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Università di Parma

alessandro.dalpalu@unipr.it

J. He, E. Pontelli∗, Y. Lu

Dept. Computer Science

New Mexico State University

{jinghe,epontell,ylu}@cs.nmsu.edu

This paper presents a novel methodology to analyze low resolution (e.g., 6Å to 10Å) protein density map, that can
be obtained through electron cryomicroscopy. At such resolutions, it is often not possible to recognize the backbone
chain of the protein, but it is possible to identify individual structural elements (e.g., α-helices and β-sheets). The
methodology proposed in this paper performs gradients analysis to recognize volumes in the density map and to classify
them. In particular, the focus is on the reliable identification of α-helices. The methodology has been implemented in
a tool, called Helix Tracer, and successfully tested with simulated structures, modeled from the Protein Data Bank at
10Å resolution. The results of the study have been compared with the only other known tool with similar capabilities
(Helixhunter), denoting significant improvements in recognition and precision.

1. INTRODUCTION

3-dimensional (3D) protein structure information is

essential in understanding the mechanisms of biolog-

ical processes. A protein can be thought of as a chain

of beads that adopts a certain conformation in the

3D space (native conformation). The building blocks

of the chain are 20 kinds of amino acids. Knowledge

of 3D structure of proteins is essential in understand-

ing the mechanisms of protein function, and this in-

formation has become more and more important in

rational drug design.

Both experimental techniques and prediction

techniques have been devised to generate 3D pro-

tein structures. The most commonly used experi-

mental techniques for protein structure determina-

tion are X-ray crystallography and Nuclear Magnetic

Resonance (NMR). Both techniques can determine

structures at atomic resolution (usually better than

3Å). In particular, X-ray crystallography has pro-

duced more than 80% of the known protein struc-

tures currently present in the Protein Data Bank

(PDB). Although these two techniques are successful

in targeting soluble proteins, they are seriously lim-

ited for non-soluble proteins, such as membrane bond

proteins and large protein complexes. In particular,

X-ray crystallography is limited to the availability

of suitable crystals of the protein, and large protein

complexes cannot easily produce crystals.

Electron cryomicroscopy is an experimental

technique that has the potential to allow structure

determination for large protein complexes 15, 12, 2.

Using the cutting edge techniques in this field, 3D

structure of large complexes, such as the Herpes

virus, have been successfully generated at 8.5Å res-

olution 15. Although it is not possible to determine

the backbone chain of the protein at the resolution

range of 6Å to 10Å—current methods to solve pro-

tein structure require a density map of much higher

resolution, such as 3Å or 4Å 14, 6—this resolution al-

lows the visualization of various secondary structure

elements, such as α-helices and β-sheets 15.

In this paper, we present a new methodology to

aid in the identification of α-helices in a low reso-

lution density map. The methodology relies on a

novel representation of α-helices, where helices are

modeled as general cylinder-like shapes, defined by

a central axial line (i.e., a spline). The spline is
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a continuous line (possibly not straight), described

by a set of control points. This feature allows the

model to better fit real helices, and thus provides

smaller errors, since helices in nature are often not

straight. The actual identification of the helices

makes use of a new type of analysis of the density

maps, based on the notion of gradient segmenta-

tion. The strength of this segmentation method is its

threshold independence—which allows the segmenta-

tion of volumes present in the density map without

the drawback of using generic thresholds, that can

be inadequate for specific regions of the density map.

The segmentation we propose is general, and can be

potentially used for extraction of other features, e.g.,

β-sheets and coils. The proposed methodology has

been implemented in a software tool, called Helix

Tracer. Preliminary experiments show very promis-

ing results—Helix Tracer is on average capable of

identifying over 75% of the helices, with very low

RMSD errors, and with greater accuracy than re-

lated systems (the Helixhunter system 7).

To the best of our knowledge, only one other ap-

proach has been proposed to identify helices in low

resolution density maps: Helixhunter 7 relies on a

cylindrical representation of helices, where each he-

lix is described as a straight cylinder with a 5Å di-

ameter. Helixhunter identifies helices by searching

cylindrically shaped areas in the density map using

the second moment tensor.

Since α-helices and β-sheets are the major com-

ponents of a structure, the knowledge of this informa-

tion helps in discovering the fold of a protein. More-

over, these secondary structure components help in

producing important geometrical constraints about

the tertiary structure. Such constraints can be

employed to effectively guide a protein prediction

method, significantly improving precision and effi-

ciency of the prediction 4, as well as to reduce the

search space in the context of molecular dynamics

applications. For example, in 4, we present an ef-

fective method, based on constraint satisfaction, to

combine information about α-helices, obtained from

Helix Tracer, with results from helix prediction (ob-

tained from PHD 13), with the aim of determining

the most likely mappings of the α-helices on the pri-

mary sequence.

2. METHOD

The input to our analysis algorithm is a density map,

encoded as a 3-dimensional array. Each element cor-

responds to a cubic volume, called voxel, and each

voxel is associated to the mean electron density of

the protein in that volume. For the sake of sim-

plicity, the density is normalized w.r.t. a maximal

density in the map.

Our analysis method relies on the observation

that, at the resolution range of 6Å–10Å 15, 7, it is

possible to observe that the density distribution of a

helix resembles a cylinder. In particular, the cylin-

drical area presents the local maximum density value

roughly on the central axis of the corresponding α-

helix. The density gradually decreases as the dis-

tance from the central axis increases. However, most

helices have a certain degree of curvature, particu-

larly for long helices, thus making a perfect cylinder

not an accurate template.

2.1. Overall approach

The algorithm for helix extraction is based on pro-

cessing the discrete density map. The outcome of

this analysis is a description of the helices identi-

fied. In various previous proposals, such as in Helix-

hunter 7, each α-helix is described as a cylinder with

a 2.5Å radius. The cylinder is characterized by three

parameters (see Fig. 1 on the left): (a) the start-

ing point, ~s = (sx, sy, sz), located on one extremity

of the central axis of the cylinder, (b) the axis ori-

entation vector ~d = (dx, dy, dz), and (c) the length

of the axis ℓ. Following our concern, that actual he-

lices in nature are not straight but they tend to bend

and curve to a certain degree, we introduce a more

general representation. In this work, we describe the

central axial line of the α-helix in terms of a quadratic

spline 1, while the helix itself is defined as the set

of points whose minimal distance from the spline is

2.5Å. A spline is a continuous curve, controlled by

a finite number of control points. The central axial

spline is generated using a standard spline function,

based on the identified control points ~a1 . . .~an, where

~ai = (aix, aiy, aiz)—see Figure 1 on the right.

The essential idea used in the helix detection

process is to segment the density map into volumes

satisfying certain properties.
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Fig. 1. Helix models

The intuition of the segmentation process is that

each local maximal density voxel can be related to

the presence of a packed set of atoms. This situation

arises when amino acids are arranged into specific

patterns that provide a high local density contribu-

tion. For example, helices are arranged so that the

side chains of amino acids involved show an average

increase of local density w.r.t. normal coil, due to the

helical packing of the backbone. At low resolution,

this is characterized by a clear increase of local den-

sity that reflects the helical three dimensional shape

of the helix. Hence, the problem boils down to rec-

ognize such clusters made of locally higher density.

Every maximal density voxel v is a representa-

tive of a volume that is defined as the set of voxels

that can be reached from v without increasing the

density along the path followed. Each volume is a

maximal set of voxels and it contains, in general,

small parts of individual helices. The key idea is

that this segmentation offers a robust identification

of subsets of helices’ volumes. Thus, the problem

boils down to the one of correctly merging some of

these volumes in order to reconstruct the identified

helices.

The method involves gradient analysis, and it

is substantially different from simple density val-

ues thresholding (as used in previous proposals 7, 8).

The gradient is a vectorial information, expressed in

terms of a 3D direction and intensity. Intuitively,

the gradient shows the direction that points to the

locally maximal increase of density. The gradient

information is computed for each voxel, considering

the density map as the discretization of a continuous

function from R3 to density values. In this perspec-

tive, the gradient corresponds to the first derivative

of such density function. For processing purposes,

the gradient associated to each voxel is approximated

using a discrete and local operator over the original

density map.

Using the gradient direction as a pointer, we can

follow these directions from voxel to voxel, until a

maximal density value voxel is found. The paths

generated touch every voxel, and can be partitioned

according to the ending points reached. Paths that

share the same ending point form a tree structure,

that is associated to the same volume. This process

generates in output the segmentation we require for

helix detection.

The motivation for requiring such segmentation

is that low resolution density maps witness the pres-

ence of a helix as a dense cylinder-like shape, where

the maximal density increases gradually towards its

axis. When close to the axis (e.g., ≤ 5Å), the gra-

dient points towards such axis. This means that the

high density voxels of the trees identified on the gra-

dient paths can be employed to characterize the loca-

tion of the helix axis. Observe that we use gradient

trees to segment volumes—by collecting in a single

volume all the nodes whose gradient paths lead to

the same maximal density voxel. Thus, each of these

volumes will contribute to only a part of a helix, and

further analysis is required to study the properties

of the volumes (and the relationships between their

maximal density voxels) and determine whether dif-

ferent volumes actually belong to the same helix.

The complete process is articulated in the follow-

ing phases, described in the next subsections: (i) gra-

dients calculation, (ii) graph construction and pro-

cessing; (iii) detection of helices.

2.2. Gradients determination

The density map is processed, in order to build the

map of gradients. The gradient is approximated us-

ing Sobel-like convolution masks (3× 3× 3) over the

original density map 5. The gradient is represented

by a vector whose direction and intensity can be cal-

culated using the Sobel-like mask in Figure 2. For

each voxel, a 3D convolution process is performed us-

ing the three masks: each mask is overlapped on the

density map, and the summation of a point-by-point

product is performed in order to collect the intensity

of the gradient component for each dimension. The

91



May 19, 2006 18:32 WSPC/Trim Size: 11in x 8.5in for Proceedings camera

4

addition of the three resulting vectors generates the

gradient associated to the voxel. For example, the

component of the gradient along the X axis can be

calculated by using the three matrices in the first row

in Figure 2.

In Fig. 3(a), we show a slice of a density map;

Fig. 3(b) indicates the corresponding z-projection of

the gradient for each point. Fig. 3(c) is the overlay

of Fig. 3(a) and Fig. 3(b). Observe how the gradient

lines are “pointing” towards the denser regions of the

density map (shown in darker color).

2.3. Construction of the graph

The next step of the algorithm involves the construc-

tion of a graph describing the structure of the density

map. In particular, the directed graph G = (N, E) is

used to summarize the gradient properties, where N

is the set of nodes of the graph and E ⊆ N×N is the

set of edges. Nodes will represent voxels of interest

(as described later) while edges connect voxels that

are “adjacent” in the density map.

Let us consider two voxels V1 = 〈x1, y1, z1〉 and

V2 = 〈x2, y2, z2〉. The voxels are considered to be

neighbors if and only if the following relationship is

satisfied: max{|x1 − x2|, |y1 − y2|, |z1 − z2|} ≤ 1. In

other words, two voxels are neighbors if they differ by

at most by one unit in each coordinate—which leads

to 26 possible neighbors per voxel. In the graph we

propose to construct, edges will be introduced only

if the two nodes involved are neighbors.

The process starts with a coarse thresholding

(cropping) of the density map. The purpose of this

step is to discard grossly irrelevant voxels, to im-

prove efficiency of the successive analysis steps, with-

out incurring in any relevant loss of information. In

particular, we retain only the voxels with a density

value greater than 0.5 (50% of the maximum value

of the map); this choice arises from the practical ob-

servation that the voxels of interest have an average

density larger than 0.65.

After this coarse thresholding, N consists of the

nodes formed by the remaining voxels. For each node

n1, we add a direct edge (n1, n2) that starts from n1

and points to the neighbor n2 ∈ N of n1 (the arrowed

lines in Figure 4) if the following two conditions are

satisfied:

• The directed edge is the best approximation of the

gradient direction (the non-arrowed lines in Figure

4);

• The density at n2 is higher than that at n1.

As last step in the construction, the direction

of each edge in the graph is inverted. The resulting

graph is a directed acyclic graph, and each node has

at most one incoming edge (Figure 4(c)). The graph

is actually a forest of tress, since it is not necessarily

connected. The key property is that every path in

each tree represents a decreasing density sequence of

neighboring voxels.

The trees recognized in this graph construction

provide a segmentation of the density map in dis-

tinct volumes. Each volume contains the voxels that

belong to the same tree. The root of a tree is the

representative of the associated volume, and it is the

voxel with the highest density in the volume—e.g.,

the double-circled node in Figure 4(c).

After the trees have been generated, small and

spatially close trees are merged to simplify the forest

of trees. Note that in this version we did not apply

any image preprocessing, i.e. smoothing and/or fil-

tering. This implies that some noise could be present

and split the gradient segmentation into small vol-

umes. However, due to the low resolution scale (6–

12Å), we can recover this problem my merging man-

ually volumes that are close to each other. This is

important, in order to reduce volumes fragmenta-

tion and to facilitate detection of volume borders.

When the distance between the roots of two trees

are less than 3.0Å, the two trees are merged, because

the typical distance between consecutive amino acids

is 3.8Å. In the cases we select, the roots are close

enough to ensure that the merged volumes describe

two areas that are consecutive according to the di-

rection defined by the backbone. In the future we

plan to introduce a more robust image preprocessing

(e.g. a smoothing phase) to cope with this problem.

The last operation in the graph processing phase

is to mark the border of each volume induced by

the tree. A voxel is on the border if at least one of

its neighbors is not in the same volume. The bor-

der voxels are used later for merging volumes that

are determined to belong to the same helix. Voxels

belonging to a volume border are properly marked

using a flag.
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Fig. 2. Sobel’s Convolution Masks

(a) (b) (c)

Fig. 3. Density map and gradients

(a) (b) (c)

Fig. 4. Obtaining the tree from gradients

2.4. Detection of helices

The final phase in our computation is to define the

location of the α-helices. This phase involves two

steps. The first step is to detect and merge the vol-

umes that belong to the same helix. The second step

is to construct a description of each identified helix,

by defining the location of the control points that

constitute the central axial line.

It has been observed that a helix often contains

one or more neighboring volumes. Therefore, the vol-

umes are analyzed to see if they belong to the same

helix. The border voxels of each volume are scanned

for the satisfaction of two rules. One is to see if

there is a neighboring border voxel that belongs to

a different volume. The other is to see if the border

voxel has high density (greater than a threshold he-

lixTHR). A typical threshold is 85% of the maximum

density value of the map. Volumes that satisfy the
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above two rules are merged to generate the volume of

a helix. Note that this thresholding is applied after

the segmentation phase, and thus is used simply as

a selection tool for the relevant volumes.

The rationale of this process is the following. If

two volumes belong to the same helix, this implies

that the contact points between the two volumes lie

on a plane which is orthogonal to the helix axis.

In practice, due to the discretization of the density

in voxels, the contact surface may not be a regular

plane, and it may contain some irregularities. Nev-

ertheless, this does not constitute a problem. This

follows from the gradients property: each gradient

associated to a voxel that belongs to a helix points

towards the axis of the helix. Therefore, if the con-

tact surface is not orthogonal to the axis, the gra-

dients on the border will point to the volume, and

thus one volume would be a subset of the other. This

also implies that the high density region on the bor-

der between two volumes is very close to the axis of

the α-helix. We have experimentally observed that

only helices show a high density (above the helix-

THR threshold) close to their axis, thus we can safely

merge two volumes that presents this characteristic.

The identification of the control points relies on

the fact that the central axial line of the helix is often

located at the high density voxels of the volume. To

define the search space of the control points, a subset

of the helix volume, called trace volume is generated

using a threshold (helixselectTHR). This threshold,

by default, is set to 2% less than helixTHR. This

choice is suggested by the practical observation that

helixTHR, the threshold used to detect volumes be-

longing to same helix, is too strict when used for the

construction of the axis. Moreover, note that this

thresholding is performed on volumes, which ensures

that we will not encounter cases where the analysis

takes us to volumes that do not belong to the same

helix. This guarantees that separate helices are not

erroneously merged or a helix incorrectly broken in

separate structures.

The central axial line is generated using a greedy

algorithm. The idea is to start from the highest den-

sity voxel close to the barycentre of the trace volume

(in the neighborhood of 3Å). We estimate the initial

search direction by means of a least square fitting of

the trace volume. From the starting voxel, we launch

two searches along the initial search direction, that

returns two half axis: one for each side analyzed.

The traversal moves to a neighbor that contains the

locally highest density available. During this explo-

ration, we move along the axis towards the ends of

the helix, while building a path that contains the

maximal values detected; recall that the density map

for a helix decreases quickly when moving orthogo-

nally away from the axis. The union of the two paths

gives the set of control points associated to the axis.

Finally, the control points are smoothed with a

single pass of Gaussian smoothing (σ = 8), in or-

der to reduce the scattered jumps between neighbors.

The smoothed and real-coordinate points are used as

the actual control points for the second-order spline

that is consequently generated. At the end of the

process, a validation step is launched, in order to

discard the helices that show an extreme and unnat-

ural curvature.

3. EXPERIMENTAL RESULTS

3.1. Helix Tracer results

In order to test Helix Tracer, we generated den-

sity maps for 29 proteins with known structures in

the PDB. The density maps have been generated at

10Å resolution, using the program pdb2mrc from the

EMAN suite 11. The proteins have been randomly

chosen, and they offer a good representation of pro-

teins with varying structural configurations. In par-

ticular, we include representatives from the major

SCOP families 10—α + β (e.g., 1A06), all α (e.g.,

1CC5), α/β (e.g., 1B0M), and proteins with sepa-

rate α and β domains (e.g., 1BVP). For example,

the density map of protein 1BM1, at 10Å resolution,

is shown in Figure 5. The helices identified by He-

lix Tracer are shown as sticks that are overlayed on

the density map and on the backbone of the protein.

Notice that the helices identified are not straight.

All experiments have been conducted using Linux

(2.6.11) workstations (a Pentium 4, 3.1GHz, and a

AMD 64-bit 2.39GHz).

Table 2 reports the number of helices recognized

by Helix Tracer. In particular, Table 2 provides the

following information: the PDB Id of each protein

(ID), the execution time, in seconds, (Time), the

number of helices present in the PDB annotation
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(PDB Helices), the number of helices in the PDB

annotation that are longer than 8.1Åa, the number of

helices recognized by Helix Tracer (Identified), the

number of identified helices that are correct (Cor-

rect), the number of false positives (False), and

the number of helices of adequate length present

in the PDB annotation and missed by Helix Tracer

(Missed). The last two columns report the number

of Cα present in the helices of length greater than

8.1Å in the PDB annotation, and the corresponding

number of Cα correctly identified by Helix Tracer.

Fig. 5. Helices identified for 1BM1 (PDB Id)

A helix is correctly identified by Helix Tracer if

it can be paired with a PDB helix in the protein.

In particular, there should be at least one Cα on

the PDB helix that is within a 4Å distance from the

central axial line of the identified helix. Helix Tracer,

on average, recognizes 80% of the helices longer than

8.1Å. In particular, often the ratio of helices correctly

identified is larger than 88%.

Although the pairing process is simple, the accu-

racy of the identified helices can also be seen from the

number of Cα that are recognized by Helix Tracer.

A Cα is a correctly recognized Cα atom if it can

be projected internally on the helix axis identified.

Cα atoms that cannot be projected on the axis—

i.e., they could be projected on the prolongation of

the axis outside the helix—are not accounted as cor-

rectly identified Cα atoms. Helix Tracer recognized

75% of the total Cα atoms that are on the PDB he-

lices longer than 5 amino acids (shown in Table 2

and in Figure 6 on the left, as comparison). Observe

also that, despite the lack of optimization in the cur-

rent implementation, the execution times are very

reasonable (Table 2, column Time).

When a helix is represented as a straight cylin-

der, it is straightforward to calculate the projection

of a Cα atom on the central helix axis. However,

since we use splines as axis representation (see Fig-

ure 1), a method to project a Cα on the axial spline

needs to be developed. We subdivide the continuous

spline into a set of 40 contiguous segments, a suffi-

cient number to approximate the spline. The lengths

of these segments are not necessarily identical, and

they depend on the spatial distribution of the control

points. We approximate the problem of computing

the projection on a continuous spline with the prob-

lem of finding the smallest projection vector out of

the set of segments.

In order to further evaluate the accuracy, the

RMSD (Root Mean Square Deviation) is calculated

for the correctly identified Cα atoms. The theoreti-

cal distance between a Cα atom and the central axial

line of the helix is 2.5Å. The RMSD we calculated is

the deviation of the distance between the correctly

identified Cα atoms and the central axial line from

2.5Å distance. RMSD values for the selected proteins

are plotted in Figure 6 (on the right).

Table 1. Use of different resolutions

8Å 10Å 12Å

1BVP Correct 100% 89% 78%
Missed 0 1 2

Cα 93% 85% 76%

1Q16 Correct 62% 57% 36%
Missed 20 23 34

Cα 63% 58% 36%

1TCD Correct 92% 76% 68%
Missed 2 6 8

Cα 85% 77% 66%

Finally, let us underline that the quality of the

results is dependent on the resolution of the density

maps employed. We tested the program on the den-

sity maps at 8Å, 10Å, and 12Å resolutions. Table 1

aThis is the minimal length of helices detected by default by both Helix Tracer and Helixhunter.
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shows the percentage of correctly identified helices,

the number of missed helices, and the percentage of

correctly identified Cα. We performed these exper-

iments using the proteins 1BVP, 1Q16, and 1TCD.

As expected, the accuracy of Helix Tracer degrades

as the quality of the density map degrades.

3.2. Comparison with Helixhunter

In this subsection we report the comparison between

Helix Tracer and Helixhunter 7. We employ the re-

lease 1.7 of the Helixhunter software. The compari-

son is performed on the same set of 29 proteins used

in the previous subsection. The density threshold

used in Helixhunter is 0.85, which is the same (helix-

THR) used in Helix Tracer. Although we also tested

different density threshold for Helixhunter, 0.85 ap-

pears to be the threshold that generates best overall

results for these 29 proteins.

The comparison starts with the evaluation of the

following two parameters (for definition, see the pre-

vious subsection):

• RMSD: we compare the RMSD values for those

Cα atoms that have been correctly identified by

both systems;

• Cα: we compare the number of Cα that have been

correctly identified by either system.

These results are depicted in the two diagrams of

Figure 6. Helix Tracer correctly identified 75.0% of

the total Cα atoms on the helices longer than 8.1Å.

Helixhunter identified 58.4% of such Cα atoms. For

the correctly identified Cα atoms, the RMSD from

Helix Tracer is on average 0.086Å lower than that of

Helixhunter. For the protein 1CC5 we reach a peak

of improvement of 64% in Cα recognition. Moreover,

note that the method adopted in Helix Tracer per-

forms always better than Helixhunter in terms of the

number of correctly identified helices and RMSD.

Figure 7 compares the performance of the two

systems in terms of the number of helices that are

longer than 5 amino acids. In particular, the dia-

gram on the left compares the number of correctly

identified helices (relating them to the number of he-

lices in the PDB annotation), while the figure on the

right shows the trend in number of helices present in

the PDB annotation and not recognized by either of

the systems. Once again, we can observe that He-

lix Tracer provides significantly better results (up to

37% more helices correctly identified) and it never

performs worse than Helixhunter.

4. CONCLUSIONS AND FUTURE

WORK

In this paper, we presented a novel methodology

to analyze low resolution density maps (e.g., 6Å to

10Å) of proteins. This is the resolution level that

can be obtained for large protein complexes using

techniques such as electron cryomicroscopy. At this

level of resolution, it is often impossible to recognize

the actual backbone directly from the protein den-

sity map, but the resolution is sufficient to visually

recognize structural features, such as α-helices and

β-sheets.

The methodology proposed in this paper makes

use of gradients information, extracted from the den-

sity map, to perform volumes segmentation and to

guide analysis of volumes towards the identification

of secondary structure components. In this paper,

we focused on the problem of recognizing α-helices.

The resulting technique has been implemented in the

Helix Tracer system, and we performed a test using

29 proteins, with very positive results. In particular,

Helix Tracer provides a more flexible representation

of helices, leading to a more accurate identification.

The outcome of the analysis performed by Helix

Tracer can be applied to aid in the reconstruction of

a tentative atomic model of the entire protein com-

plex. For example, the information about α-helices

can be employed as constraints to guide and/or filter

ab-initio prediction secondary structure, and to aid

in threading the protein sequence in the 3D struc-

ture. In this direction, we have proposed a frame-

work to map the secondary structures identified from

the density map to their locations on the primary

sequence of the protein 4; the framework computes

successful mappings that best satisfy both the con-

straints obtained from the density map and the re-

sults obtained using secondary structure prediction

tools (e.g., PHD). The framework relies on encoding

all the components of the problem as a constraints

satisfaction problem 9 and makes use of Constraint

Logic Programming techniques to solve it.

This gradient-based technique is a general ap-

proach, and can be effectively used to recognize other
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Table 2. Helix Tracer results

ID Execution PDB Helix Tracer Cα Cα

Time(s) Helices Helices≥ 8.1Å Identified Correct False Missed PDB Helix Tracer

1A06 3.5 14 10 10 9 1 1 99 80
1AGW 2.5 8 8 7 7 0 1 98 86
1AXG 3.6 15 10 10 8 2 2 98 61
1B0M 8.9 30 26 33 23 10 3 259 207
1BM1 1.8 7 7 7 7 0 0 161 154
1BRX 1.8 7 7 8 7 1 0 162 156
1BVP 11.7 10 9 10 8 2 1 123 105
1CC5 0.5 4 4 5 4 1 0 41 37
1CI1 5.2 28 25 24 18 6 7 231 172
1DZE 1.9 9 9 8 7 1 2 182 145
1FIY 12.5 40 37 31 28 3 9 572 418
1GIH 2.6 12 11 7 6 1 5 114 76
1JQN 12.3 39 38 35 31 4 7 652 479
1KE8 2.6 13 12 8 8 0 4 121 86
1KGB 1.8 8 8 7 7 0 1 184 168
1M52 11.7 30 20 19 15 4 5 242 183
1NVS 4.9 12 9 10 8 2 1 95 74
1P0C 12.3 34 27 23 17 6 10 240 154
1P14 1.9 14 11 7 7 0 4 122 79
1P8I 1.8 8 7 8 7 1 0 179 166
1Q16 29.0 57 53 37 30 7 23 480 279
1QHD 8.4 14 10 11 8 3 2 122 98
1TCD 5.2 28 25 24 19 5 6 230 177
1TPB 5.0 22 22 17 13 4 9 194 130
2BRD 1.8 7 7 7 7 0 0 169 158

2YPI 5.0 24 24 17 16 1 8 266 158
3PRK 2.0 6 6 11 5 6 1 90 63
7TIM 5.1 24 24 22 18 4 6 216 163
8TIM 5.0 28 22 18 17 1 5 211 150
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Fig. 6. Helix Tracer vs. Helixhunter : # of Amino acids identified and RMSD

secondary structure traits of the protein. Work is

in progress to apply this methodology to identify β-

sheets and coils. Future work will include the devel-

opment of heuristics to further improve the quality

of α-helix identification and to reduce the number

of false positives. This will require a more compre-
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Fig. 7. Correctly identified helices and missed helices

hensive analysis, which will include the recognition

of coils and β-sheets. Finally, work is in progress to

apply the proposed technique to real data obtained

from electron cryomicroscopy.
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In Science, 288:877880, 2000.

98


