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Tandem mass spectrometry (MS/MS) has become a standard way for identifying peptides and proteins. A scoring

function plays an important role in the MS/MS data analysis. De novo sequencing is the computational step to derive

a peptide sequence from an MS/MS spectrum, normally by constructing the peptide that maximizes the scoring
function. A number of polynomial time algorithms have been developed based on scoring functions that consider only

either the N-terminal or C-terminal fragment ions of the peptide. It remains unknown whether the consideration of
the internal fragment ions will still be polynomial time solvable. In this paper, we prove that the internal fragment

ions make the de novo sequencing problem NP-complete. We also propose a regression model based scoring method to

incorporate correlations between the fragment ions. Our scoring function is combined with PEAKS de novo sequencing
algorithm and tested on ion trap data. The experimental results show that the regression model based scoring method

can remarkably improve the de novo sequencing accuracy.

1. INTRODUCTION

Identification of the proteins existing in a tissue is
frequently a key step in proteomics research. In re-
cent years, tandem mass spectrometry (MS/MS) has
become a powerful analytical tool for protein and
peptide identification1, 2. It is difficult to identify
intact proteins directly. Hence the proteins are di-
gested into short peptides and the individual pep-
tides are identified separately by using MS/MS.

The peptide identification is to deduce a peptide
sequence that best matches an MS/MS spectrum.
This technique can give accurate peptide identifica-
tions provided that a high quality MS/MS spectrum
is available. However, currently only a fraction of the
acquired spectra lead to positive peptide identifica-
tions. The reasons involve various factors3–5, which
include poor fragmentation of the selected precursor
ions, chemical contaminants obscuring peptide frag-
ment ions, unanticipated residues caused by post-
translational modifications.

Over the past decade, numerous computational
approaches and software programs have been de-
veloped for MS/MS peptide identification. These
can be categorized into four classes6: sequence
database searching, de novo sequencing, sequence
tagging, and consensus of multiple search engines.

The database searching finds the best matching
peptide from a protein sequence database. The
popular algorithms using this approach include
Sequest7, Mascot8, Tandem9, and Omssa10. The
de novo sequencing is equivalent to searching for
the optimal peptide from an universal peptide
database that includes all linear combinations of
amino acids. The efficient algorithms for com-
puting the optimal peptide are required to avoid
the explicit searching. Among the de novo algo-
rithms are Lutefisk11, 12, Sherenga13, Compute-Q14,
PEAKS15, 16, PepNovo17, and NovoHMM18. The se-
quence tagging is to find the best peptide by search-
ing a database with sequence tags that may be in-
ferred by de novo sequencing. The existing algo-
rithms include GutenTag19, OpenSea20, SPIDER21,
and DeNovoID22. The consensus method combines
several different programs to increase the confidence
and coverage23, 24. A review of most of the protein
and peptide identification algorithms can be found
in Ref. 4.

Scoring function, which is used to evaluate the
matches between candidate peptides and the MS/MS
spectrum, is a key component in peptide identifi-
cation. The scoring function is usually described
by a mathematical model that quantifies the like-
lihood that a given sequence is the correct peptide
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basic principle of the MS/MS peptide identification
is that the peaks in the spectrum are produced by
the fragment ions of the peptide. The scoring func-
tion evaluates the peptide with the number and in-
tensities of the peaks. A lot of scoring methods
have been developed for database searching 7, 25–30

and for de novo sequencing 13–15, 17, 18. Many scor-
ing functions examine the correlations between the
fragment ions. Different techniques such as likeli-
hood test13, 26, 27, Hidden Markov model28, decision
trees29, and Bayesian network17 are used.

However, all of the polynomial time de novo se-
quencing algorithms developed previously are base
on scoring functions that only use the N-terminal or
C-terminal ions of the peptide. None of them uti-
lizes the internal fragment ions. Some de novo se-
quencing programs such as PEAKS15 use a scoring
function that takes into account of internal fragment
ions to further re-evaluate the peptide candidates.
However, the de novo sequencing step could not ac-
count for the internal fragment ions since the internal
fragment ions will make de novo sequencing problem
very similar to the two well-known open problems:
the partial digest problem 31 and the problem 12.116
in Ref. 32. Neither of these two open problems has
known polynomial time algorithms.

In this paper, we prove that the de novo se-
quencing with internal fragment ions is in fact NP-
complete. Therefore, future research in utilizing in-
ternal fragment ions should focus on either heuristic
algorithms or exponential time algorithms that run
fast enough for smaller instances. This also justifies
the two-step approach used in PEAKS 15 to utilize
the internal fragment ions. The second contribution
of the paper is to present a new scoring function that
is based on a regression model (RM). The RM-based
scoring method can efficiently exploit the relation-
ship between different fragment ion types. The new
scoring function is used to refine PEAKS’ de novo
sequencing results, and the significant improvement
is achieved.

The remainder of this paper is organized as fol-
lows. Section 2 proves the complexity of the de novo
sequencing with internal fragment ions. Section 3
presents the RM-based scoring method. Section 4
gives the comparison of the new scoring method with

PEAKS and PepNovo.

2. COMPLEXITY OF DE NOVO
SEQUENCING WITH INTERNAL
FRAGMENT IONS

2.1. Notations and preliminaries

There are 20 common amino acid residues, denoted
by 20 different single-letter codes. Normally, a pep-
tide is a string over the alphabet of these 20 letters.
The mass of a residue a is denoted by m(a). For a
string of residues a1a2 . . . an, define m(a1a2 . . . an) =∑n

i=1 m(ai).
In an MS/MS, a peptide is fragmented into dif-

ferent ion types. In low energy collision-induced dis-
sociation (CID), the fragmentation produces mostly
y-ions (the fragment with C-terminus) and b-ions
(the fragment with N-terminus). These are the most
interesting ion types in de novo sequencing algo-
rithms. However, the peptide is frequently frag-
mented more than once. This causes the internal
fragment ions (the fragments without the terminus).
Internal fragment ions are more often observed when
the collision energy is high, such as in the TOF/TOF
mass spectrometers. When the internal fragment ion
contains only one amino acid, it is also called the im-
monium ion. In this paper we only consider the in-
ternal fragment ions with two or more amino acids.
For example, the peptide AGEDK has four b-ions
A, AG, AGE, and AGED; four y-ions K, DK, EDK,
and GEDK; and three internal fragment ions GE,
ED, and GED.

The mass value of each ion is the total mass
value of its residues plus a constant associated with
the ion type. In practice, when the ions retain only
one positive charge, the constants for b, y and in-
ternal ions are 1, 19, and 1, respectively. There-
fore, the b-ions of the peptide a1a2 . . . an have mass
values B = {1 + m(a1a2 . . . ak) | k = 1, . . . , n − 1};
the y-ions of the peptide have mass values Y =
{19 + m(akak+1 . . . an) | k = 2, . . . , n}; and the in-
ternal fragment ions have mass values I = {1 +
m(akak+1 . . . aj) | 1 < k < j < n}.

An MS/MS spectrum provides the signal inten-
sity at every mass value (in fact, mass to charge ra-
tio). This can be used to define a scoring function to
select peptides. First, three functions fy(x), fb(x),

sequence that generates the MS/MS spectrum. The
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and fI(x) are used to define the score of that a y, b,
and internal fragment ion is at mass x, respectively.
Suppose the sets of mass values of the y, b, and in-
ternal fragment ions of a peptide P are Y , B, and I,
respectively. Then the score of the peptide is defined
by:

score(P ) =
∑
x∈Y

fy(x)+
∑

x∈B\Y

fb(x)+
∑

x∈I\(Y ∪B)

fI(x)

The de novo sequencing problem is to compute
the peptide sequence P over an alphabet Σ such that
score(P ) is maximized. Notice that when the mass
values of multiple ions overlap, only the score of one
(the most important one) is counted in the scoring
function.

A simplified version is to let fy(x) = cyf(x),
fb(x) = cbf(x), and fI(x) = cIf(x) for some con-
stants cy, cb, cI and a function f(x). In next section
we will prove that even this simplified version is NP-
complete.

2.2. NP-completeness

The de novo sequencing problem has been exten-
sively studied. Polynomial time algorithms have
been proposed. However, all polynomial time algo-
rithms consider only the ions with either the N or
C-terminus. In another word, fI(x) = 0 for all x.
Some software systems such as PEAKS software use
internal fragment ions to refine the results after the
de novo sequencing algorithm finds a list of candi-
dates. But internal fragment ions are not used in
the de novo sequencing algorithm. An MS/MS spec-
trum usually contains a large number of ions that are
neither y or b ions. A significant portion of these ad-
ditional ions are internal fragments. The use of these
ions will inevitably improve the accuracy. However,
it is unknown whether an efficient algorithm exists
when these ions are taken into account. Our result
in this section answers the question negatively. That
is, the finding of optimal sequence is NP-complete
when the internal fragment ions are counted. Our
result suggests that when internal fragment ions are
counted, most likely no polynomial time algorithm
exists (unless P=NP). And therefore, research efforts
should be put to design either heuristic algorithms

or exponential time algorithms that run fast enough
when the sequence is short.

Theorem 2.1. De novo sequencing is NP-complete
if internal fragment ions are counted.

Proof. Obviously the problem is in NP because
given any peptide sequence, the score can be cal-
culated in polynomial time. In what follows we re-
duce the Max-Cut-3 problem to our problem. A
Max-Cut-3 instance is a graph 〈V,E〉, where V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Each ver-
tex has degree exactly 3. The optimal solution is
two disjoint vertex sets V1 and V2 such that (a)
V1∪V2 = V and (b) the number of edges with the two
adjacent vertices in two different sets is maximized.
It is well known that Max-Cut-3 is NP-hard 33.

Our constructed instance of de novo sequencing
has only five letters in the alphabet Σ. They are G,
E, A, D, and W. The mass values of the five letters are
57, 129, 71, 115, and 186, respectively. a Therefore,
m(G) + m(E) = m(A) + m(D) = m(W).

For each vertex vi, suppose it is adjacent with
three edges ej , ek, and el, we construct the following
string

si = ti WW . . . W︸ ︷︷ ︸
j−1

AD WW . . . W︸ ︷︷ ︸
k−j−1

AD WW . . . W︸ ︷︷ ︸
l−k−1

AD WW . . . W︸ ︷︷ ︸
2m−l

,

where ti can be one of W, GE and EG, all having the
same mass. Let

s0 = W2m+1 = WW . . . W︸ ︷︷ ︸
2m+1

,

and S be the concatenation of the constructed string:
S = s0s1s2 . . . sns0.

The idea of our construction is to define a spec-
trum so that the optimal solution of the de novo
sequencing problem has the form of S. This will be
achieved by carefully design the y and b ion scores
fy(x) = cyf(x) and fb(x) = cbf(x). Then we will
use the internal fragment ion score fI(x) = cIf(x) to
“fine tune” the ti in each si. Depending on whether
ti takes GE or EG, si will produce different internal
fragment ions EW . . . WA or GW . . . WA. For an edge
ek = (vi, vj), if ti and tj are different, then both
of EWk−1A and GWk−1A will contribute to the score.
However, if ti and tj are the same, then only one of

aThese are the nominal mass values of the five real amino acid residues coded with the five letters.
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the two will contribute to the score. Thus, the so-
lution of the de novo sequencing is connected to the
solution of the Max-Cut-3. The detail of the con-
struction follows.

Let Y , Y ′ and Y ′′ be the y-ions of S by setting
all ti to W, GE and EG, respectively. Similarly, let B,
B′ and B′′ be the b-ions of S by setting all ti to W,
GE and EG, respectively. Obviously Y ⊂ Y ′ ∩Y ′′ and
B ⊂ B′ ∩B′′.

Furthermore, let I = {1 + m(EWk−1A), 1 +
m(GWk−1A) | k = 1, . . . ,m}. Clearly, I consists of the
internal fragment ions resulted from the fragments
in ti and one of the three AD in the same si. Each
pair of the internal fragment ions in I corresponds
to an edge ek. Therefore, |I| = 2m. Because of the
existence of s0 at both ends of S. It is easy to ver-
ify the three sets Y , B, and I do not overlap each
other. Let I∗ = {1 + m(aWjb) | a ∈ {E, G, W}, a ∈
{A, D, W}, 0 ≤ j ≤ 2mn + 4m + n}. One can easily
verify that all the the internal fragment ions of S are
in I∗, no matter how individual ti’s take their values.

We assign values of f(x) as follows:

f(x) =


1, x ∈ Y ∪B
1

4m , x ∈ I

0, x ∈ (Y ′ ∪ Y ′′ ∪B′ ∪B′′ ∪ I∗)
\(Y ∪B ∪ I)

−1, otherwise

Let fy(x) = fb(x) = f(x), and fI(x) = 1
nf(x).

Because f(x) = 1 for x ∈ Y ∪B and f(x) = 0 for
x ∈ (Y ′ ∪Y ′′ ∪B′ ∪B′′ ∪ I∗) \ (Y ∪B ∪ I), the y and
b ion scores will enforce the optimal solution to have
the form of S, as proved in the following lemma.

Lemma 2.1. Any optimal solution can be modified
to have the form of S. In addition, ti must be either
GE or EG.

Proof. According to the definition of f(x), all the
y, b and internal ions of the sequences with form S

have scores greater than or equal to 0 in the defini-
tion; and all of the ions in Y ∪B will contribute score
1. Therefore, any sequence with form S will have a
score no less than |Y ∪ B|. Because Y ∩ B = ∅,
|Y ∪B| = |Y |+ |B|.

On the other hand, even if all the positive po-
sitions are matched by y and b ions, the score is no

more than |Y | + |B| + 1
2 because |I| = 2m. Conse-

quently, an optimal solution needs to match all mass
values in Y ∪B using its y and b ions. This ensures
that it has the form of X(2m+1)(n+2), where each seg-
ment X can independently take one of W, EG, GE, AD,
and DA. If this optimal solution does not satisfy the
lemma, then for every segment X that contradicts
the lemma, there are two possible cases.

Case 1. X takes W but S asks for GE or EG as a
ti. In this case, we simply change X from W to either
GE or EG. Because of the definition of f(x), this will
not reduce the score.

Case 2. X is a two letter segment, and is differ-
ent from what S asks for. In this case, one can easily
check that the y-ion caused by the fragmentation of
the two letter segment in X will give a -1 value. This
will make the total score less than |Y |+ |B|. There-
fore, this case does not exist.

Thus, the lemma is proved.

The following lemma concludes our proof of The-
orem 2.1.

Lemma 2.2. The spectrum has an optimal solution
with value 4mn + 8m + 2n + 2 + m+K

4m if and only if
the Max-Cut-3 instance has an optimal solution that
cuts K edges.

Proof. Note that |Y | + |B| = 4mn + 8m + 2n + 2.
That is, any solution that satisfies Lemma 2.1 should
gain score 4mn + 8m + 2n + 2 using the y and b
ions. The m+K

4m portion is determined by the inter-
nal cleavage ions in I.

“⇐” Suppose the optimal cut is V = V1 ∪V2.
For each vi ∈ V1, let ti = GE. For each vi ∈ V2,
let ti = EG. Then S is a solution of the de novo
sequencing problem. All the mass values in Y ∪ B

are matched. For each edge ek, if it is cut, the pair
of mass values 1 + m(EWk−1A) and 1 + m(GWk−1A) in
I are both matched. If ek is not cut, then exactly
one is matched. This gives score m+K

4m from internal
fragment ions.

“⇒” Because of Lemma 2.1, each ti is either
GE or EG. Let V1 consist of all vi such that ti = GE,
and V2 consist of all vi such that ti = EG. We get
a cut for the Max-Cut-3. This way, it is clear that
an edge ek is cut if and only if the pair of mass val-
ues 1 + m(EWk−1A) and 1 + m(GWk−1A) in I are both
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matched. The score m+K
4m contributed by the ions

in I ensures that exactly K pairs are both matched.
That is, exactly K edges are cut.

The proof of Lemma 2.2 finishes the proof of
Theorem 2.1.

3. REGRESSION MODEL BASED
SCORING METHODS FOR DE
NOVO SEQUENCING

3.1. Relationship between fragment ions

When peptides are fragmented by collision-induced
dissociation (CID) in a tandem mass spectrometer,
the resulting fragment ions can be categorized into
three classes. One is the complementary fragment
ions generated from one backbone cleavage, which in-
clude the N-terminal fragments (a, b, and c ions) and
the C-terminal fragments (x, y, and z ions). Another
is the derivatives of fragment ions that include the
neutral loss of water or ammonia, multiple charged
ions, and isotopic ions. The last is internal fragments
and immonium ions generated from double backbone
cleavage. The typical fragment ions in low energy
CID are summarized in Table 1. The notations used
in this paper are also listed in Table 1. Notice that bi

and yi denote the derivative ions from b and y-ions.
This is different from the conventional notation of bi

and yi, which represents the b-ion and y-ion with i

residues, respectively.
The fragment ions observed in an MS/MS spec-

trum have various intensities. Many are low and even
below noise. It is therefore difficult to directly dis-
tinguish the fragment ions with low intensity from
the contaminants and noise. However, the fragment
ions occur correlatively with each other. This re-
lationship between the fragment ions is helpful to
correctly identify the fragment ions. The dependen-
cies and correlations between types of fragment ions
may be categorized into two classes. One is between
the complementary fragments (such as b and y ions).
The other is between fragments and their derivatives
(such as b, b-NH3, and b-H2O, or y, y-NH3, and y-
H2O). The relationship between the fragment ions
can be examined via their statistical distributions.
Table 2 lists the conditional probabilities calculated
by examining the fragment ions in ion trap data sets.

From the statistical results, we can clearly see the de-
pendencies between different types of fragment ions.
For example, b and y ions mostly occur together.
The derivatives of fragment ions strongly depend on
the fragment ions.

3.2. Regression model for scoring function

First, the peak intensities in the mass spectrum are
normalized so that each peak has intensity between
0 and 1. Let p be the r-th highest peak in the spec-
trum, which r is refered to as the ranking of peak
p. Then the normalized intensity of p is defined by
s(r) = (r0 + 1)/(r0 + r). The constant r0 may be
taken in the range [50, 100].

Suppose a peptide P = a1a2 . . . an. Each frag-
mentation between ak and ak+1 is associated to a
number of ions. The N-temrinal ions include the b-
ion a1a2 . . . ak and its derivative ions as in Table 1.
The C-terminal ions include the y-ion ak+1 . . . an

and its derivative ions as in Table 1. We use the
same notation bi and yi to denote both the deriv-
ative ions and the normalized intensity of the ions.
In addition, there are internal fragment ions ai . . . ak

(i = 2, . . . , k−1) and ak+1 . . . aj (j = k+2, . . . , n−1)
associated to the fragmentation. We sort these in-
ternal fragment ions according to their normalized
intensities and denote the normalized intensities as
u1, u2, . . ., from high to low. Thus for each fragmen-
tation k we construct a score function via the follow-
ing quadratic regression model:

f (k) =
∑

i

α1,iy
i +

∑
i

β1,ib
i +

∑
i

γ1,iu
i +∑

i,j

α2,ijy
iyj +

∑
i,j

β2,ijb
ibj +

∑
i,j

γ2,ijy
ibj (1)

where α’s, β’s, and γ’s are the regression coefficients,
which are nonnegative and satisfy the following con-
straint,∑

i

α1,i +
∑

i

β1,i +
∑

i

γ1,i +
∑
i,j

α2,ij

+
∑
i,j

β2,ij +
∑
i,j

γ2,ij = 1 (2)

The last three terms are the quadratic regression
part, which represents the dependencies between dif-
ferent ion types. If necessary, the model also allows
to add the terms of triple regression.
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Table 1. Fragment ions in low energy CID and notations. mc = M − m + 2, where M
is the precursor ion mass.

Fragments with N-terminus Fragments with C-terminus

Fragment type Mass Notation Fragment type Mass Notation

b m b0 or b y mc y0 or y

b2+ (m + 1)/2 b2 y2+ (mc + 1)/2 y2

b3+ (m + 2)/3 b3 y3+ (mc + 2)/3 y3

b-NH3 m − 17 b17 y-NH3 mc − 17 y17

b-H2O m − 18 b18 y-H2O mc − 18 y18

b-2NH3 m − 34 b34 y-2NH3 mc − 34 y34

b-NH3-H2O m − 35 b35 y-NH3-H2O mc − 35 y35

b-2H2O m − 36 b36 y-2H2O mc − 36 y36

a (b-CO) m − 28 b28

Table 2. Statistical probabilities of fragment ions in ion trap data set.

bi : b2 b3 b17 b18 b34 b35 b36 b28

P(bi observed): 0.23 0.10 0.45 0.45 0.23 0.26 0.23 0.34

P(bi observed | b observed): 0.24 0.11 0.58 0.59 0.29 0.33 0.29 0.46

yi : y2 y3 y17 y18 y34 y35 y36

P(yi observed): 0.32 0.12 0.36 0.37 0.22 0.24 0.20
P(yi observed | y observed): 0.32 0.11 0.47 0.48 0.28 0.30 0.25

P(b observed): 0.68
P(b observed | y observed): 0.78

In practice, we do not need to consider all com-
binations of all fragment ions. The regression model
can be simplified according to the statistical char-
acterization. In low energy CID, it is known that
b and y-ions are dominant ion types. Moreover, for
tryptic peptides, y-ions in general have stronger in-
tensities than b-ions, and the derivatives of fragment
ions strongly depend on the fragment ions. Taking
this into account, we simplify the above model as
follows:

f(k) =
∑

i=0,2,3

α1,iy
i +

∑
i=0,2,3

β1,ib
i +

∑
i≤5

γ1,iu
i

+y
∑
i 6=0

α2,iy
i + b

∑
i 6=0

β2,ib
i + y

∑
i 6=0

γ2,ib
i (3)

In this simplified model, the neutral loss of water
or ammonia is not considered in the linear regression
terms, and only the top five internal ions are used for
each fragmentation. We also ignore the relationship
between the derivative ions because their effects are
too week. For clarity, we rewrite the above scoring
model as

f(k) = XT
k · w (4)

where Xk = [yi, bi, ui, yyi, bbi, ybi]T is a column vec-
tor associated to the fragmentation between ak and
ak+1, w = [α1,i, β1,i, γ1,i, α2,i, β2,i, γ2,i]T is a column
vector of the regression coefficients, and the super-

scription T stands for the transpose of a vector. No-
tice that because each i can take several different
values, both Xk and w are 34-dimension vectors.

Let Nk be the number of unobserved b and y
ions associated to the fragmentation k. Nk can be 0,
1, or 2. Introducing a penalty for the unobserved b
and y ions, we further modify the scoring model as

f ′(k) = f(k)− µNk = XT
k · w − µNk (5)

where 0 ≤ µ ≤ 1 is a penalty coefficient. For a pep-
tide P of n amino acids. The score of the spectrum
S matched by the peptide P is calculated by

score(S, P ) =
n−1∑
k=1

f ′(k) =
n−1∑
k=1

XT
k ·w−µ

n−1∑
k=1

Nk (6)

We train the regression coefficients by a linear
programming. Suppose we have K mass spectra as
training dataset. For each spectrum Sk, there are
one positive peptide Pk, and L negative peptides Pkl,
l = 1, . . . , L. The linear programming formulation is
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given as

max
K∑

k=1

ek subject to (7)

score(Sk, Pk)− score(Sk, Pkl) ≥ ek,∑
wi = 1,

0 ≤ wi ≤ 1,

0 ≤ µ ≤ 1,

ek ≤ c

This formulation is very similar to the linear
programming used in Ref. 30. However, Ref. 30
concerned about the “database search” approach of
MS/MS peptide identification, and therefore all the
negative peptides are usually very different from the
positive peptide. We concern about the de novo se-

ten differ from the positive peptide by only a few
amino acids. As a result, the selected ion types and
dependencies in the regression model are very differ-
ent in the two approaches. Furthermore, we use the
normalized intensities which depends on the ranking
of a peak but not the actual signal intensity. This
is a novel approach, which produces better accuracy.
Before this work, we did not know whether a simi-
lar linear programming formulation as in Ref. 30 can
work for improving de novo sequencing results.

The current PEAKS program first computes a
y-ion matching score and a b-ion matching score at
each mass value according to the peaks around it,
and then efficiently computes thousands of amino
acid sequences that maximize the total scores at the
mass values of b-ions and y-ions 15. These candidate
sequences are then re-evaluated by a refined scor-
ing function and the top scoring sequence is output.
Here, we add another step to further use the regres-
sion model based scoring function to re-evaluate the
100 top-scoring sequences computed by PEAKS. We
refer to this modified approach as PEAKS-RM.

4. EXPERIMENTS

In this section, we give experimental results to show
that the regression model based scoring method can
significantly improve the de novo sequencing accu-
racy over two existing high performance de novo pro-
grams: PEAKS and PepNovo.

The performance is measured using the ratio be-
tween the number of correctly predicted amino acids
and the total length of the peptides. The ratio is

of the ratio are considered and defined as follows:

(I)
number of correctly predicted amino acids
number of amino acids in the real peptides

(II)
number of correctly predicted amino acids
number of amino acids in the prediction

An amino acid is correctly predicted if the amino
acid appears at the same mass position of both the
predicted and the real peptides. Given a test data
set, the total length of real peptides is fixed. There-
fore Type I accuracy only depends on the number
of correctly predicted amino acids. However, be-
cause PepNovo only outputs partial sequences for
some peptides, the number of the predicted amino
acids may be significantly less than the total amino
acids in the real peptides. Therefore, Type II ac-
curacy may be very different from Type I accuracy.
We note that software can increase Type II accuracy
by missing the amino acids that do not appear in the
MS/MS spectra, and only outputing the amino acids
that are easy to be determined.

All the data sets used in our experiments are ion
trap MS/MS data. The mass error in the ion trap
data is around 0.5 dalton. Therefore, we do not make
a distinction between the amino acids leucine and
isoleucine (which have identical mass) and between
lysine and glutamine (which have a small difference
of 0.04 dalton in their masses).

Three ion trap datasets are used in the exper-
iment. The training dataset contains 168 positive
MS/MS spectra obtained from the first LC/MS/MS
runs on “mixture A” as described in Ref. 34. The
peptide sequences of these 168 MS/MS were all iden-
tified in Ref. 34. The two datasets used for testing
are denoted by dataset 1 and dataset 2, respectively.
Dataset 1 has 400 spectra provided by the authors of
Ref. 17. 280 of the 400 spectra were used to compare
PepNovo and other software in Ref. 17. Dataset 2 has
144 LCQ spectra. The three datasets were obtained
in different labs with different protein mixtures.

Experimental results are given in Tables 3, 4 and
5. Table 3 shows the results for dataset 1. All the
spectra in this dataset are doubly charged. Table 4

quencing approach, where the negative peptides of-

refered to as the identification accuracy. Two types
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shows the results for dataset 2. This dataset contains
singly, doubly and triply charged spectra. Because
PepNovo’s parameters were only trained for doubly
charged spectra 17, we also list the results for the
doubly charged spectra of dataset 2 in Table 5. By
comparing with PEAKS and PepNovo algorithms, it
is clear that our regression model based scoring func-
tion can significantly improve the de novo sequencing
accuracy.

Table 3. Accuracies of PEAKS-RM, PEAKS, and

PepNovo for dataset 1. (The average length of real pep-
tides is 10.55.)

Algorithm Type I Type II Average length

PEAKS-RM 0.708 0.701 10.66

PEAKS 0.655 0.665 10.38
PepNovo 0.652 0.697 9.87

Table 4. Accuracies of PEAKS-RM, PEAKS, and
PepNovo for dataset 2. (The average length of real pep-

tides is 11.82.)

Algorithm Type I Type II Average length

PEAKS-RM 0.639 0.638 11.83
PEAKS 0.623 0.638 11.54
PepNovo 0.518 0.547 11.19

Table 5. Accuracies of PEAKS-RM, PEAKS, and

PepNovo for only the doubly charged spectra of dataset

2. (The average length of real peptides is 12.085.)

Algorithm Type I Type II Average length

PEAKS-RM 0.666 0.663 12.14
PEAKS 0.655 0.667 11.86
PepNovo 0.567 0.602 11.40

5. CONCLUSION AND
DISCUSSION

This paper first proved that the de novo sequencing
with internal fragment ions is NP-complete. This
explains the reason that all existing polynomial time
de novo sequencing algorithms could not use internal
fragment ions. The paper then studied the statistical
correlations between different ion types in ion trap
MS/MS spectra; and proposed a regression model
based scoring function for de novo sequencing, which
incorporates the correlations between the fragment
ion types. The experimental results showed that the
regression model is a very effective scoring method
in peptide de novo sequencing.

The authors also compared the regression mod-
els with and without internal fragment ions using
our datasets. In the regression model without inter-

using the training data. The results showed that the
inclusion of internal fragment ions improved the ac-
curacy quite a bit in dataset 1 but only very slightly
in datasets 2 and 3. The improvement mostly hap-
pens when there are some y and b ions missing for
one peptide, and the internal fragment ions can then
help to deduce the missing information. The exper-

ation of internal fragment ions will significantly im-
prove the peptide identification accuracy. This is be-
cause (a) the training and testing data were selected
by currently available software that does not utilize
internal fragment ions; (b) as illustrated by the NP-
hardness result, there is no efficient algorithm (un-

nal fragment ions, and the regression model is only
a heuristic method. Consequently, the detailed com-
parison is omitted and the results in Section 3 should
be purely regarded as a regression model instead of
the discussion of internal fragment ions.
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