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The success in backbone resonance sequential assignment is fundamental to protein three dimensional structure

determination via NMR spectroscopy. Such a sequential assignment can roughly be partitioned into three separate
steps, which are grouping resonance peaks in multiple spectra into spin systems, chaining the resultant spin systems

into strings, and assigning strings of spin systems to non-overlapping consecutive amino acid residues in the target

protein. Separately dealing with these three steps has been adopted in many existing assignment programs, and it
works well on protein NMR data that is close to ideal quality, while only moderately or even poorly on most real

protein datasets, where noises as well as data degeneracy occur frequently. We propose in this work to partition
the sequential assignment not into physical steps, but only virtual steps, and use their outputs to cross validate

each other. The novelty lies in the places where the ambiguities in the grouping step will be resolved in finding the

highly confident strings in the chaining step, and the ambiguities in the chaining step will be resolved by examining
the mappings of strings in the assignment step. In such a way, all ambiguities in the sequential assignment will be

resolved globally and optimally. The resultant assignment program is called GASA, which was compared to several

recent similar developments RIBRA, MARS, PACES and a random graph approach. The performance comparisons
with these works demonstrated that GASA might be more promising for practical use.

Keywords: Protein NMR backbone resonance sequential assignment, chemical shift, spin system, connectivity graph.

1. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy
has been increasingly used for protein three-
dimensional structure determination. Although it
hasn’t been able to achieve the same accuracy as
X-ray crystallography, enormous technological ad-
vances have brought NMR to the forefront of struc-
tural biology 1 since the publication of the first com-
plete solution structure of a protein (bull seminal
trypsin inhibitor) determined by NMR in 1985 2.
The underlined mathematical principle for protein
NMR structure determination is to employ NMR
spectroscopy to obtain local structural restraints
such as the distances between hydrogen atoms and
the ranges of dihedral angles, and then to calculate
the three dimensional structure. Local structural re-
straint extraction is mostly guided by the backbone
resonance sequential assignment, which therefore is
crucial to the accurate three dimensional structure
calculation. The resonance sequential assignment is
to map the identified resonance peaks from multiple
NMR spectra to their corresponding nuclei in the
target protein, where every peak captures a nuclear

magnetic interaction among a set of nuclei and its co-
ordinates are the chemical shift values of the interact-
ing nuclei. Normally, such an assignment procedure
is roughly partitioned into three main steps, which
are grouping resonance peaks from multiple spectra
into spin systems, chaining the resultant spins sys-
tems into strings, and assigning the strings of spin
systems to non-overlapping consecutive amino acid
residues in the target protein, as illustrated in Figure
1, where the scoring scheme quantifies the residual
signature information of the peaks and spin systems.

Separately dealing with these three steps has
been adopted in many existing assignment pro-
grams 3–10. Furthermore, depending the NMR spec-
tra data availability, different programs may have
different starting points. To name a few automated
assignment programs, PACES 6, a random graph ap-
proach 8 (we abbreviate it as RANDOM in the rest
of the paper) and MARS 10 assume the availability
of spin systems and focus on chaining the spin sys-
tems and their subsequent assignment; AutoAssign
3 and RIBRA 9 can start with the multiple spec-
tral peak lists and automate the whole sequential
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Fig. 1. The flow chart of the NMR resonance sequential assignment.

assignment process. In terms of computational tech-
niques, PACES uses exhaustive search algorithms to
enumerate all possible strings and then performs the
string assignment; RANDOM 8 avoids exhaustive
enumeration through multiple calls to Hamiltonian
path/cycle generation in a randomized way; MARS
10 first searches all possible strings of length 5 and
then uses their mapping positions to filter out the
correct strings; AutoAssign 3 uses a best-first search
algorithm with constraint propagation to look for as-
signments; RIBRA 9 applies a weighted maximum
independent set algorithm for assignments.

The above mentioned sequential assignment pro-
grams all work well on the high quality NMR data,
but most of them remain unsatisfactory in practice
and even fail when the spectral data is of low reso-
lution. Through a thorough investigation, we identi-
fied that the bottleneck of automated sequential as-
signment is resonance peak grouping. Essentially, a
good grouping output gives well organized high qual-
ity spin systems, for which the correct strings can be
fairly easily determined and the subsequent string
assignment also becomes easy. In AutoAssign and
RIBRA, the grouping is done through a binary deci-
sion model that considers the HSQC peaks as anchor
peaks and subsequently maps the peaks from other
spectra to these anchor peaks. For such a mapping,
the HN and N chemical shift values in the other peaks
are required to fall within the pre-specified HN and
N chemical shift tolerance thresholds of the anchor
peaks. However, this binary-decision model in the
peak grouping inevitably suffers from its sensitivity
to the tolerance thresholds. In practice, from one
protein dataset to another, chemical shift thresholds
vary due to the experimental condition and the struc-
ture complexity. Large tolerance thresholds could
create too many ambiguities in resultant spin sys-
tems and consequently in the later chaining and as-
signment, leading to a dramatic decrease of assign-

ment accuracy; On the other hand, small tolerance
thresholds would produce too few spin systems when
the spectral data resolution is low, hardly leading to
a useful assignment.

Secondly, we found that in the traditional three-
step procedure, which is the basis of many automated
sequential assignment programs, each step is sepa-
rately executed, without consideration of inter-step
effects. Basically, the input to each step is assumed
to contain enough information to produce meaning-
ful output. However, for the low resolution spec-
tral data, the ambiguities appearing in the input of
one step seem very hard to be resolved internally.
Though it is possible to generate multiple sets of
outputs, the contained uncertainties in one input
might cause more ambiguities in the outputs, which
are taken as inputs to the succeeding steps. Conse-
quently, the whole process would fail to produce a
meaningful resonance sequential assignment, which
might be possible if the outputs of succeeding steps
are used to validate the input to the current step.

In this paper, we propose a two-phase Graph-
based Approach for Sequential Assignment (GASA)
that uses the spin system chaining results to validate
the peak grouping and uses the string assignment re-
sults to validate the spin system chaining. Therefore,
GASA not only addresses the chemical shift toler-
ance threshold issue in the grouping step but also
presents a new model to automate the sequential as-
signment. In more details, we propose a two-way
nearest neighbor search approach in the first phase to
eliminate the requirement of user-specified HN and
N chemical shift tolerance thresholds. The output of
first phase consists of two lists of spin systems. One
list contains the perfect spin systems, which are re-
garded as of high quality, and the other the imperfect
spin systems, in which some ambiguities have to be
resolved to produce legal spin systems. In the second
phase, the spin system chaining is performed to re-
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solve the ambiguities contained in the imperfect spin
systems and the string assignment step is included
as a subroutine to identify the confident strings. In
other words, the ambiguities in the imperfect spin
systems are resolved through finding the highly con-
fident strings in the chaining step, and the ambigui-
ties in the chaining step are resolved through exam-
ining the mappings of strings in the assignment step.
Therefore, GASA does not separate the sequential
assignment into physical steps but only virtual steps,
and all ambiguities in the whole assignment process
are resolved globally and optimally.

The rest of the paper is organized as follows. In
Section 2, we introduce the detailed steps of opera-
tions in GASA. Section 3 presents our experimental
results and discussion. We conclude the paper in
Section 4.

2. THE GASA ALGORITHM

The input data to GASA could be a set of peak lists
or, assuming the grouping is done, a list of spin sys-
tems. In the case of a given list of spin systems,
GASA skips the first phase and directly invokes the
second phase to conduct the spin system chaining
and the assignment. In the other case, GASA firstly
conducts a bidirectional nearest neighbor search to
generate the perfect spin systems and the imperfect
spin systems with ambiguities. It then invokes the
second phase which applies a heuristic search, guided
by the quality of the string mapping to the target
protein, to perform the chaining and assignment for
resolving the ambiguities in the imperfect spin sys-
tems and meanwhile complete the assignment.

2.1. Phase 1: Filtering

For ease of exposition and fair comparison with
RANDOM, PACES, MARS and RIBRA, we assume
the availability of spectral peaks containing chemi-
cal shifts for Cα and Cβ , and the HSQC peak list.
One typical example would be the triple spectra con-
taining HSQC, CBCA(CO)NH and HNCACB. Nev-
ertheless, GASA can accept other combinations of
spectra. An HSQC spectrum contains 2D peaks each
of which corresponds to a pair of chemical shifts for
an amide proton and the directly attached nitrogen;
An HNCACB spectrum contains 3D peaks each of
which is a triple of chemical shifts for a nitrogen,
the directly adjacent amide proton, and a carbon

alpha/beta from the same or the preceding amino
acid residue; An CBCA(CO)NH spectrum contains
3D peaks each of which is a triple of chemical shifts
for a nitrogen, the directly adjacent amide proton,
and a carbon alpha/beta from the preceding amino
acid residue. For ease of presentation, a 3D peak
containing a chemical shift of the intra-residue car-
bon alpha is referred to as an intra-peak; otherwise
an inter-peak. The goal of filtering is to identify all
perfect spin systems without asking for the chemi-
cal shift tolerance thresholds. Note that to the best
of our knowledge, all existing peak grouping mod-
els require the manually set chemical shift tolerance
thresholds in order to decide whether two resonance
peaks should be grouped into the same spin system
or not. Consequently, different tolerance thresholds
clearly produce different sets of possible spin sys-
tems, and for the low resolution spectral data, a
minor change of tolerance thresholds would lead to
huge difference in the formed spin systems and sub-
sequently the final sequential assignment. In fact,
the proper tolerance thresholds are normally dataset
dependent and how to choose them is a very chal-
lenging issue in the automated resonance assignment.
We propose to use the nearest neighbor approach,
detailed as follows using the triple spectra as an ex-
ample. Due to the high quality of HSQC spectrum,
the peaks in HSQC are considered as centers, and
every peak in CBCA(CO)NH and HNCACB is dis-
tributed to the closest center, using the normalized
Euclidean distance. Given a center C = (HNC ,NC)
and a peak P = (HNP ,NP ),Cα/β

P ), the normalized
Euclidean distance between them is defined as

D =

√(
HNP −HNC

σHN

)2

+
(

NP −NC

σN

)2

, (1)

where σHN and σN are the standard deviations of HN
and N chemical shifts that are collected from BioMa-
gResBank (http://www.bmrb.wisc.edu).

In the ideal case, each center should have 6 peaks
distributed to it in total, 4 from HNCACB spectrum
and 2 from CBCA(CO)NH spectrum. However, due
to the chemical shift degeneracy, some centers may
have less than 6 or even 0 peaks. The reasons for this
is that the peaks should be associated with these cen-
ters might turn out closer to other centers. There-
fore, using a set of common chemical shift tolerance
thresholds results in more troublesome centers.

Figure 2 illustrates a simple scenario where 3
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centers present, but using the common tolerance
thresholds C1 has only 4 peaks associated while C2

has 8. In Figure 2(a), using the common tolerance
thresholds, only one perfect spin system with cen-
ter C3 is formed because the two peaks that should
belong to center C1 are closer to center C2, which
create ambiguities in both spin systems. Neverthe-
less, a closer look that center C1 reveals that the two
peaks that should belong to it but are closer to center
C2 are among the 6 most closest peaks. That is, us-
ing the center specific tolerance thresholds, the spin
system with center C1 can be formed by adding these
two peaks (see Figure 2(b)); Similarly, using the cen-
ter specific tolerance thresholds, the spin system with
center C2 becomes another perfect spin system.

C � C �

C �

(a) Using the common tol-

erance thresholds.

C �

C �

(b) Using the center specific
tolerance thresholds.

Fig. 2. A sample scenario in the peak grouping: (a) There
are 3 HSQC peaks as 3 centers C1, C2, C3. Every peak is
distributed to the closest center, measured by the normalized

Euclidean distance. Using the common tolerance thresholds,
only C3 forms a perfect spin system (with exactly 6 associated
peaks). (b) Using center specific tolerance thresholds, both C1

and C2 find their 6 closest peaks to form perfect spin systems,
respectively.

We designed a bidirectional nearest neighbor
model, which essentially applies the center specific
tolerance thresholds, to have two steps of opera-
tions: Residing and Inviting. In the Residing step,
we associated each peak in CBCA(CO)NH and HN-
CACB spectra to their respective closest HSQC
peak. If the HSQC peak and its associated peaks
in CBCA(CO)NH and HNCACB spectra form a
perfect spin system, then the resultant spin sys-
tem is inserted into the list of perfect spin systems.
These already associated peaks are then removed
from the nearest neighbor model for further consid-
eration. In the Inviting step, each remaining peak
in HSQC spectrum looks for the k closest peaks
in CBCA(CO)NH and HNCACB spectra, and if a
perfect spin system can be formed using some of
these k peaks, then the spin system is formed and
the associated peaks are removed. The parameter
k is related to the number of peaks contained in a
perfect spin system, which is known ahead of res-
onance assignment. A typical value of k is set as
1.5 times the number of peaks in a perfect spin
system. In the triple spectra case (HSQC, HN-
CACB and CBCA(CO)NH), k = 9. The aforemen-
tioned two steps will be iteratively executed until
no more perfect spin systems can be found and two
lists of spin systems, perfect and imperfect, are con-
structed. Note that this bidirectional nearest neigh-
bor model essentially applies the center specific tol-
erance thresholds, and thus it does not require any
chemical shift tolerance thresholds. Nonetheless, the
user could specify maximal HN and N chemical shift
tolerance thresholds to speed up the process, though
we have noticed that minor differences in these max-
imal chemical shift tolerance thresholds would not
really affect the performance of this bidirectional
search.

2.2. Phase 2: Resolving

The goal of Resolving is to identify the true peaks
contained in the imperfect spin systems and then to
conduct the spin system chaining and string assign-
ment. In general, it is very difficult to distinguish
the true peaks from the fake peaks when every im-
perfect spin system is individually examined. During
our development, we have found that in most cases,
those spin systems containing true peaks enable more
confident string finding than those containing fake

58



May 15, 2006 12:45 WSPC/Trim Size: 11in x 8.5in for Proceedings gasa˙csb2006

5

peaks. With this observation, we propose to extract
true peaks from the imperfect spin systems through
spin system chaining and the resultant string assign-
ment, namely, to accept those that result in spin
systems having highly confident mapping positions
in the target protein.

The relationships between spin systems are for-
mulated into a connectivity graph similar to what we
have proposed in another sequential assignment pro-
gram CISA 11. In the connectivity graph, one ver-
tex corresponds to a spin system. Given two perfect
spin systems vi = (HNi, Ni, Cα

i , Cβ
i , Cα

i−1, Cβ
i−1)

and vj = (HNj , Nj , Cα
j , Cβ

j , Cα
j−1, Cβ

j−1), if both
|Cα

i − Cα
j−1| ≤ δα and |Cβ

i − Cβ
j−1| ≤ δβ hold, then

there is an edge from vi to vj with its weight calcu-
lated as

1
2

(
|Cα

i − Cα
j−1|

δα
+

|Cβ
i − Cβ

j−1|
δβ

)
. (2)

In Equation (2), both δα and δβ are pre-determined
chemical shift tolerance thresholds, which are typi-
cally set to 0.2ppm and 0.4ppm, respectively, though
minor adjustments are sometimes necessary to en-
sure a sufficient number of connectivities. Given one
perfect spin system vi = (HNi, Ni, Cα

i , Cβ
i , Cα

i−1,
Cβ

i−1) and another imperfect spin system vj = (HNj ,
Nj , Cα

j1, Cα
j2, · · · , Cα

jm, Cβ
j1, Cβ

j2, · · · , Cβ
jn), we check

each legal combination v′j = (HNj , Nj , Cα
jl, Cβ

jk, Cα
jp,

Cβ
jq) where l, k ∈ [1,m] and p, q ∈ [1, n]. Those

carbon chemical shifts with subscription l, k repre-
sent the intra-residue chemical shifts and those with
subscription p, q represent the inter-residue chemical
shifts. Subsequently, if both |Cα

i − Cα
jp| ≤ δα and

|Cβ
i − Cβ

jq| ≤ δβ hold, then there is an edge from vi

to v′j with its weight calculated as

1
2

(
|Cα

i − Cα
jp|

δα
+

|Cβ
i − Cβ

jq|
δβ

)
. (3)

If both |Cα
jl − Cα

i | ≤ δα and |Cβ
jk − Cβ

i | ≤ δβ hold,
then there is an edge from v′j to vi with its weight
calculated as

1
2

(
|Cα

jl − Cα
i |

δα
+

|Cβ
jk − Cβ

i |
δβ

)
. (4)

Note that it is possible that there are multiple edges
between one perfect spin system and one imperfect
spin system, but at most one of them could be true.

In GASA, no connection is allowed for two imperfect
spin systems.

Once the connectivity graph has been con-
structed, GASA proceeds essentially the same as
CISA 11 to apply a local heuristic search algorithm,
guided by the mapping quality of the generated
string of spin systems in the target protein. Given
a string, its mapping quality in the target protein
is measured by the average likelihood of spin sys-
tems at the best mapping position for the string,
where the likelihood of a spin system at a posi-
tion is estimated by the histogram-based scoring
scheme developed in 12. This scoring scheme is
essentially a naive Bayesian learning, and it uses
the chemical shift values collected in BioMagRes-
Bank (http://www.bmrb.wisc.edu) as prior distri-
butions and estimates for every observed chemical
shift value the probability that it is associated with
an amino acid residue residing in certain secondary
structure. More precisely, for every type of chemical
shift, there is a tolerance window of length ε. For
an observed chemical shift value cs, the number of
chemical shift values in BioMagResBank that fall in
the range (cs − ε, cs + ε), denoted as N(cs | aa, ss),
is counted for every combination of amino acid type
aa and secondary structure type ss. The probability

is then computed as P (cs | aa, ss) =
N(cs | aa, ss)

N(aa, ss)
,

where N(aa, ss) is the total number of the same kind
of chemical shift values collected in BioMagResBank.
The scoring scheme then takes the absolute loga-
rithm of the probability as the mapping score. Sum-
ming up the individual intra-residue chemical shift
mapping scores in a spin system gives for the spin
system its mapping score to every amino acid residue
in the target protein.

Therefore, the edges in the connectivity graph
are weighted by the scoring scheme, and they are
used to order the edges coming out of the ending
spin system in the current string to provide the can-
didate spin systems for the current string to grow to.
It has been observed that a sufficiently long string
itself is able to detect the succeeding spin system by
taking advantage of the discerning power of the scor-
ing scheme. In each iteration of GASA, the search
algorithm starts with an Open List (OL) of strings
and seeks to expand the one with the best mapping
score. Another list, Complete List (CL), is used in
the algorithm to save those completed strings. In the
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following, we briefly describe the GASA algorithm
for resolving the ambiguities in imperfect spin sys-
tems through the spin system chaining into strings
and the subsequent assignment.

OL Initialization: Let G denote the constructed con-
nectivity graph. GASA firstly searches for all unam-
biguous edges in G, which are edges in G such that its
starting vertex has out-degree 1 and its ending vertex
has in-degree 1. It then expands these edges into sim-
ple paths with a pre-defined length L by both tracing
their starting vertices backward and their ending ver-
tices forward. The tracing stops if either of the fol-
lowing conditions is satisfied. (1) The newly reached
vertices are already in the paths; (2) The length of
each path reaches L. These paths are stored in OL
in the non-increasing order of their mapping scores.
The size of OL is fixed at S and thus only the top S

paths are kept in OL. Note that both L and S are
set in the way to obtain the best trade-off between
the computing time and the performance.

Path Growing: In this step, GASA tries to bidirec-
tionally expand the top ranked path stored in OL.
Denote this path as P , the starting vertex in P as
h and the ending vertex in P as t. All the directed
edges incident to h and incident from t are consid-
ered as candidate edges to potentially expand P , and
the resultant expanded paths are called child paths
of P . For every potential child path, GASA finds
its best mapping position in the target protein and
calculates its mapping score. If the mapping score
is higher than that of some path already stored in
OL, then this child path makes into OL (and accord-
ingly the path with the least mapping score is re-
moved from OL). When none of the potential child
paths of P is actually added into OL, or P is not
expandable in either direction (that is, there is no
edge incident to h, nor edge incident from t), path
P is closed for further expanding and subsequently
is added into CL. GASA proceeds to consider the
top ranked path in OL iteratively and this growing
process is terminated when OL becomes empty.

CL Finalizing: Let P denote the path of the high-
est mapping score in CL (tie is broken to the
longest path). GASA performs the following filter-
ing: Firstly, all paths in CL with both their lengths
and their scores less than 90% of the length and the

score of path P are discarded from further consider-
ation. These paths are considered as of low quality
compared to path P . All the remaining paths are
considered to be reliable strings. Next, only those
edges occurring in at least 90% of the paths in CL
are regarded as reliable ones. The other edges in the
paths are therefore removed, which might break the
paths into shorter ones. These resultant paths are
final candidate paths.

Ambiguities Resolving: GASA scans through the
paths in CL for the longest one, which is the con-
fident string built in the current iteration. Never-
theless, it could be that the mapping position in the
target protein for this string conflicts mappings in
the previous iteration. In this case, GASA respects
previous mappings and the current string has to be
broken down by removing the spin systems that have
the conflicts. Consequently, the spin systems as-
signed in this iteration might not necessarily form
into a single string. These assigned spin systems are
then removed from the connectivity graph G, as well
as those edges incident to and from them. Addition-
ally, for the imperfect spin systems that are assigned
in the current iteration, those peaks that are used to
build the spin systems and edges are considered as
true peaks, while the others are considered as fake
peaks subsequently removed. If the remaining con-
nectivity graph G is still non-empty, GASA proceeds
to the next iteration. When it terminates, all the as-
signed spin systems and their mapping positions are
reported as the output assignment.

2.3. Implementation

All components in GASA are written in the C/C++
programming language and can be compiled on both
Linux and Windows systems. They can be obtained
separately or as a whole package through the corre-
sponding author.

3. EXPERIMENTAL RESULTS

We evaluated the performance of GASA through
three comparison experiments with several recent
works, including RANDOM, PACES, MARS and RI-
BRA. We note that there is another recent work
GANA 13 that uses a genetic algorithm to automati-
cally perform backbone resonance assignment with
a high degree of precision and recall, which how-
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ever due to time constraint we would not be able to
make comparison with in the current work. The first
experiment is to compare GASA with RANDOM,
PACES and MARS only, all of which work well when
assuming the availability of spin systems and their
original design focuses are on chaining the spin sys-
tems into strings and the subsequent string assign-
ment. Such a comparison is interesting since the ex-
perimental results will show the validity of combining
the spin system chaining with the resultant string as-
signment in order to resolve the ambiguities in the
adjacencies between spin systems. The other two
experiments are used for comparison with RIBRA
only to judge the value of combining peak grouping
into spin systems, spin system chaining, and string
assignment all together.

RIBRA explicitly defines two criteria, namely
precision and recall, to measure its performance. In
particular, precision is defined as the percentage of
correctly assigned amino acids among all the as-
signed amino acids, and recall is defined as the per-
centage of correctly assigned amino acids among the
amino acids that should be assigned spin systems,
respectively 9. In this work, we use the same criteria
in the second and the third experiments to facili-
tate the comparison. For the first experiment on the
availability of spin systems, where the datasets are
simulated such that there is no fake spin system, the
performance of an assignment program is measured
by the assignment accuracy, which is defined as the
percentage of correctly assigned spin systems among
all the simulated spin systems. (In fact, in this case,
accuracy = precision = recall.)

3.1. Experiment 1

The dataset in Experiment 1 is simulated on the ba-
sis of 12 proteins in 14, whose lengths range from
66 to 215. The dataset construction is detailed as
follows. For each of these 12 proteins, we extracted
its data entry from BioMagResBank to obtain all the
chemical shift values for the amide proton HN, the di-
rectly attached nitrogen N, the carbon alpha Cα, and
the carbon beta Cβ . For each amino acid residue, its
four chemical shifts together with Cα and Cβ chem-
ical shifts from the preceding residue formed the ini-
tial spin system. Next, for each such initial spin sys-
tem, chemical shifts for intra-residue Cα and Cβ were
perturbed by adding to them random errors that fol-

low independent normal distributions with 0 means
and constant standard deviations. We adopted the
widely accepted tolerance thresholds for Cα and Cβ

chemical shifts, which were δα = 0.2ppm and δβ =
0.4ppm, respectively 3, 6, 8, 10. Subsequently, the
standard deviations of the normal distributions were
set to 0.2/2.5 = 0.08ppm and 0.4/2.5 = 0.16ppm, re-
spectively. The achieved spin system is called a final
spin system. These 12 instances, with suffix 1, are
summarized in Table 1 (the left half).

In order to test the robustness of all four pro-
grams, we generated another set of 12 instances
through doubling the tolerance thresholds (that is,
δα = 0.4ppm and δβ = 0.8ppm). They, having suffix
2, are also summarized in Table 1 (the right half).
Obviously, Table 1 tells that instances in the second
set are much harder than the corresponding ones in
the first set, where the complexity of an instance can
be measured by the average out-degree of the vertices
in the connectivity graph.

All four programs — RANDOM, PACES, MARS
and GASA — were called to run on both sets of
instances. The performance results of RANDOM,
PACES, MARS and GASA on both sets of instances
are collected in Table 2. Their assignment accuracies
on two sets are also plotted in Figure 3. In summary,
RANDOM achieved on average 50% assignment ac-
curacy (We followed the exact way of determining
accuracy as described in 8, where 1000 iterations for
each instance have been run.), which is roughly the
same as that claimed in its original paper 8. PACES
performed better than RANDOM, but it failed on
seven instances where the connectivity graphs were
too complex (computer memory ran out, see Dis-
cussion for more information). The collected results
for PACES on these seven instances were obtained
through manually reducing the tolerance thresholds
to remove a significant portion of edges from the con-
nectivity graph. We implemented the scheme that if
PACES didn’t finish an instance in 8 hours, then the
tolerance thresholds would be reduced by 25%, for
example, from δα = 0.2ppm to δα = 0.15ppm. We
remark that the performance of PACES in this ex-
periment is a bit lower than that is claimed in its
original paper 6. There are at least three reasons for
this: (1) The datasets tested in 6 are different from
ours. We have done a test on using the datasets in
6 to compare RANDOM, PACES, MARS and CISA,
a predecessor of GASA 11, and the result tendency
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Table 1. Two sets of instances, each having 12 ones, in the first experiment: ‘Length’ denotes
the length of a protein, measured by the number of amino acid residues therein; ‘#CE’ records

the number of correct edges in the connectivity graph, which ideally should be equal to (Length
−1), and ‘#WE’ records the number of wrong edges, respectively; ‘Avg.OD’ records the average

out-degree of the connectivity graph.

Length δα = 0.2ppm, δβ = 0.4ppm δα = 0.4ppm, δβ = 0.8ppm
InstanceID #CE #WE Avg.OD InstanceID #CE #WE Avg.OD

66 bmr4391.1 65 20 1.29 bmr4391.2 65 51 1.76

68 bmr4752.1 67 43 1.62 bmr4752.2 67 118 2.72

78 bmr4144.1 77 30 1.37 bmr4144.2 77 86 2.09

86 bmr4579.1 85 82 1.94 bmr4579.2 85 221 3.56

89 bmr4316.1 88 168 2.88 bmr4316.2 88 349 4.91

105 bmr4288.1 104 45 1.42 bmr4288.2 104 139 2.34

112 bmr4670.1 111 35 1.30 bmr4670.2 111 109 1.96

114 bmr4929.1 113 41 1.35 bmr4929.2 113 128 2.11

115 bmr4302.1 112 44 1.38 bmr4302.2 112 166 2.46

116 bmr4353.1 114 47 1.40 bmr4353.2 114 139 2.29

158 bmr4027.1 157 85 1.53 bmr4027.2 157 224 3.04

215 bmr4318.1 206 191 1.85 bmr4318.2 206 652 3.99

Table 2. Assignment accuracies of RANDOM, PACES, MARS and GASA in the first experiment. ∗PACES performance on
these 3 datasets were obtained by reducing tolerance thresholds to δα = 0.15ppm and δβ = 0.3ppm (75%). †PACES performance

on this dataset was obtained by reducing tolerance thresholds to δα = 0.3ppm and δβ = 0.6ppm (75%). ‡PACES performance

on these 3 datasets were obtained by reducing tolerance thresholds to δα = 0.2ppm and δβ = 0.4ppm (50%).

Length δα = 0.2ppm, δβ = 0.4ppm δα = 0.4ppm, δβ = 0.8ppm
InstanceID RANDOM PACES MARS GASA InstanceID RANDOM PACES MARS GASA

66 bmr4391.1 0.67 0.70 0.87 0.89 bmr4391.2 0.56 0.67 0.80 0.92

68 bmr4752.1 0.37 0.77 0.97 0.97 bmr4752.2 0.32 0.72‡ 0.90 0.87

78 bmr4144.1 0.40 0.51 0.97 0.99 bmr4144.2 0.33 0.35 0.97 0.99

86 bmr4579.1 0.52 0.60∗ 0.85 0.79 bmr4579.2 0.34 0.41‡ 0.71 0.61

89 bmr4316.1 0.37 0.38∗ 0.96 0.99 bmr4316.2 0.29 0.17† 0.92 0.94

105 bmr4288.1 0.56 0.63 0.95 0.98 bmr4288.2 0.49 0.47 0.93 0.92

112 bmr4670.1 0.62 0.70 0.80 0.83 bmr4670.2 0.44 0.52 0.70 0.61

114 bmr4929.1 0.66 0.83 0.97 0.97 bmr4929.2 0.48 0.74 0.97 0.99

115 bmr4302.1 0.65 0.69 0.92 0.95 bmr4302.2 0.49 0.47 0.82 0.90

116 bmr4353.1 0.48 0.67 0.80 0.90 bmr4353.2 0.45 0.52 0.73 0.87

158 bmr4027.1 0.32 0.77 0.93 0.99 bmr4027.2 0.30 0.30 0.81 0.76

215 bmr4318.1 0.38 0.48∗ 0.80 0.81 bmr4318.2 0.22 0.40‡ 0.62 0.57

Avg. 0.50 0.64 0.90 0.92 0.39 0.48 0.82 0.83

is very much the same as what we have seen in this
experiment. (2) PACES is only semi-automated, in
the sense that it needs manual adjustment after one
iteration to iteratively improve the assignment. In
this experiment, PACES was taken as fully auto-
mated and it was run for only one iteration. One
could run it several iterations for improved assign-
ment. However, in the current work we were unable
to manually adjust fairly well and we decided not
to do so. (3) PACES is designed to take in better
spin systems containing in addition carbonyl chemi-
cal shifts. With the current combination PACES was
expected to perform a bit lower, since the extra CO
chemical shifts provide extra information for resolv-
ing ambiguities. Again, we have done a similar test

on using the combination (HN, N, Cα, Cβ , CO) of
chemical shifts in 6 to compare RANDOM, PACES,
MARS and CISA 11, and the result tendency is very
much the same as what we have seen in this exper-
iment. MARS and GASA performed equally very
well. They both outperformed PACES and RAN-
DOM in all instances, and even more significantly on
the second set of more difficult instances, which in-
dicates that combining the chaining and assignment
together does effectively resolve the ambiguities and
then make better assignments.
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(a) Assignment accuracies on the 1st set of instances.
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(b) Assignment accuracies on the 2nd set of instances.

Fig. 3. Plots of assignment accuracies for RANDOM,

PACES, MARS and GASA on two sets of instances with dif-

ferent tolerance thresholds, using Cα and Cβ chemical shifts
for connectivity inference.

3.2. Experiment 2

In RIBRA, 5 sets of different datasets were simu-
lated from the data entries deposited in BioMagRes-
Bank. Among them, one is perfect dataset, which
is simulated from BioMagResBank without adding
any errors, and the other four datasets contain four
different types of errors respectively. The false pos-
itive dataset is generated by respectively adding 5%
carbon fake peaks into perfect CBCA(CO)NH and
HNCACB peak lists. The false negative dataset is
generated by randomly removing a small portion of
inter carbon peaks from perfect CBCA(CO)NH and
HNCACB peak lists. The grouping error dataset is
generated by adding HN, N, Cα and Cβ perturba-
tions into inter peaks in the perfect CBCA(CO)NH
peak list. The linking error dataset is generated by

adding Cα and Cβ perturbations into inter peaks in
the perfect HNCACB peak list.

Table 3 collects the average performances of RI-
BRA and GASA on these 5 sets of datasets. As
shown, there is no significant difference among the
performances on the perfect, false positive and link
error datasets. GASA shows more robustness on
the dataset with missing data while RIBRA performs
better on the grouping error dataset. Through the
detailed investigation, we found that these 5 sets of
datasets contain the Cβ inter and intra peaks with
0 Cβ chemical shifts for Glycine, indicating that in
the RIBRA simulation, Glycine would have two in-
ter peaks and two intra peaks in HNCACB and the
amino acid residues after Glycine would have two
inter peaks in CBCA(CO)NH. However, this is not
the case in the real NMR spectral data. In fact, a
huge amount of ambiguity in the sequential assign-
ment results from Glycine because it produces var-
ious legal combinations in grouping and thus mak-
ing the identification of perfect spin systems harder.
For example, the spin systems containing 3, 4 and 5
peaks have the same chance to be perfect spin sys-
tems as those containing 6 peaks and meanwhile they
could be considered as the spin systems with miss-
ing peaks. Therefore, grouping is much easier on the
datasets with the simulated Cβ peaks for Glycine.
Since GASA is designed to deal with the real spec-
tral data, in which there are no peaks with 0 car-
bon chemical shifts, the performance of GASA on
the grouping error dataset is not as good as RIBRA.
To verify our thoughts, we randomly selected 14 pro-
teins among the grouping error dataset, with length
ranging from 69 to 186, and removed all the peaks of
0 Cβ chemical shift. Both RIBRA and GASA were
tested on them. RIBRA achieved 87.7% precision
and 72.7% recall, and GASA achieved 88.5% preci-
sion and 79.4% recall, slightly better. It is noticed
that in the construction of grouping error dataset,
RIBRA kept the perfect HSQC and HNCACB peak
lists untouched and only added some perturbations
to the inter peaks in the CBCA(CO)NH peak list.
We believe that to simulate a real NMR spectral
dataset, perturbing chemical shifts in all simulated
peaks is necessary and would be closer to the real-
ity because the chemical shifts deposited in BioMa-
gResBank have been manually adjusted across mul-
tiple spectra. Even though HSQC is a very reli-
able experiment, the deposited HN and N chemical
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Table 3. Comparison results for RIBRA and GASA in Experi-
ment 2. Percentages in parentheses were obtained on 14 randomly

chosen proteins with Cβ peaks for Glycine removed.

Dataset RIBRA GASA

Precision Recall Precision Recall

Perfect 98.28% 92.33% 98.24% 93.44%

False positive 98.28% 92.35% 97.33% 92.24%

False negative 95.61% 77.36% 96.34% 89.0%

Grouping error 98.16% 88.57% 91.12% 81.27%

(87.7%) (72.7%) (88.5%) (79.4%)

Linking error 96.28% 89.15% 96.17% 89.74%

Average 97.33% 87.95% 95.84% 89.14%

shifts in BioMagResBank are still slightly different
from the measured values in the real HSQC spectra
(http://bmrb.wisc.edu/). In the next Experiment
3, we chose not to simulate Cβ peaks for Glycine and
to perturb every piece of chemical shift in the data.

3.3. Experiment 3

The purpose of Experiment 3 is to provide more con-
vincing comparison results between GASA and RI-
BRA, based on the better data simulation. For this
purpose, we used the same 12 proteins in Experiment
1 and the simulation is detailed as follows. For each
of these 12 proteins, we extracted its data entry from
BioMagResBank to obtain all the chemical shift val-
ues for HN, N, Cα, and Cβ . For each amino acid
residue in the protein, except Proline, its HN and N
chemical shifts formed a peak in HSQC peak list; its
HN and N chemical shifts with Cα and Cβ chemical
shifts from the preceding residue formed two inter
peaks respectively in CBCA(CO)NH peak list; and
its HN and N chemical shifts with its own Cα and Cβ

chemical shifts and with Cα and Cβ chemical shifts
from the preceding residue formed two intra peaks
and two inter peaks respectively in HNCACB peak
list. Note that there is no Cβ peak for Glycine in ei-
ther CBCA(CO)NH or HNCACB peak list. Next,
for each peak in HSQC, CBCA(CO)NH and HN-
CACB peak lists, the contained HN, N, Cα or Cβ

chemical shifts were perturbed by adding to them
random errors that follow independent normal dis-
tributions with 0 means and constant standard de-
viations. We chose the same tolerance thresholds as
those used in RIBRA, which were δHN = 0.06ppm for
HN, δN = 0.8ppm for N, δα = 0.2ppm for Cα, and
δβ = 0.4ppm for Cβ , respectively. Subsequently, the
standard deviations of the normal distributions were
set to 0.06/2.5 = 0.0024ppm, 0.8/2.5 = 0.32ppm,

0.2/2.5 = 0.08ppm, and 0.4/2.5 = 0.16ppm, respec-
tively.

Partial information of and the performances of
RIBRA and GASA on these 12 proteins are sum-
marized in Table 4. The detailed datasets are
available through link http://www.cs.ualberta.

ca/∼ghlin/src/WebTools/gasa.php. From the ta-
ble, we can see that GASA formed many more spin
systems than RIBRA did on every dataset, and from
the assignment precision we can conclude that most
of these spin systems are true spin systems. On av-
erage, GASA performed significantly better than RI-
BRA (precision 86.72% versus 65.23%, recall 74.18%
versus 42.10%). The detailed precision and recall are
also plotted in Figure 4. In summary, GASA outper-
formed RIBRA in all instances and RIBRA failed to
solve three instances, which are bmr4316, bmr4288

and bmr4929. As shown in Table 4, RIBRA only
achieved 65.23% precision and 42.1% recall on av-
erage, which are noticeably worse than what it is
claimed in 9. The possible explanations for RIBRA
not doing well on these 12 instances are: (1) The
simulation procedure in Experiment 3 didn’t gen-
erate Cβ peaks with 0 chemical shift for Glycines,
which causes more ambiguities in the peak group-
ing, and subsequent spin system chaining. (2) In the
12 simulated datasets in Experiment 3, the chemi-
cal shifts in every peak in all HSQC, HNCACB and
CBCA(CO)NH peak lists were perturbed with ran-
dom reading errors, which generated more uncertain-
ties in every step of operation in the sequential as-
signment.

4. CONCLUSIONS

In this paper, we proposed a novel two-stage graph-
based algorithm called GASA for protein NMR back-
bone resonance sequential assignment. The input to
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Table 4. Partial information of and the performance of RIBRA and GASA on the 12 protein NMR
datasets in Experiment 3. ‘Length’ denotes the length of a protein, measured by the number of amino

acid residues therein; ‘Missing’ records the number of true spin systems that are not simulated in the
dataset, including those for Prolines; ‘Grouped’ records the number of spin systems that were actually

formed by RIBRA and GASA, respectively.

BMRB Length Missing RIBRA GASA
Entry Grouped Precision Recall Grouped Precision recall

bmr4391 66 7 44 65.12% 48.54% 52 92.32% 81.41%

bmr4752 68 2 44 63.12% 42.33% 54 90.71% 74.22%

bmr4144 78 10 42 64.25% 39.68% 63 84.12% 77.93%

bmr4579 86 3 54 66.34% 43.22% 70 82.92% 69.93%

bmr4316 89 4 N/A N/A N/A 67 79.11% 62.37%

bmr4288 105 9 N/A N/A N/A 84 82.91% 72.32%

bmr4670 112 10 47 76.23% 35.35% 83 90.44% 73.65%

bmr4929 114 4 N/A N/A N/A 89 95.51% 77.32%

bmr4302 115 8 70 71.35% 46.67% 97 84.52% 76.61%

bmr4353 116 18 72 55.24% 40.75% 89 96.62% 87.38%

bmr4027 158 10 96 65.23% 42.15% 123 82.64% 68.92%

bmr4318 215 24 127 60.22% 40.17% 165 78.81% 68.13%

Average 65.23% 42.1% 86.72% 74.18%

GASA can be spin systems or raw spectral peak lists.
GASA is based on an assignment model that sepa-
rates the whole assignment process only into virtual
steps and uses the outputs from these virtual steps to
cross validate each other. The novelty of GASA lies
in the places where all ambiguities in the assignment
process are resolved globally and optimally. The ex-
tensive comparison experiments with several recent
works including RANDOM, PACES, MARS and RI-
BRA showed that GASA is more effective in dealing
with the NMR spectral data degeneracy and thereby
provides a more promising solution to automated res-
onance sequential assignment.

We have also proposed a spectral dataset sim-
ulation method that generates datasets closer to
the reality. One of our future works is to formal-
ize this simulation method to produce a large num-
ber of protein NMR datasets for common compar-
ison purpose. One of the reasons for doing this
is that, though BioMagResBank as a repository
has collected all known protein NMR data, some-
how there is no benchmark testing datasets in the
literature. As a preliminary effort, the 12 simu-
lated protein NMR datasets, in the format of triple
spectra HSQC, HNCACB and CBCA(CO)NH, are
available through link http://www.cs.ualberta.

ca/∼ghlin/src/WebTools/gasa.php.
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(b) Assignment recall.

Fig. 4. Plots of detailed assignment (a) precision and (b)

recall on each of the 12 protein datasets in Experiment 3 by

RIBRA and GASA.
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