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BAYESIAN DATA INTEGRATION: A FUNCTIONAL PERSPECTIVE 
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Accurate prediction of protein function and interactions from diverse genomic data is a key problem in systems biology.  Heterogeneous 

data integration remains a challenge, particularly due to noisy data sources, diversity of coverage, and functional biases.  It is thus 

important to understand the behavior and robustness of data integration methods in the context of various biological functions.  We 

focus on the ability of Bayesian networks to predict functional relationships between proteins under a variety of conditions.  This study 

considers the effect of network structure and compares expert estimated conditional probabilities with those learned using a generative 

method (expectation maximization) and a discriminative method (extended logistic regression).  We consider the contributions of 

individual data sources and interpret these results both globally and in the context of specific biological processes.  We find that it is 

critical to consider variation across biological functions; even when global performance is strong, some categories are consistently 

predicted well, and others are difficult to analyze.  All learned models outperform the equivalent expert estimated models, although this 

effect diminishes as the amount of available data decreases.  These learning techniques are not specific to Bayesian networks, and thus 

our conclusions should generalize to other methods for data integration.  Overall, Bayesian learning provides a consistent benefit in data 

integration, but its performance and the impact of heterogeneous data sources must be interpreted from the perspective of individual 

functional categories. 

                                                           
* Corresponding author. 

1.   INTRODUCTION 

As more sources of high-throughput biological data have 

become available, many efforts have been made to 

automatically integrate heterogeneous data types for the 

prediction of protein function and interactions
1-3

.  

Several of these systems have focused solely on data 

representation and presentation as a means of allowing 

efficient storage, retrieval, and manipulation by domain 

experts
4-6

.  We look instead at the process of fully 

automated prediction of genetic interaction and 

functional linkages, which has to date been addressed by 

four primary methods: decision trees
7, 8

, support vector 

machines
9
, graph-based methods

10-13
, and Bayesian 

networks
14, 15

. 

When applying any of these techniques to the 

problem of data integration, it is important to consider 

the effects of the method's parameters and assumptions 

on the resulting biological predictions.  If two genes are 

predicted to be interacting or functionally related, are 

they necessarily related under all conditions, or do they 

interact only under specific circumstances or within one 

or two narrowly defined processes?  Similarly, given 

some set of heterogeneous experimental data to be 

integrated, they may easily possess significant 

differences in reliability, magnitude, and coverage of 

various biological functions.  Intuitively, one might 

expect correlations in microarray expression values to 

indicate a different, less reliable relationship between 

proteins than direct binding in an immunoprecipitation 

experiment.  These differences could also be more 

pronounced in specific functional categories; for 

example, regulatory mechanisms such as 

phosphorylation signaling pathways will not be visible 

in microarray experiments. 

Thus, it is important to examine the behavior of 

data integration methods from the perspective of diverse 

biological functions.  We focus our analysis on Bayesian 

networks, considering both generative and 

discriminative learning frameworks.  Bayesian networks 

provide an interpretable framework for examining 

machine learning across a variety of biological 

functions, experimental data types, and network 

parameters.  We thus investigate the characteristics of 

Bayesian data integration by breaking performance 

down with respect to specific biological processes 

drawn from the Gene Ontology
16

.  We further 

decompose the network's behavior by examining its 

dependence on each of its heterogeneous data sources, 

and we examine the effect of network structure by 

comparing a multilayer network structure to a single-

layer naive Bayesian classifier.  Finally, both of these 

network structures can be parameterized with expert 

estimates, with probabilities learned generatively 
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through expectation maximization  (EM)
17

, or with a 

discriminative model learned using Extended Logistic 

Regression (ELR)
18

. 

Varying these parameters allows us to evaluate the 

predictive power of expert estimation, generative 

learning, and discriminative learning for each 

configuration of the Bayesian model.  This results in a 

detailed comparison of functional predictions for 

individual ontology terms, network parameters, and data 

sources.  All of these facets of functional prediction are 

nonspecific to Bayesian networks, allowing our 

conclusions to generalize to other heterogeneous data 

integration techniques. 

 

2.   RESULTS 

We evaluated per-function Bayesian network 

performance over four variables: overall network 

structure, experimental data types, conditional 

probability sources (expert estimated, generatively 

learned, or discriminatively learned), and stability of 

learned parameters over varying initial conditions.  The 

system described in Troyanskaya et al
15

 acted as a basis, 

providing a predefined multilevel network structure and 

fixed conditional probabilities estimated by a consensus 

of domain experts.  We integrated a variety of data 

 

 sources heterogeneous both in their experimental origin 

(i.e. physical binding versus pathway membership) and 

in their computational behavior (i.e. discrete versus 

continuous data). 

In all cases, evaluation was performed against a 

gold standard of functional relationships derived from S. 

cerevisiae GO annotations (experiments with the MIPS 

functional hierarchy
19

 generated similar results).  Our 

overall results appear in Figure 1, which shows that both 

generative and discriminative learning improve upon 

expert estimated probabilities (particularly in the full 

network).  However, a global evaluation such as this 

cannot reveal how well each model predicts interactions 

within specific biological processes.  For example, will 

these predictions be helpful to a biologist interested in 

DNA replication, or is the learned performance due to 

improvements in other functional areas? 

To address questions such as this, we examined 

individual areas under receiver operating characteristics 

(ROC) curves (AUCs) for each term in a subset of the 

Gene Ontology (see Methods).  This made it possible to 

monitor performance within individual functional 

categories as network parameters varied.  Figure 2 

displays the results, and it is important to note that 

performance varies far more across functional categories 

than it does across network parameters, learning 

techniques, or data sets.  This means that for any 

aggregate, cross-functional evaluation to remain 

biologically relevant, it is necessary to keep in mind that 

it may represent average behavior based on strong 

performance in only a few functional areas.  For 

example, without functional analysis such as that in 

Figure 2, it would be difficult to determine that even the 

most accurate predictions included in Figure 1 are often 

inapplicable to RNA processing terms (purple cluster, 

Figure 2).  Conversely, we might be more inclined to 

trust predictions for uncharacterized genes paired with 

known genes annotated to metabolic terms (red cluster, 

Figure 2). 

 Interestingly, network structure proved to have  

little effect on learned networks, while it greatly 

impacted the performance of expert estimated 

parameters.  Experiments were performed on two 

network structures, a slight modification of that 

proposed in Troyanskaya et al
15

 and a naive Bayesian 

simplification of this model (Figure 5).  Hidden nodes  
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Fig. 1.  Areas under sensitivity/specificity curves over all data 

for the six primary network configurations: three parameter 

estimation methods (expert estimation in blue, generative EM in 

beige, and discriminative ELR in red) and two network 

structures (naive and full).  Evaluations are over a five-fold cross 

validation.  Both generative and discriminative learning show a 

substantial improvement over expert estimation, particularly in 

the full network. 
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Fig. 2.  A heat map of pairwise functional relationship prediction within individual Gene Ontology processes.  Yellow indicates an AUC 

above random, blue below, and black exactly random (AUC = 0.5).  Each column represents a network configuration (a combination of 

structure, parameter source, and data set presence), and each row represents a biological function.  ELR networks perform similarly to their 

EM counterparts and have been omitted for clarity.  Grey cells indicate network configurations for which fewer than ten gene pairs were 

available for evaluating a functional category.  Marked clusters indicate terms that are consistently poorly predicted (purple), predicted well 

(green), and predicted well only by learned networks (red). 
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provide a way of relating similar data types and taking 

advantage of additional network parameters; a naive 

Bayesian assumption limits both the complexity and the 

representational power of the network
17

.  The learned 

networks gained little from the additional parameters 

available in the full network, and its complexity 

hampered the predictive power of the expert estimated 

parameters (Figure 1). 

Given these network configurations, it is of interest 

to see how much information is being contributed by 

different data sources.  The number of pairs in the data 

sources varied from a few dozen to several million, and 

particularly in light of the potential sensitivity of 

learning algorithms to their training data, it is to be 

hoped that performance would degrade gracefully 

relative to the number of training examples.  Figure 3 

contains performance results for both network structures 

using expert estimated and learned network parameters.  

ELR and EM learning both performed essentially 

equivalently; they were largely unaffected by network 

structure, and their performance dropped off only with 

the removal of the largest or most informative data sets.  

The expert estimated probabilities proved to be much 

less effective when using the full network structure, but 

they were affected only minimally by the removal of 

particular data sets. 

 We next focused specifically on the robustness of 

the network's predictions in the face of variations in 

input data and learning characteristics.  In the case of 

learned networks, the choice of initial probability values 

could conceivably influence the point to which the 

network converged after learning.  To ensure that this 

was not the case, Figure 4A demonstrates the 

performance of the two network structures using 

randomized probability tables as initial parameters.  

Variation is small for both learning methods and 

network structures, justifying our use of expert estimated 

probabilities for initialization. 

Similarly, both learned and expert estimated 

networks could be susceptible to fluctuations in 

individual probability tables or their corresponding  

input data sets.  To investigate this possibility, we 

randomized the conditional probability tables for each 

of four nodes in the full learned network: the root 

"Functional Relationship" node, "Microarray 

Correlation," the hidden "Genetic Association" node, or 

the "Yeast Two-Hybrid" leaf node (see Methods).  This 

resulted in the relative performances seen in Figure 4B.  

Performance degrades gracefully and roughly in 

proportion to the data set effects seen in Figure 3.  

Randomizing the "Functional Relationship" prior will 

not change the relative order of predictions and, as 

expected, leaves the performance-recall curve largely 

unchanged.  Randomization of "Yeast Two-Hybrid" or 

"Microarray Correlation" have roughly the same impact 

as did removing the associated data sets in Figure 3.   
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Fig. 3.  A) A comparison of functional predictions with the naive network structure using EM and expert parameter estimation, removing each 

data set in turn.  Networks with complete input were trained and evaluated using all available data sets; each other network had either one data 

set (cellular component (CC), coimmunoprecipitation (CoIP), transcription factor binding (TF), two-hybrid (TH), or microarrays (MA)) 

removed or all small data sets (biochemical association, dosage lethality, purified complexes, reconstructed complexes, and synthetic rescue) 

removed as a single unit.  All evaluation was performed using only gene pairs with at least two data types available so as two allow evaluation 

with any one data set removed.  AUCs are averages across five-fold cross validation.  B) A comparison (as in part a) using the full network 

structure.  Expert estimated parameters produce markedly worse performance with the full structure relative to the naive structure, and in both 

cases and across all data sets they are less accurate than learned parameters. 
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However, the randomization of the hidden "Genetic 

Association" node had little impact, again indicating the 

minimal benefit of the full network over a naive 

Bayesian structure.  Thus, the network is fairly resistant 

to errors in input data or in the corresponding 

probability tables. 

3.   DISCUSSION 

We investigated the behavior of Bayesian data 

integration while varying a set of parameters relevant to 

both the computational and biological aspects of the 

task.  Using two network structures (naive and full), 

three parameter estimation methods (expert estimation, 

generative EM learning, and discriminative ELR 

learning), and several data sets, we demonstrate that 

learning consistently improves the predictive power of 

the network.  More importantly, decomposing this 

performance into individual functional categories shows 

that the improvement afforded by learning varies by 

function, as does the network's general accuracy. 

3.1.   Per-function behavior 

As mentioned above, it is critical that we consider 

performance results in the context of individual 

biological functions.  While it is unsurprising that 

particular data types would have functional biases, the  

fact that even highly varied and heterogeneous data 

sources provide little predictive power under some 

circumstances is rarely taken into account.  At least two 

conclusions can be drawn from the functional analysis  

in Figure 2.  In many cases, underrepresented functional  

categories are areas in which good high-throughput data  

is certainly available; one might expect, for example, 

that yeast two-hybrid experiments would provide 

information on protein complex assembly
20

.  For 

functional categories such as this, Figure 2 informs us 

that such signals can be rapidly lost in noise from 

experimental conditions where otherwise related genes 

do not function in tandem.  Such categories may be 

better predicted directly by individually trained 

classifiers such as support vector machines.  For other 

functions, though, data may not be available at all; 

autophagy might indicate an area in which further 

laboratory experimentation would substantially improve 

prediction performance. 

There are several of these functional categories for 

which the best performance remains close to random 

given any data or network parameters.  Most of these are 

regulatory functions (regulation of biosynthesis, 

regulation of protein metabolism, regulation of 

transcription, etc.) with several nucleic acid processing 

terms interspersed (RNA splicing, mRNA metabolism, 

DNA packaging, etc.).  These terms have no strong size 

bias, with numbers of annotated genes ranging from tens 

to several hundred.  Aside from issues introduced by 
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Fig. 4.  A) Variation in convergence of network learned from randomly initialized probability tables.  Five randomizations were performed to 

generate the given means and standard deviations; variation is zero for the naive EM network since expectation maximization reduces to 

deterministic maximum likelihood in this case.  Random initialization has little impact on learned network performance.  B) A comparison of 

the full Bayesian network learned using EM to four versions with randomized parameters for the "Functional Relationship", "Microarray 

Correlation", "Genetic Association", and "Yeast Two-Hybrid" nodes.  For each randomized network, one conditional probability table was set 

to random values after learning and before evaluation.  Results using ELR learning are similar (data not shown).  Recall has been scaled to 

emphasize the high precision area of biological interest, and performance is shown using the log-likelihood score LLS=log2(TP·N/FP/P) for P 

total positive pairs, N total negative pairs, and TP and FP the number of true and false positives at a particular sensitivity threshold. 
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data sparsity, it is possible that these larger terms 

represent more tenuous and less easily detectable 

functional relationships and are thus more difficult to 

predict.  This bias may also be due to the sparsity of 

current high-throughput data in certain functional areas; 

for example, post-transcriptional modification cannot be 

directly detected by any of the data sets included in this 

study.  However, even the most unreliably predicted 

functions remain well above random performance, with 

only two terms having AUCs below 0.6 in the naive EM 

network. 

A functional perspective on performance also 

allows us to discover terms that are in some sense easier 

or harder to predict.  For example, Figure 2 contains a 

metabolism cluster (red) that is only predicted well by 

learned networks; expert networks using either structure 

produce near or below random performance.  

Conversely, several groups of functional terms appear to 

be easy to predict or, equivalently, difficult to improve 

upon past a certain baseline.  A cluster of processes 

(green) including transcription from RNA polymerase I, 

translational elongation, rRNA metabolism, and 

cytoplasm organization all fall into this category.  They 

are predicted with reasonable accuracy by every network 

configuration, and learning improves their accuracies 

only minimally.  Gene pairs in these terms tend to be 

supported by multiple data types (many of the most 

confident pairs are supported by microarray correlation, 

coimmunoprecipitation, and/or cellular component) and 

by high microarray correlations.  When sufficient data is 

available, it is unsurprising that results become less 

dependent upon particular integration techniques. 

3.2.   Diverse data sources 

As shown in Figure 3, we found that several factors 

influence the relationship between experimental data 

types and prediction performance.  Most data sets 

(especially small ones containing fewer than 5000 gene 

pairs) have a negligible impact on the learned networks, 

and the performance of the naive expert networks 

remains unchanged even after the removal of some 

larger data sets.  Removing microarrays (by far the 

largest data source) greatly reduces the accuracy of all 

four learned networks and the full expert network, but 

the naive expert network is only minimally affected in 

this case.  This can be interpreted as the full expert 

network "trusting" the relatively noisy microarray data 

too much, while the naive network balances it more 

fairly against other data types; given the large fraction of 

training data microarrays account for in the learned 

networks, it is unsurprising that their performance 

suffers as well. 

We also observed that removing moderately sized 

data sets tends to have an appropriately moderate effect 

on the overall precision and recall, but more varied 

results can be seen in a comparison of functional 

categories (Figure 2).  Losses of coimmunoprecipitation, 

two-hybrid, or synthetic lethality data degrade the naive 

expert network's performance equally over many 

functional categories.  Removing cellular component 

data actually improves both the naive and full expert 

networks, the latter substantially.  This improvement is 

most visible in the group of terms for which learning is 

particularly beneficial (cell division, DNA 

recombination, biopolymer biosynthesis, lipid 

metabolism, and so forth).  An inspection of the learned 

conditional probabilities in any of the network variants 

reveals that a positive cellular component signal 

decreases the posterior probability of functional 

relationship, which is likely indicative of the different 

focuses of the component and process ontologies within 

GO. 

3.3.   Parameter estimation 

In general, using expectation maximization or logistic 

regression to learn conditional probability tables for 

functional prediction has several clear benefits over 

expert estimation.  In terms of overall prediction 

accuracy, both precision and recall are significantly 

enhanced in learned networks, particularly for the full 

network structure.  Predictions are also made much 

more continuously; expert-populated network 

predictions tend to cluster in a few tight groups (data not 

shown).  This effectively limits the usefulness of these 

Bayesian networks as continuous probability estimators 

and restricts them to a few discrete quanta, a problem 

not encountered in learned networks. 

When comparing ELR to EM learning, Figure 3 

indicates that ELR is generally more sensitive to the 

removal of training data than EM.  Particularly in the 

naive case, when expectation maximization reduces to a 

simple maximum likelihood estimate, ELR 

unsurprisingly requires more training data and 

processing power.  The benefits of ELR for our task are 

seen mainly in its increased consistency, especially in 

the high precision/low recall area of biological interest.  
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Figure 4 demonstrates this best, with ELR showing a 

lower standard deviation over random convergences and 

producing slightly better results at low recall.  This 

behavior comes at a cost of interpretability, though, 

since the network parameters learned during ELR are no 

longer directly interpretable as reliabilities of individual 

data sets. 

It is interesting to note that Bayesian data 

integration in general is fairly robust to errors in the 

conditional probability tables.  Neither the suboptimal 

naive expert estimates nor the "worst-case" errors 

introduced by randomizing the tables (Figure 4B) reduce 

performance significantly.  These randomizations in 

particular indicate that performance degrades gracefully; 

in particular, errors in a data set's probability table are 

generally less harmful than complete removal of the data 

set (Figure 3).  As was already indicated by the 

similarity between full and naive network performances, 

modifying hidden nodes has little impact on learned 

prediction accuracy.  However, the full network 

parameters are clearly more difficult for experts to 

estimate, a known property of Bayesian probabilities
17

. 

When examining performance over individual 

functional categories in Figure 1b, the AUCs for almost 

all processes are either improved or left unchanged by 

EM or ELR relative to naive expert probability 

estimates.  In particular, there are specific functional 

categories for which high-throughput data appears to 

perform particularly well.  These include mainly 

metabolism terms (amino acid and derivative, alcohol, 

amine, organic acid, carbohydrate, etc.), many of which 

are related to a general stress response and are thus 

represented well in microarray data.  A number of other 

terms are improved less dramatically, consisting mainly 

of nuclear transport and nucleotide processing 

categories.  From the data set removal results, it appears 

that this is a general improvement not due to a specific 

data type.  The only term significantly damaged by 

expectation maximization is RNA modification, which is 

slightly enriched relative to the prior for related pairs 

with a shared cellular component. 

4.   CONCLUSION 

The process of collecting, analyzing, and integrating 

high-throughput biological data has always required a 

balance between automation and expert knowledge.  

Bayesian learning provides a natural way to incorporate 

prior knowledge in the context of formal probabilistic 

methodology, giving domain experts ample opportunity 

to intervene with, manipulate, and visualize results, 

while leaving the work of relationship discovery up to 

computational methods.  Such tools can take advantage 

of biological accessibility while simultaneously scaling 

up to larger, heterogeneous data sets and providing fine 

grained information regarding individual gene pairs and 

specific functional categories.  This applies not only to 

Bayesian networks, but to any sufficiently sensitive, 

flexible, and accessible machine learning technique. 

Moreover, regardless of the machine learning 

technique being examined, it is necessary to evaluate the 

accuracy of functional predictions in the context of 

individual biological areas.  Overall performance 

improvements may arise from gains in only a few 

functional categories (such as microarray data's strong 

ability to predict ribosomal functions).  If a 

computational method is to be used to steer the direction 

of future laboratory experiments, care must be taken to 

ensure that it performs adequately in the biological areas 

relevant to those experiments.  Similarly, if predictions 

are to be made across the entire genome, it is important 

not to exclude functional terms due to signal loss or lack 

of data. 

In this study, we found that Bayesian learning can 

be a robust method for prediction of functional 

relationships from heterogeneous data, but care must be 

taken in selecting an appropriate training method.  

While expert estimation provided good overall results, 

machine learning was able to improve both precision 

and recall over a wide variety of functional categories, 

particularly those to which high-throughput data tends to 

be sensitive.  Both the generative expectation 

maximization and discriminative ELR methods 

consistently surpassed the expert models' predictions, 

particularly for the full network structure modeling 

hidden relationships between experimental data types.  

As the field expands, it is vital to adapt learning 

methods such as these to new high-throughput data 

sources, and it is equally vital to produce high-

throughput data with sufficient coverage and functional 

diversity to realize the potential of computational 

methods. 

It is clearly necessary to examine performance 

within specific functional categories to reveal many of 

these differences, and such evaluation is an important 

aspect of any functional predictor.  Individual data 

sources come with functional biases, and integrating 
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them without proper care can exacerbate these 

deficiencies; adding more data will almost always 

improve overall genomic performance, but this may 

come at the cost of drowning out specific functional 

categories.  At the most difficult end of the scale, there 

still exist biological areas insufficiently covered by all 

high-throughput data, even in an organism as well-

studied as S. cerevisiae.  It is in areas such as these that 

a carefully managed integration of computational and 

biological knowledge can yield the most substantial 

returns. 

5.   METHODS 

5.1.   Bayesian network algorithms 

Bayesian network inference was performed using the 

Lauritzen algorithm
21

 for inference and expectation 

maximization
17

 or extended logistic regression
18

 for 

parameter learning.  Expectation maximization was, in 

all cases, allowed to converge for five iterations; ELR 

ran for 1000 iterations.  Some additional experiments 

with continuous Bayesian networks were run using the 

junction tree inference algorithm
22

.  Performance was 

found to be generally below that of continuous networks 

(data not shown), which is perhaps unsurprising given 

the unsuitability of the linear Gaussian assumption.  The 

University of Pittsburgh Decision System Laboratory's 

SMILE library and GENIE modeling environment
23

 

were used for manipulation of discrete networks, and the 

Intel PNL library
24

 was used with continuous networks. 

 

5.2.   Bayesian network implementation 

The full and naive network structures are shown in 

Figure 5.  The former was constructed by simplifying 

the Troyanskaya et al
15

 network's complex microarray 

inputs to a single correlation node and removing the 

trivially small "Unlinked Noncomplementation" node.  

Preliminary experiments showed that this made a 

negligible difference in performance relative to the 

original expert network (data not shown).  The latter was 

constructed by removing each hidden node (those 

representing neither inputs to nor outputs from the 

predictor) while maintaining the expert estimated 

conditional probability tables of the remaining nodes. 

 Of the heterogeneous data sources, most represent 

positive binary genetic interactions in which a "true" 

result indicates that two genes interact and a "false" 

result indicates that they do not interact or that no data is 

present.  Biochemical assays, coimmunoprecipitation, 

synthetic and dosage interactions, protein complexes (all 

drawn from the GRID
25

 and BIND
26

 databases), and 

transcription factor modules
27

 all fall into this category, 
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Fig. 5.  A) Full network structure.  Hidden nodes are shown in dark gray, data set nodes in light gray, and the output node in white.  B) Naive 

network structure; shading is as in part A. 
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as the cellular component data (from the Gene 

Ontology).  This allowed each of these data types to be 

presented to the Bayesian network as a single boolean 

variable per gene pair.  Microarray coexpression data 

were collected from a variety of sources
28-38

. 

5.3.   Data preparation 

Each of the data sources was represented as a binary 

input with a true value indicating cooccurrence of a gene 

pair in the data set.  For each data set, missing gene 

pairs were represented by false values.  The microarray 

data described above was preprocessed by concatenating 

the approximately 350 conditions into a single 

expression vector for each gene.  Genes with more than 

70% missing data were removed, after which any 

remaining missing values were imputed using 

KNNImpute
39

 with k=10.  Pairwise relationships were 

calculated by computing the centered Pearson 

correlations for all gene pairs within individual data sets 

and normalizing these to the range [0, 1].  The overall 

correlation was then taken to be the average of these 

values and subsequently quantized into five bins 

representing values less than 0.5, 0.5-0.75, 0.75-0.8, 

0.8-0.9, and greater than 0.9 for input into the Bayesian 

networks. 

 For robustness testing, network terms were chosen 

for randomization in such a way as to cover a variety of 

data set types and sizes.  Randomizing the "Functional 

Relationship" node demonstrates the evaluation's 

dependence only on gene pair rank (and not on exactly 

probability estimation), and "Genetic Association" 

shows the relatively small benefit provided by the full 

network's hidden nodes.  "Microarray Correlation" 

provided a large, continuous data set, and "Two-Hybrid" 

represented one that was smaller and discretized. 

5.4.   Gold standard generation 

Gene Ontology terms representing positive functional 

relationships were selected at a 5% gene count cutoff, 

corresponding to GO biological process terms to which 

at most 321 of the 6438 S. cerevisiae genes were 

annotated
40

.  Any two genes coannotated to such a term 

or its descendants were considered to be functionally 

related.  Similarly, terms to which at least 15% of the 

genome (965 genes) was annotated represented a 

negative threshold; any genes coannotated to such a 

term and not to any more specific term were considered 

to be functionally unrelated.  Gene pairs coannotated to 

intermediate terms were excluded from the gold 

standard and thus from the evaluation.  This process 

resulted in a set of 720458 related gene pairs and 

10566822 unrelated pairs.  A 5% positive and 10% 

negative term cutoff tested with the MIPS hierarchy 

performed similarly (data not shown). 

5.5.   Testing and cross validation 

For all networks, evaluation was performed as an 

average of 5-fold cross validation (approximately  953 

genes per fold).  Additional cross validation was 

performed by varying random seeds as shown in Figure 

4B; each training and evaluation cycle, regardless of 

conditional probability table seeding, utilized five 

different gene sets. 

 Overall LLS/recall curves were generated from 

probabilities drawn from the topmost "Functional 

Relationship" network node after Bayesian inference, 

again averaged over 5-fold cross validation.  To 

calculate per-functional category performance, gene 

pairs were considered relevant to a category if they were 

both annotated to the category (and thus related) or if 

they were unrelated and one gene was annotated to the 

category.  Negative pairs in which neither gene was 

annotated to a functional term below the 5% cutoff were 

evaluated with every functional category.  All AUCs 

were calculated analytically using the Wilcoxon Rank 

Sum formula
41

.  The resulting data were converted into 

heat maps using the TIGR MeV
42

 software. 
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