

 
Specific topic search in the PubMed Database, 

one of the most important information resources for 
scientific community, presents a big challenge to the 
users. The researcher typically formulates boolean 
queries followed by scanning the retrieved records for 
relevance, which is very time consuming and error 
prone. We applied Support Vector Machines (SVM) for 
automatic retrieval of PubMed articles related to 
Human genome epidemiological research at CDC 
(Center for disease Control and Prevention). In this 
paper, we discuss various investigations into 
biomedical literature classification and analyze the 
effect of various issues related to the choice of 
keywords, training sets, kernel functions and 
parameters for the SVM technique. We report on the 
various factors above to show that SVM is a viable 
technique for automatic classification of biomedical 
literature into topics of interest such as epidemiology, 
cancer, birth defects etc. In all our experiments, we 
achieved high values of PPV, sensitivity and 
specificity.  

 
1. Introduction 
 

PubMed (Medline) is a huge repository of publicly 
available scientific literature. Currently, new data is 
being added to it at the rate of over 1500 abstracts per 
week. Most biomedical researchers want to access 

PubMed with specific goals based on the areas of 
interest. The ability to efficiently review the available 
literature is essential for rapid progress of research in 
scientific community.  

The traditional literature database search involves 
the use of simple boolean queries, formulated using 
certain frequently used functionally important 
keywords the researcher is familiar with, followed by 
manual scanning of the retrieved records for relevance, 
which is time consuming, incomplete and error prone. 
Even with the formulation of complex queries, by a 
researcher over several years by continually adding 
new keywords encountered to the original query, the 
increase in the sensitivity of the searches is only 
marginal. Therefore, there is a pressing need for the 
development of automated literature mining techniques 
that can help the researchers to effectively harvest the 
heap of the knowledge available in the scientific 
literature.  

Supervised algorithms such as Support Vector 
Machines (SVM) can be used for classification of 
biomedical literature into user defined categories. 
SVM is a machine learning algorithm that performs 
binary and multiway classification (pattern 
recognition) of the data into user defined categories 
[1]. Support Vector Machines maps non-linearly 
separable training vectors in input space to linearly 
separable higher dimensional feature space and finds a 
separating hyper plane with maximal margin in that 
higher dimensional space. 



SVM has been widely used in text classification. 
The SVM method has been introduced in text 
classification by Joachims [2] and subsequently used in 
[3-10]. Joachims [2] applied SVM to text classification 
and reported that SVM yielded lower error than many 
other classification techniques. Yang and Liu [9] 
compared different classifiers, Naive Bayes (NB), 
kNN, and SVM and found that SVM performed at 
least as well as all other classifiers they tried. Dumais 
et al. [5] tested a novel algorithm for training SVM text 
classifiers and showed that this brings about training 
speeds comparable to computationally easy methods 
such as Rocchio. Han et al. (2003) [11] applied SVM 
for automatically extracting Medline citations of 
biomedical articles and reranking them according to 
their relevance to a certain biomedical property 
difficult to express as PubMed query. They reported 
that major improvements were achieved in reranking 
citations with respect to protein disorder-function 
relationships where the average relative ranking of a 
relevant citation was improved significantly. 

In this paper, we report the results of application 
of SVM for incorporation of Human Genome 
Epidemiology (HuGE) relevant articles from PubMed 
database into CDC’s  HuGENet™ 
(http://www.cdc.gov/genomics/hugenet/) published 
literature database. Although the present study is 
limited to classifying the epidemiology related articles, 
the method described here has a wider applicability 
and can be used for classifying the articles by disease, 
by topic or even by domain of expertise. We also 
report the results of some preliminary analysis for 
multi-way classification using SVM with different 
types of cancer abstracts extracted from PubMed.  
     
2. Methods 
 
2.1 Human screening of PubMed 
 

New abstracts appearing in the PubMed database 
are currently being manually categorized as HuGE and 
populated into the CDC’s HuGENet™ database by a 
human expert using a complex search query.   The 
complex query CDC uses for screening the PubMed 
database was developed over four years by iteratively 
adding the new HuGE relevant keywords encountered 
that were absent in the original query. As of March, 
2004 it consisted of 98 different keywords combined 
with boolean operators. It is important to note here that 
after manual processing by human expert, on average, 
only 5 - 10% of the articles retrieved from the PubMed 
database by the complex query are HuGE relevant and 

are being added to the HuGENetTM database (Figure 
1).  

 
1848 Total number of articles captured by the 
complex query  

1544 Excluded based on reading titles  

304 Selected for further reading based on reading 
titles  

Manual Reading of full abstract of the above 
selected articles gives following:  

174 HuGE articles – included in HuGENet 
database  

130 NonHuGE articles – Not included in HuGENet 
database 

Figure 1: Distribution of PubMed articles retrieved 
using the complex query: Weekly update of April 
1, 2004. 
 
2.2 Feature Selection 
 

Different approaches were used for selecting the 
keywords to constitute the feature vectors for SVM. 
The keywords were generated using two different 
weighing schemes, Z-Score and TFIDF (Term 
Frequency x Inverse Document Frequency). The 
weighing schemes estimate the significance of words 
by comparing the frequency of words in a test set 
(HuGE) of abstracts with their frequency in a 
background set of abstracts. The background sets of 
abstracts were used to build a hash table of words and 
their respective statistics for comparison with the 
corresponding words in the training and test sets. The 
abstracts present in the PubMed database from 1969 
till 2004 were used as the background set. Porter 
stemming algorithm [12] was used to truncate suffixes 
and trailing numerals so that words having the same 
root (e.g.,epidemic, epidemics, epidemiology, 
epidemiological etc.) are collapsed to the same word 
for frequency counting. The stop word list customized 
in the previous study [13-14] by adding biological 
methodology words to an online dictionary of 22,205 
words (http://ftp.std.com/obi/Dictionary/dict), 
abbreviated PD+ was used to filter out non-scientific 
english words that carry low domain-specific 
information content The words with the high Z-Score 
and TFIDF values were selected as features for the 
SVM. The formulas used for the calculating the Z-
Score and TFIDF values are given below. 
 



2.3 Two Weighting Schemes for Keywords 
Extraction: 
 
2.3.1 TFIDF method (Term Frequency x Inverse 
Document Frequency). The standard TFIDF function 
was used [15]. TFIDF combines term frequency (TF), 
which measures the number of times a word occurs in 
the HuGE’s set of abstracts (reflecting the importance 
of the word to the HuGE), and inverse document 
frequency (IDF), which measures the information 
content of a word – its rarity across all the abstracts in 
the background set. The inverse document frequency 
(IDF) is calculated as:  

 

 

where idfa denotes the inverse document frequency of 
word a in the background set; dfa denotes the number 
of documents (abstracts) in the background set in 
which word a occurs; and N is the total number of 
abstracts in the background set. TFIDF is defined as:  

       
      

tfidfH adenotes the weight of the word a to the HuGE 
abstracts H;  tfH a the number of times word a occurs in 
the set of HuGE abstracts H.  

 

2.3.2 Z-Score method. The statistical formula used for 
calculating the Z-Score is given by 
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Where p1 is the probability with which a given word 
occurs in the HuGE abstracts, p2 is the probability 
with which that particular word occurs in the 
background set, n1 is the total word count in the HuGE 
abstracts and n2 is the total word count in the 
background set. The formula used for the calculation 
of p and q are given below.  

 

                                                                pq −=1  
 
2.4 Our approach using SVM 
 

After extracting keywords using Z-Score and 
TFIDF, eight different top ranked sets with varying 

number of keywords were used as features for SVM. 
They were: 
1) Z-Score top 100 keywords  

2) Z-Score top 500 keywords 

3) Z-Score all 784 keywords 

4) TFIDF top 100 keywords 

5) TFIDF top 500 keywords 

6) TFIDF top 750 keywords 

7) TFIDF top 1010 keywords 

8) TFIDF top 2010 keywords 

The training and test sets were converted into an 
abstract vs keyword matrix, a format readable by  
SVMlight software [16]. In conversion of the abstracts 
in the training set into an abstract vs keyword matrix, 
+1 was used to denote the class label for positive 
(HuGE) abstracts and –l was used to denote the class 
label for negative abstracts (Non HuGE). The presence 
and absence of the keywords were represented by 1 
and 0 respectively. The abstracts in the test sets were 
also converted to the similar format except for the class 
label, which is ‘0’ for all the abstracts. Unless 
otherwise mentioned, the SVM was tested with linear 
kernel using default values of ‘γ’ and ‘c’ (cost) 
parameters. 

 
2.5 Design of experiments to test SVM:     
 
2.5.1 Training set. The 11000 abstracts present in the 
CDC’s HuGENetTM database, as of March, 2004, were 
used as the positive training set. The Non HuGE 
abstracts were obtained by searching the PubMed 
database; using the complex query for the abstracts 
that appeared in it between 2000 and 2004; followed 
by removing the HuGE abstracts from them. A total of 
11000 abstracts were then randomly selected from the 
Non HuGE abstracts and were used as the negative 
training set for the SVM. Two sets of training sets 
were compared, one consisting of equal number of 
positive and negative abstracts (11000 positives and 
11000 negatives) and the other consisting of twice the 
number of positives over negative abstracts (11000 
positives and 5600 negatives).  

2.5.2 Test Set. The abstracts retrieved from the 
PubMed database using the complex query during four 
different weeks, Feb 12, 2004, Apr 1, 2004, Apr 8, 
2004 and Jun 3, 2004 were used as the test sets for the 
SVM. 
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2.5.3 Sensitivity, Specificity and Positive 
Predictive Value. Three different metrics were used 
to evaluate the performance of SVM in classifying 
the abstracts. The classification of the abstracts by 
human expert was used as the “gold standard” 
against which the SVM classifications were 
evaluated by Sensitivity (also referred to as Recall), 
Specificity, and Positive Predictive Value (PPV) 
(also referred to as Precision).  

Sensitivity (Sn) = TP/(TP + FN) 

Specificity (Sp) = TN/(FP + TN) 

PPV = TP/(TP + FP) 

TP = True Positive, TN = True Negative, FP = False          
Positive, FN = False Negative. 

 

3. Results and Discussions 
 
3.1 Performance of SVM with different sets of 
keywords 
 

The performance of SVM with the eight 
different sets of keywords mentioned above was 
compared. Training set containing equal number of 
+ve and –ve abstracts was used. The keyword sets, 
TFIDF top 2010 and Z-Score all 784, performed 
better compared to the other sets. So these two sets 
were selected as features in the remaining of our 
comparisons. Best results were obtained (93.6 % 
average Sensitivity, 91.45% average specificity, 50% 
average PPV) using the top 2010 keywords obtained 
from TFIDF. (Table 1 and Figure 2). 

 Table1: Results from SVM using different sets of keywords 

Average performance of SVM with different keyword sets as 
features
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 Figure 2: Average performance of SVM with different keyword sets as features 
 
3.2 Performance of SVM with a bias for 
positive training sets 

 
If a user is interested in sensitivity as the 

overriding criterion for classification, it is possible to 
influence the results by biasing towards the positive 
examples over negative ones. First, we can control 
the relative sizes of  

 
the two training sets. We compared the performance 
of SVM with two training sets using TFIDF top 2010 
keywords as features. With twice the number of 
positives than the negatives in the training set, the 
sensitivity of the SVM increased consistently for 
each of the four sets, while reducing the specificity 
and Positive Predictive Value (PPV) (Table 2).   

Keyword sets     Feb12 Apr1 Apr8 Jun3 
 Sn Sp PPV Sn Sp PPV Sn Sp PPV Sn Sp PPV 

TFIDF top 100 88 90 36 88.5 88.6 44.7 89.5 91.3 53.6 92.6 89.7 44.4 
TFIDF top 500 92.5 92.5 45 91.3 90.6 50.4 89 93 58.8 94 92 50.7 
TFIDF top 750 94.5 92 44 92.5 90.5 50.5 90 93.7 61.7 93.3 92 50.7 

TFIDF top 1010 94.5 92 44 92.5 90.5 50.4 90.1 93.4 60 93.3 92.2 51.5 
TFIDF top 2010 97.2 91.8 43.8 92 91 50.3 89.5 93 59.3 96 90 47 
Z-Score top 100 92.5 92 42.7 87.3 89 45 85.5 91 51.3 94 90.8 47.5 
Z-Score top 500 95 74 19 93 69.7 24.2 94.2 73.2 28.2 94 73 23.6 
Z-Score all 784 95 92.6 45 82.5 91.3 50 85.5 93.1 58.2 93.3 91.2 48.6 



                                          Feb12                     Apr1                     Apr8                       Jun3 
Training Set Sn Sp PPV Sn Sp PPV Sn Sp PPV Sn Sp PPV 

Training set 11400 +ve 
and 11300 -ve 97 92 44 92 91 52 90 93 59 96 90 47 

Training set 
11400 +ve 5300 –ve 98 87 33 96 85 39 94 88 46 97 87 39 

Table 2: SVM classifications with different training sets 

Second, we can weigh the positives heavily over 
negatives in training the SVM. We tried weighing the 
positives over negatives by a factor of two, four and 
eight on a training set of equal positives and 
negatives and found that the sensitivity results 
consistently improved at the cost of Specificity and 
PPV(For Apr1, test set, the Sensitivity values are : 
89.08, 97.13, 98.85 and 99.43). These results indicate 
that the outcome of the classification can be changed 
in response to the user’s need by tweaking the 
training set or by assigning different weights to the 
training sets. 
 
3.3 Union of results using keywords based on 
TFIDF and Z-Score methods 

 
The performance of SVM was estimated by 

taking the union of the results obtained from  

using TFIDF top 2010 and Z-Score all 784 keyword 
sets. Briefly, the union of results is done as follows. 
If the SVM identified an article as false positive with 
both the keyword sets then it was considered as false 
positive. On the other hand if the SVM disagreed 
with the keyword sets i.e. classified the article as true 
positive with one keyword set and as false positive 
with the other set, then the article was considered as 
the true positive. The same rule applies to true 
negatives and false negatives (the article was 
considered as  false negative if the SVM classified it 
as false negative with both the keyword sets. If there 
was a discrepancy in the classification with the two 
keyword sets then the article was considered as true 
negative) This was done to minimize the false 
positive and false negative error rates thereby 
increasing the sensitivity and specificity of the SVM. 
(Table 3 and Figure 3) 

 
                       Feb12                              Apr1                        Apr8                       Jun3 

 Sn Sp PPV Sn Sp PPV Sn Sp PPV Sn Sp PPV 
TFIDF top 

2010 97 91.8 43.8 92 91 50.3 89.5 93 59.3 96 90 47 

Z-Score 784 95 92.6 45 82.5 91 50 85.5 93 58.2 93.3 91.2 48.6 
Union of 
results 99.3 95.5 58.6 95.4 94.7 65 92.5 96.3 73.7 97.3 95.6 66.3 

Table 3: Union of results using keywords based on TFIDF and Z-Score methods 
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Figure 3: Average performance of SVM from the 
union of results 
 
 

3.4 SVM classification outperformed Human 
expert classification 

 
The false positives from the above result (i.e. 

union of results using keyword sets 3 & 8) were given 
to the CDC appointed expert, in charge of reviewing 
the literature for the HuGENetTM database, for her 
scrutiny. In her inspection, she found that on average 
50% of the false positives produced by the SVM were 
in fact true positives that were missed by her in her 
initial review process (Table 4 and Figure 4). Thus, our 
automated classification using SVM not only reduced 
the burden of manual processing, but also increased 
the sensitivity of the search. 

 



 Feb 12 Apr 1 Apr 8 Jun 3 
FP from union of results 100 89 57 74 

TP after Human Expert Review 59 47 28 32 
Percentage 59% 52.8% 49% 43.2% 

               Table 4: False Positive analysis 
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Figure 4 False Positive (FP) Analysis 
 
 
3.5 SVM performance with the corrected 
training set 

 
Based on the false positive analysis, we realized 

that the negative training set used was not good 
enough and it may have contained some of the 
positives that were missed by the human expert. Since 
its not feasible to manually check all the abstracts in 
the negative training set to remove the positives and 
also because our test set classifications were accurate 
as they were reclassified by human expert after SVM 
classification, the negatives from the three test sets 
Feb12, 2004, Apr 8, 2004 and Jun 3, 2004 were used 
as the negative training set while the positive training 
set was left unchanged. This training set, referred to as 
corrected training set was tested on the Apr 1, 2004 
test set and used in our later comparisons. Also, the 
training set decreased in size because of the limited 
number of negative abstracts present in the three test 
sets. The results from SVM with the corrected training 
set using different sets of keywords, TFIDF top 2010 
and Z-Score all 784, as features are shown in Table 5. 
 
 

 
 
3.6 Performance of SVM with different 
training set sizes 

 
We tested the accuracy of our models using a very 

small training corpus starting with just 50 positive 
abstracts. (In all our training sets, we use 50% positive 
and 50% negative examples).We varied the positive set 
size from 50 to 5362. Even with small training sets, 
SVM was able to pick up the right model parameters 
and gave reasonable results (Table 6).  
 
3.7 SVM overall performance 

 
With the corrected training set of equal number of 

positives and negatives and the union of results of 
SVM classifications obtained using TFIDF top 2010 
keywords set and Z-Score all 784 keyword set on Apr 
1, 2004 dataset, SVM achieved a Sensitivity of 96.3%, 
Specificity of 96.8% and Positive Predictive Value of 
80.6% (Table 7). 
 
3.8 SVM performance directly on the PubMed 
abstracts (without complex query) 

 
Three random dates were chosen to check the 

performance of SVM directly on the articles contained 
in the PubMed even before applying the complex 
query. We were able to classify articles with 89.7% 
Sensitivity, 98.4% Specificity and 33.3% PPV. This 
shows that SVM can be used to classify the articles 
even without the complex queries. Also, the PPV of 
the PubMed search based on EDAT (Entrez date) 
increased 38 fold from 0.857% to 33.3% using SVM.

Training Set 
Previous Training 
Set (5363 +ve’s, 
5316–ve’s ) 

Corrected Training 
Set(5363 +ve, 5362 
–ve) 

Previous 
Training Set 
(5363+ve, 5362 
–ve) 

Corrected Training 
Set (5363 +ve, 
5362 –ve) 

Keywords TFIDF top 2010 TFIDF top 2010 Z-Score 784 Z-Score 784 
Sn 92.2 95.4 87.2 89 
Sp 91 92.3 93 92 
PPV 59.7 62.8 62.5 60.8 
Table 5: Results from SVM after correcting the training set 

 



Training Set 
Size 100 500 1000 2000 5000 10724 

PPV 42.86 42.47 52.13 52.07 53.95 58.19 
Sensitivity 84.48 90.8 91.38 86.78 90.23 95.98 
Accuracy 87.93 87.55 91.29 91.23 91.83 93.13 

Table 6: April 1 Results as a function of Training Set Size 

 

 

 

 

 

 

Table 7: SVM overall performance 

 

 Apr1 Test Set Training Model Estimates 
Kernels PPV Sensitivity Accuracy Sensitivity True Error 
Linear 49.7 95.4 90.48 >79.47 <20.57 
Polynomial 55.96 97.13 92.53 >74.08 <26.13 
Polynomial1 58.19 95.98 93.13 >65.6 <34.98 
RBF 51.54 95.98 91.13 >85.10 <56.02 
Sigmoid 52.02 95.98 91.29 >95.11 <51.98 

Table 8: April 1 Test Set trained on model with 5362 positives and 5362 Negatives 
 
3.9 Parameter Tuning of SVM with different 
kernel functions  
 

We conducted experiments for parameter tuning 
of our SVM algorithm with different kernel functions. 
The estimates reported in the table 8 refer to Apr 1, 
2004 test set and include xi-alpha [17] estimates of 
true error (100%Accuracy) and sensitivity for five 
different kernels. Both the polynomial kernels used are 
of degree two but have different parameters. RBF and 
Sigmoid kernels behaved well only for a certain range 
of parameters whereas the linear and polynomial 
models generally performed well regardless of 
parameter choices on our discrete value datasets. In 
particular, the degree two polynomial1 function had 
best PPV and accuracy for our test set.   (Table 8). 
 
3.10 MultiWay-Classification 

 
We have extended our binary classification work 

to explore multiway-classification of biomedical 
literature using SVM. We do so by incorporating 
training sets derived from known classes (e.g. types of 
cancers).   In our current study we tried classifying 

literature related to 4 cancer types using the LIBSVM 
software [18]. We took 577 PubMed abstracts given by 
cancer experts at CDC with each abstract tagged with a 
cancer-type. They were randomly divided into two 
groups. The first group (training set) contained 200 
abstracts with 50 abstracts of each cancer type whereas 
the second group (test set) contained the remaining 377 
abstracts with non-uniform distribution of each cancer 
type. We tagged our training and test sets with 
individual tags for each class (e.g. 1 for colorectal, 2 
for esophageal etc.). Then for each class, in 
comparison to the binary classification described in 
section 2.4, the decision to assign an abstract to that 
class is still regarded as a binary decision as follows.  
E.g., for colorectal cancer class, the label 1 
corresponds to a positive assignment and labels 2, 3, 4 
correspond to a negative assignment. For feature 
vectors, we used the top 1066 keywords that were 
generated based on their TFIDF. Using the Radial 
Basis Function (RBF) kernel with some parameter 
tuning, we were able to classify abstracts from these 4 
cancer types with 93.9 % overall accuracy. Accuracy, 
sensitivity and PPV of each cancer type were also 
calculated (Table 9 and Figure 5). Given the 
complexity of the data, the initial results are very 

Training Set Corrected Training Set(5363 +ve, 5362 –ve) 
Keywords TFIDF top 2010 & Z-Score 784 (Union of results) 
Sn 96.3% 
Sp 96.8% 
PPV 80.6% 



promising and indicate that SVM can adequately classify data belonging to different classes.   
 

Cancer Type Accuracy Sensitivity PPV 
Colorectal 95.2 91.1 98.1 
Esophageal 98.7 100.0 66.7 

Lung 96.8 96.4 96.4 
Stomach 97.1 93.1 75.0 

Table 9 Accuracy, Sensitivity and PPV for different cancer types using keywords based on TFIDF 
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Figure 5 Multiway-Classification: Accuracy, Sensitivity and PPV for different cancer types from 377 
abstracts using keywords based on TFIDF. 
 
4. Discussion 
 

Automated and standardized categorization and 
classification of the biomedical literature is an 
important challenge facing the scientific community. 
Due to the vast amount of data produced by emerging 
biomedical research, manual classification is not 
feasible. We tried classifying medical literature using 
supervised learning techniques such as decision trees      
(69.12 accuracy), k-Nearest Neighbor (82.90 
accuracy), Neural Networks (85.12 accuracy) and 
found that SVM performed better than these on 
average. In our investigation into the use of SVM for 
efficiently classifying HuGE medical abstracts, a high 
degree of accuracy (96.8%), sensitivity (96.3%) and 
positive predictive value (80.6%) was achieved. 
Furthermore, SVM outperformed a human expert 
working on the problem fulltime for 4 years, by 
identifying 20% additional HuGE abstracts that were 
missed in human inspection.  

Our initial results using SVM for multiway 
classification of cancer abstracts are also very 
promising (overall accuracy 85.7%). These results 
indicate that with careful parameter and feature 
selection SVM can be used for efficient and accurate 
classification of biomedical literature. In our 
preliminary analysis, slight improvement was achieved 

using leave-one-out cross validation technique which 
needs to be further explored. Use of different keyword 
weighting schemes and effect of using different 
kernels is an interesting area to explore. In future we 
wish to develop our technique into a tool useful for the 
average biomedical researcher and intend to develop 
good benchmarks (parameters, kernels) and 
incorporate them into this personalized tool to be used 
by the scientific community.  

 
Acknowledgements 
 
We thank Abhishek Dabral from Georgia Institute of 
Technology for editorial assistance and constructive 
criticism. We also thank Wei Yu, Bruce Lin, Mindy 
Clyne, Muin Koury from the Office of Genomics and 
Disease Prevention, Centre for Disease Control and 
Prevention (CDC) and Venu Dasigi from Southern 
Polytechnique State University for their invaluable 
comments and suggestions. Also, we appreciate CDC 
for providing the data from their Human Genome 
Epidemiology Network (HuGENet™) database. 
 
 
 
 
 



References 
 
[1]  Vladimir N. Vapnik, The Nature of Statistical 

Learning Theory. Springer, 1995. 
[2]  Joachims, T. (1998) Text categorization with support 

vector machines: learning with many relevant 
features. Proceedings of ECML-98, 137-142. 

 
[3]  Drucker, H., Vapnik, V., and Wu, D. 1999. 

Automatic text categorization and its applications to 
text retrieval. IEEE Transactions on Neural Networks 
10, 5, 1048–1054. 

 
[4]  Dumais, S. T. and Chen, H. 2000. Hierarchical 

classification of Web content. In Proceedings of 
SIGIR-00, 23rd ACM International Conference on 
Research and Development in Information Retrieval 
(Athens, GR, 2000), pp. 256–263. 

 
[5]  Dumais, S. T., Platt, J., Heckerman, D., and Sahami, 

M. 1998. Inductive learning algorithms and 
representations for text categorization. In Proceedings 
of CIKM 98, 7th ACM International Conference on 
Information and Knowledge Management (Bethesda, 
US, 1998), pp. 148–155. 

 
[6]  Klinkenberg, R. and Joachims, T. 2000. Detecting 

concept drift with support vector 
machines. In Proceedings of ICML-00, 17th 
International Conference on Machine Learning 
(Stanford, US, 2000). 
 

[7]  Taira, H. and Haruno, M. 1999. Feature selection in 
SVM text categorization. In Proceedings of AAAI-
99, 16th Conference of the American Association for 
Artificial Intelligence (Orlando, US, 1999), pp. 480–
486. 

 
[8]  Joachims T (2002).  Learning to Classify Text Using 

Support Vector Machines: Methods,  
            Theory, and Algorithms. Kluwer Academic 

Publishers. 
 
[9]  Yang, Y. and Liu X. (1999) A re-examination of text 

categorizationmethods. ACM SIGIR Conference on 
Research and Development in Information Retrieval 
(SIGIR-99), 1999. 

 
[10] Simon Tong, Daphne Koller (2000). Support Vector 

Machine Active Learning with Applications to Text 
Classification. Proceedings of ICML-00, 17th 
International Conference on Machine Learning. 

 
[11]  Han, B., Vucetic, S., and Obradovic, Z.,  Reranking 

Medline Citations By Relevance to a Difficult 
Biological Query, IASTED Int'l Conf. Neural 
Networks and Computational Intelligence, Cancun, 
Mexico, 2003. 

 

[12]  Porter, M. (1980) An algorithm for suffix stripping,  
            Program, 14:130-137. 
 
[13]    Liu, Y. et al. (2004) Comparison of Two Schemes for 

Automatic Keyword   Extraction from MEDLINE for 
Functional Gene Clustering, Proceeding of IEEE 
Computational Systems Bioinformatics (CSB 2004), 
p394-404, Stanford University, Stanford, Aug. 16th – 
Aug. 19th, 2004. 

 
[14]  Liu, Y. et al. (2005) Text mining biomedical 

literature for discovering gene-to-gene relationships: 
a comparative study of algorithms. IEEE/ACM 
Transaction on Computational Biology and 
Bioinformatics, Vol.2, No.1, Jan-March 2005. 

[15]  Salton, G., and Buckley, C. (1988) Text –weighting 
approaches in automatic text        retrieval. 
Information Processing and Management, 24:513-
523. 

 
[16]  T. Joachims, Making large-Scale SVM Learning 

Practical. Advances in Kernel Methods- Support 
Vector Learning, B. Schölkopf and C. Burges and A. 
Smola (ed.), MIT-Press, 1999. 

[17]  Joachims, T (2000) Estimating the Generalization 
performance of an SVM Efficiently. International 
Conference on Machine Learning (ICML). 

 

[18] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a 
library for support vector machines, 2001.  

 

  
 
 


