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Cellular pathways are composed of multiple reactions and interactions mediated by genes. Many of these reactions are common to
multiple pathways, and each reaction might be potentially mediated by multiple genes in the same genome. Existing pathway recon-
struction procedures assign a gene to all pathways in which it might catalyze a reaction, leading to a many-to-many mapping of genes
to pathways. However, it is unlikely that all genes that are capable of mediating a certain reaction are involved in all the pathways that
contain it. Rather, it is more likely that each gene is optimized to function in specific pathway(s). Hence, existing procedures for pathway
construction produce assignments that are ambiguous.Here we present a probabilistic algorithm for the assignment of genes to pathways
that addresses this problem and reduces this ambiguity. Our algorithm uses expression data, database annotations and similarity data to
infer the most likely assignments, and estimate the affinity of each gene with the known cellular pathways. We apply the algorithm to
metabolic pathways in Yeast and compare the results to assignments that were experimentally verified.

1. INTRODUCTION

In the last decade an increasingly large number of
genomes were sequenced and analyzed. The wealth of
experimental data about genes initiated many studies in
search for larger complexes, patterns and regularities. Of
broad interest are studies that attempt to compile the net-
work of cellular pathways in a given genome1–4. Due
to the complexity of these studies, these pathways have
been verified and studied extensively only in a few or-
ganisms, while in others the analysis is mostly compu-
tational. To propagate the experimental knowledge to
other organisms several groups developed procedures that
extrapolate pathways (and mostly metabolic pathways)
based on the known association of genes with reactions
in these pathways. However, many genes have unknown
function and therefore the cellular processes in which
they participate remain largely unknown. On the other
hand, some reactions can be catalyzed by multiple genes
and are associated with multiple pathways. Thus, assign-
ments that rely just on the general functional character-
ization of genes are not refined enough and tend to in-
troduce ambiguity by creating many-to-many mappings
between genes and pathways. This ambiguity character-
izes popular procedures for the assignment of genes to
pathways5, 6.

In a previous work7 we presented a deterministic al-
gorithm for pathway assignment that reduces the ambi-
guity by using expression data, in addition to functional
characterization of genes, and selectively assigning genes
to pathways such that co-expression within pathways is
maximized and conflicts among pathways (due to shared
assignments) are minimized. Furthermore, to comple-
ment the set of known enzymes (which is usually incom-
plete) our algorithm considers other genes in the subject
genome that might possess catalytic capabilities based on
similarity. As our tests showed, our algorithm works well
on a set of test pathways, however, it assigns a single gene
to each reaction. While our results generally support this
assumption, it is not always the case in reality. Differ-
ent genes might participate with different affinities in dif-
ferent pathways. Therefore, a more reasonable approach
would be to assign a probabilistic measure to indicate the
level of association of a given gene with a given pathway.

In this paper we present a variation over a known EM
algorithm that addresses this problem, now assuming that
the same gene can participate in multiple pathways, and
estimates pathway assignment probabilities from expres-
sion data and sequence similarities. Our framework can
be extended to include interaction data and other high-
throughput data sets, each one providing information on
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different aspects of the same cellular process.

2. A PROBABILISTIC FRAMEWORK
FOR ASSIGNING GENES TO
PATHWAYS

In this paper we focus on metabolic pathways. In Ref. 8
a metabolic pathway is defined as “a sequence of consec-
utive enzymatic reactions that brings about the synthe-
sis, breakdown, or transformation of a metabolite from a
key intermediate to some terminal compound.” This def-
inition is used in many studies and by most biochemical
textbooks and underlies literature curated databases such
as MetaCyc9. We adopt this definition in our algorithm.

Our initial assumption is that the expression profiles
of genes assigned to the same pathway tend to be simi-
lar which suggests that each pathway has a characteristic
expression profile. Indeed, a similar assumption was em-
ployed in other studies on pathway reconstruction (see
section 4). Therefore a pathway can be modeled as a
probabilistic source for the expression profiles of the par-
ticipating genes, having as centroid the pathway charac-
teristic profile.

2.1. Preliminaries

In the next sections we use bold characters to represent
sets or vectors and non-bolded characters to represent in-
dividual entities or measurements. The input to our al-
gorithm is a genome G with N genes, enzyme families
F1, F2, ..FM and pathways P1, P2, ..., PK . We adhere to
the set of known pathways as our algorithm is concerned
with pathway assignments rather than pathway discovery
(although this can be easily changed). Each pathway P

contains a set enzymatic reactions. Each reaction is as-
sociated with an enzyme family F whose member genes
can catalyze the reaction. We denote by F(P ) the set of
protein families that are associated with the reactions of
pathway P . We use G(Fj) to represent the set of genes
that can be assigned to enzyme family Fj based on their
database records (or based on their similarity with known
enzymes of family Fj , as described in section 1.2.1 of the
online Supplementary Material). The set of enzymatic
reactions (families) associated with gene i is denoted by
F(i).

Our goal is to predict which genes take part in each

pathway. In other words, our goal is to compute the prob-
ability p(i|Pk) of gene i participating in pathway Pk as
well as the posterior probability p(Pk|i), which we refer
to as the affinity of gene i with pathway Pk.

Computing the probabilities p(i|Pk) and p(Pk|i) is
difficult since they refer to biological entities (genes) that
are not observed directly but only through measurements
(e.g. expression level). Therefore, we assume that each
cellular process (in our case a metabolic pathway) can
be modeled as a statistical sourcea generating measur-
able observations over genes. Each gene i is associated
with a feature vector xi, and the conditional probabil-
ity p(xi|Pk) denotes the probability of the k-th source to
emit xi. We initialize these probabilities based on prior
knowledge of metabolic reactions. We then revisit these
estimates and recompute these probabilities based on ex-
perimental observations until convergence to maximum
likelihood solutions. However, this process is constrained
so as to maintain the prior information.

The observations can be characterized in terms of
different types of data (such as expression profiles, inter-
actions, etc) that reflect different aspects of the pathway.
E.g. xi = {ei, ii, ...} where ei is the expression profile of
gene i, ii is the interaction profile and so on. Assuming
independence between these features we can decompose
p(xi|Pk) = p(ei|Pk)p(ii|Pk) · · · . In this work we use
only expression profiles (that are generated from multi-
ple experiments). I.e. we estimate p(xi|Pk) ∼ p(ei|Pk)

where p(e|Pk) is the probability to observe expression
vector e in pathway Pk. This approximation is based on
the assumption that genes participating in the same bio-
logical process are similarly expressed. Indeed, it pro-
duces good results as we demonstrate later on. However,
the algorithm can be easily generalized to include other
types of data.

2.2. The EM algorithm

Our algorithm is based on the fuzzy EM clustering al-
gorithm that assumes a mixture of Gaussian sources10,
with several modifications that are discussed in the next
section. We model each pathway as a source that gener-
ates expression profiles for the pathway genes such that
p(e|Pk) follows a Gaussian distribution N(µk,Σk) or a
mixture of Gaussian sources (assuming there are several
underlying processes, intermingled together). Each path-

aEach pathway can also be modeled as a mixture of sources, for example, when there are multiple branches.
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way has a prior p(Pk).
We assume that the microarray experiments are in-

dependent of each other such that the expression vec-
tor e is composed of d independentb measurements
{e1, e2, ..., ed}. I.e. p(e|Pk) =

∏d

l=1 p(el|Pk) where
each component is distributed as a one dimensional nor-
mal distribution N(µkl, σkl). Hence the covariance ma-
trix Σk is actually a diagonal matrix, whose non-zero el-
ements are denoted by σk.

We seek the parameters that will maximize the likeli-
hood of the data. We initialize the parameters of the path-
way models µk, σk and p(Pk) based on database annota-
tions and similarity data, as described in section 1.2.1 in
the online Supplementary Material. These parameters as
well as the probabilities p(Pk|ei) are modified iteratively,
using an EM algorithm similar to the one described in
Ref. 10, until convergence. This algorithm converges to
parameters that maximize (locally) the likelihood of the
data p(D/Θ) =

∏N

i=1 p(ei|Θ) =
∏

i

∑

k p(ei|Pk)p(Pk)

where Θ = {(µ1, σ1), (µ2, σ2), ..., (µK , σK)}. For more
details, see section 1 in the online Supplementary Mate-
rial.

2.3. Knowledge-based clustering

Our algorithm is a variation of the EM algorithm de-
scribed above, in several ways. First, our algorithm uti-
lizes any prior information that might help to obtain more
accurate assignments. Instead of random initialization of
µk and σk, we use the prior information that is available
from database annotations and similarity searches, to ini-
tialize the parameters. Second, we employ constrained
clustering so as to minimize the number of pathways that
end up with an incomplete assignment. Third, we re-
place the Euclidean metric with a new metric, the mass-
distance measure, that is more effective for detecting sim-
ilarity between expression profiles. Due to space limita-
tion the details of these three elements are described in
the Supplementary Material, section 1.2.

3. RESULTS

To evaluate the performance of our method we test the
influence of different settings and parameters on pathway

assignments and show that the algorithm produces results
of biological significance. We first provide quantitative
measures of performance by comparing the results we get
to experimentally validated assignments. We then take a
look at particular examples to illustrate the strengths of
our algorithm.

Our model organism is the Yeast genome. Pathways
blueprints are obtained from the MetaCyc database9. We
used a subset of 52 metabolic pathways for which we
could assign Yeast genes to all the reactions in the path-
way. 23 of these were experimentally verified to exist
in Yeast in SGD11. This set of 23 pathways serves as our
test set. To assign genes to pathways we test two different
expression datasets: the Cell Cycle data set of Ref. 12 and
the Rosetta Inpharmatics Yeast compendium data set13.
Genes are mapped to enzymatic reactions using Biozon14

at biozon.org. Proteins that are linked with enzyme
families based on their annotation are referred to as an-
notated enzymes. Proteins assigned to reactions based
on similarity with known enzymes are referred to as pre-
dicted enzymes. For more information on the datasets
used in this study see section 2 of the Supplementary Ma-
terial.

To explore the influence of different options on our
algorithm we ran a total of 12 experiments. We com-
pare performance across different models (the Gaussian
model vs the mass-distance model), different data sets
(Cell-cycle vs. Rosetta) and different subsets of genes
from the Yeast genome as outlined below. We use sev-
eral performance measures as discussed in section 3 of
the Supplementary Material.

Gene sets Using the prior knowledge we can restrict
the set of genes we consider in our algorithm. The most
constrained set of genes is pathway genes (PG) , i.e.
the genes that can be assigned to at least one of the path-
ways based on database annotations and by prediction
PG = ∪k ∪Fj∈F(Pk) G(Fj). The intermediate set of
genes consists of all enzymes (AE) in the genome, anno-
tated or predicted (including enzymes that are not associ-
ated with any of the reactions in the pathways we consid-
ered), PG = ∪M

j=1G(Fj). The third set of genes we con-
sider is the entire genome or all genes (AG), AG = G.

bExpression profiles are typically composed of measurements taken from a set of independent experiments. For example, in time-series datasets the
measurements are collected at different time-points usually spaced at relatively large time intervals during which the cell has undergone significant
changes and the correlation between consecutive time points is relatively weak. Other datasets (e.g. Rosetta) are generated from experiments that are
conducted practically independently under different conditions.
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Table 1. Comparative results for different experimental settings. Results are reported over
the test set of 23 pathways. First column lists the experimental setup. Codes used: Cell Cycle
data (TS), Rosetta (ROS), pathway genes (PG), all enzymes (AE), entire genome (AG), MASS
Distance (MD), Gaussian model (GM), deterministic algorithm (DET). (e.g., “ROS:AE:MD” is the
experiment using Rosetta, clustering only enzymes and using the MASS distance model). In
the second column we show the number of pathways with a verified (EV) assignment in the top
position. The third column shows the number of pathways with violated constraints (number in
parenthesis is over the entire set of 52 pathways used in clustering). The fourth and the fifth
columns show the precision and recall with respect to the verified genes (where genes are as-
signed to a pathway if the posterior probability is greater than a threshold θ = 0.1). In the last 2
columns we show the MAP with respect to the ranking of genes based on their affinity, and with
respect to the ranking of all possible deterministic assignments based on their score (see section
3 of the Supplementary Material for details). The last line in the table represents the results of a
model that gives a random ordering of the genes and assignments; this is equivalent to a regular
pathway reconstruction algorithm.

Experiment # of pathways # of pathways precision recall MAP MAP
with verified with violated (genes) (genes) genes assignments

top assignment constraints
TS:AG:MD 12 12(29) 0.72 0.60 0.86 0.7
TS:AE:MD 10 12(28) 0.80 0.65 0.83 0.62
TS:PG:MD 8 11(24) 0.79 0.69 0.81 0.62
TS:PG:GM 9 9(22) 0.80 0.69 0.85 0.61
TS:AG:GM 9 12(27) 0.84 0.71 0.87 0.6
TS:AE:GM 6 11(27) 0.79 0.63 0.84 0.52
TS:PG:DET 10 N/A N/A N/A N/A 0.68

ROS:PG:MD 14 10(24) 0.85 0.72 0.94 0.84
ROS:PG:GM 14 11(22) 0.83 0.71 0.94 0.82
ROS:AE:MD 13 10(24) 0.85 0.69 0.94 0.78
ROS:AG:MD 13 10(26) 0.84 0.69 0.93 0.77
ROS:AE:GM 12 12(25) 0.74 0.63 0.91 0.77
ROS:AG:GM 10 11(25) 0.80 0.56 0.9 0.66
ROS:PG:DET 11 N/A N/A N/A N/A 0.75

random model 5.4 N/A N/A N/A 0.74 0.45

3.1. Summary of results

Our method is conceived as an extension of the current
pathway reconstruction methods like Pathway Tools15.
These methods do not attempt to assign genes to path-
ways selectively and hence cannot be compared to ours.
Therefore we need some other baseline to compare our
results to. We consider the random model that generates
random permutations over the set of all possible assign-
ments (this setting is similar to that of KEGG or Pathway
Tools, where there is no ranking over assignments and
all assignments are equally probable). For each pathway
we generate 100k random permutations and compute the
average MAP over the results (see section 3 in the Sup-
plementary Material for details). We also compare the
results with those of the deterministic algorithm c of our
previous work7.

As Table 1 shows, our algorithm is able to improve

significantly over the random model under all settings,
and it also improves over the deterministic algorithm.
Clearly, our model exploits the information in the expres-
sion data to rank the genes effectively. When comparing
the different settings our general conclusions are:

• Clearly the choice of the expression data set is
important. The performance of our algorithm on
the Rosetta set is significantly and consistently
better than on the Cell Cycle data.

• There are no significant differences between
the different model variations within each ex-
pression dataset, but there are some noticeable
trends. The mass distance model has a slight
advantage compared to the Gaussian model, all
other being equal. The good performance even
with the Euclidean metric reflects the strong cor-
relation between pathways and expression pat-

cTo compare the results, we ran the deterministic algorithm of Ref. 7 but skipped the last step that attempts to minimize shared assignments by looking
at near-optimal assignments, since it explicitly drives the assignments towards solutions that assign a single gene to each reaction.
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terns.
• Interestingly, the performance does not decline

significantly when we use a larger set of genes.
This confirms that pathways tend to have unique
characteristic expression profiles

• Most of the pathways have zero or one violated
constraints (see section 1.2.2 of the Supplemen-
tary Material) in all settings. However, there are
a few pathways in which consistently most of
the reactions are not satisfied (such as arginine
biosynthesis, cysteine biosynthesis II, arginine
degradation I and trehalose biosynthesis III). To
some extent, this reflects the capacity (or lack
thereof) of our model to cover certain pathways.
However, this can also suggest that these path-
ways might not exist in Yeast or they might exist
but in a different configuration than the pathway
blueprint. This conclusion is also reinforced by
the fact that the average number of violated con-
straints does not seem to depend on the expres-
sion dataset.

The number of related genes (genes that have sig-
nificant affinity with a pathway although they were not
initially assigned to it) loosely correlates with the num-
ber of reactions in the pathway as well as with the num-

ber of genes initially assigned to the pathway (data not
shown). Finally, most pathways tend to have similar per-
formance across all experiments within a data set. This
explains the small difference in performance between ex-
periments within the datasets. The difference between the
two datasets is caused by a few pathways for which the
Rosetta data set is more informative.

3.2. Example - Homoserine
methionine biosynthesis

In this section we present an individual case which illus-
trates our method. Due to the page limit we focus only on
one example. Two additional examples are given in the
Supplementary Material (section 4). The examples are
discussed in the context of the ROS:AE:MD experiment.
This setting is one of the best ones according to our per-
formance measures and is chosen because the clustering
is done with all enzymes, revealing interesting dependen-
cies between pathways.

Methionine is bio-synthesized in this pathway from
homoserine. It is part of the superpathway Threonine and
methionine biosynthesis that consists of three pathways:
homoserine biosynthesis, homoserine methionine biosyn-
thesis and threonine biosynthesis from homoserine as is
depicted in Figure 1a. Though related, these pathways

Fig. 1. The relation between homoserine biosynthesis, homoserine methionine biosynthesis and threonine biosynthesis from
homoserine. (a). Homoserine is synthesized from aspartate in the first pathway and methionine and threonine are synthesized in
the second and third pathway respectively, starting both from homoserine, therefore the super-pathway forks at homoserine. (b). The
characteristic profiles of the three pathways. Homoserine biosynthesis and threonine biosynthesis from homoserine are correlated while
homoserine methionine biosynthesis is just loosely correlated.
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have different characteristic expression profiles for most
of the experiments. However they seem to be similar in
certain experiments (Figure 1b), which suggests that they
share regulation mechanisms.

This pathway has three reactions: 2.3.1.31, 4.2.99.-
and 2.1.1.14. We have excluded reaction 4.2.99.- from
the pathway model because it has an incomplete EC num-
berd. There are seven genes that can be initially assigned
to this pathway based on database annotations and func-
tion prediction (by similarity). However, only three are
experimentally verified assignments: MET2, MET6 and
MET17. These are also the only genes whose affinity

with the pathway (posterior probability) at the end of the
run is significant (1 in this case) as is shown in Table 2.
Our algorithm assigns these genes such that each reac-
tion is associated with exactly one gene. The other four
unverified genes have insignificant affinity to the path-
way, and no other genes are associated with the path-
way. Note that all the unverified genes as well as MET17
have similar functional assignments initially (to 6 differ-
ent reactions), only with different evalues. However, only
MET17 makes it to final round and is assigned to the
pathway by our algorithm. Furthermore, our algorithm
consistently recovers the experimentally verified genes.

Table 2. The probabilistic assignment of the Homoserine methionine biosynthesis pathway. The table lists
all the genes that are potentially assigned to this pathway. The double line separates the genes that were assigned
to this pathway from the ones that were rejected. In the first column we show the name of the gene or the systematic
name. Second column shows the Biozon ID14. Third column shows the affinity to the pathway (p(Pk|xi)). The
forth column shows the EC family membership (number in parenthesis is the weight which reflects the confidence in
this assignment). If the EC number is in bold the gene was annotated in the database as capable of catalyzing this
reaction otherwise it was predicted. In the last column we list the MetaCyc ID of alternate pathways to which this
gene was also assigned (number in parenthesis is the affinity to that pathway).

Gene Name Biozon ID Verification Pathway EC Numbers Alternative
affinity pathway affinity

MET2 004860000048 verified 1.00 2.3.1.31 (1.00)
MET6 007670000142 verified 1.00 2.1.1.14 (1.00)
MET17 004440000819 verified 1.00 4.2.99.- (1.00)

4.2.99.10 (1.00)
4.2.99.8 (0.99)
4.2.99.9 (0.45)
2.3.1.31 (0.59)
4.4.1.1 (0.37)
4.4.1.8 (0.38)

YHR112C 003780000158 unverified 0.00 2.3.1.31 (0.09) GLYOXYLATE-BYPASS (0.99)
4.2.99.10 (0.15)
4.2.99.8 (0.09)
4.2.99.9 (0.31)
4.4.1.1 (0.24)
4.4.1.8 (0.26)

Cys3 003940001012 unverified 0.00 4.4.1.1 (1.00) HOMOCYSDEGR-PWY (0.50)
4.2.99.10 (0.37) PWY-801 (0.50)
4.2.99.8 (0.24)
4.2.99.9 (0.68)
2.3.1.31 (0.26)
4.4.1.8 (0.57)

Str3 004650000171 unverified 0.00 4.4.1.8 (1.00) HOMOCYSDEGR-PWY (0.50)
4.2.99.10 (0.22) PWY-801 (0.50)
4.2.99.8 (0.15)
4.2.99.9 (0.45)
4.4.1.1 (0.39)
2.3.1.31 (0.15)

YFR055W 003400000153 unverified N/A (no profile) 4.4.1.8 (1.00) N/A (no profile)
4.2.99.10 (0.18)
4.2.99.8 (0.11)
4.2.99.9 (0.34)
4.4.1.1 (0.28)

dRecently, this reaction was revised and assigned a new number 2.5.1.49.
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Fig. 2. Homoserine methionine biosynthesis, the pathway diagram. The diagram was obtained from the MetaCyc database17 and
augmented with genes that are experimentally verified to participate in the pathway and their expression profiles. We notice a strong
correlation between the genes catalyzing last two reactions while the first gene is less correlated. (Profiles shown are for the Cell Cycle
dataset).

over all experiments involving Rosetta, and most of the
time-series experiments.

4. RELATED STUDIES

Metabolic pathway reconstruction has been an impor-
tant direction in experimental research for many decades.
This research focused on some well studied organisms
like E. coli and S. cerevisiae. The knowledge thus
obtained was collected in databases like EMP/MPW18,
MetaCyc17 and KEGG19.

Unfortunately, the experimental reconstruction of
metabolic pathways is a long and costly process and the
obtained information is restricted to the studied organ-
ism. The breakthroughs in DNA sequencing and thus
the large number of sequenced and annotated organ-
isms led to the development of procedures for extend-
ing metabolic knowledge from the organisms in which
it was experimentally studied to newly sequenced organ-
isms. Methods like Pathologic5, PUMA220, SEED21

and KEGG6 use sets of blueprints of experimentally
elucidated metabolic pathways, and match the reactions
in these blueprints with genes in the target organism
based on their functional annotations. Sometimes not

all enzyme functions needed to complete the pathway
can be found in the original annotation. To cope with
this situation, tools for predicting the missing enzymatic
activity22–26 were added to complement the original an-
notation.

The analysis of the dynamic aspects of cellular pro-
cesses, including metabolic pathways, was made possi-
ble by the increasing availability of high-throughput data,
like expression data, interaction data and subcellular lo-
cation of proteins. Clustering is one of the favorite meth-
ods for the analysis of expression data, because genes that
are similarly expressed might participate in the same cel-
lular process. Consequently a number of clustering meth-
ods were applied to expression data starting with the sem-
inal work in Ref. 27 (see Ref. 28 and Ref. 29 for discus-
sion of these methods).

Expression data is used in metabolic pathway anal-
ysis by a large number of studies. A large class of these
studies extract active pathways by scoring them based on
the expression of the assigned genes30–34. Clustering of
expression data is also used in metabolic pathway anal-
ysis. These methods try to elucidate the function of un-
characterized genes by mapping pathways to the clusters
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to which these genes belong35, 36.
The integration of metabolic information and expres-

sion data is further used to extract active pathways and
processes in several ways. Expression data and metabolic
network topology are combined in Ref. 37 to define a
metric that is used for extracting clusters of genes corre-
sponding to active pathways. Similarly, active pathways
and their pattern of activity are extracted38 using a gen-
eralized form of canonical correlation analysis between
kernels defined based on expression data and on the path-
way graph. To predict operons this approach is extended
in39 by integrating also the position of the genes on the
DNA.

A first step in the metabolic network reconstruction
is the inference of the more general cellular network.
Several unsupervised prediction methods used models
like Bayesian networks40 and boolean networks41 for
cellular network inference from expression data. A super-
vised method for cellular network inference is described
in Ref. 42. The method is based on canonical correlation
between a kernel function integrating expression data, in-
teraction data, phylogenetic profiles and subcellular loca-
tion and a second kernel function defined based on the
experimentally validated cellular network of yeast. This
work is extended in Ref. 43 by forcing chemical com-
patibility constraints for edges in the predicted cellular
network.

Related to our study are also the the studies on reg-
ulatory modules. Regulatory modules44 are sets of genes
whose expression is controlled by the same group of con-
trol genes (regulation program). Genes in a module are
assumed to have a common function. It is also com-
monly assumed that enzymes in the same pathway are co-
regulated, thus there is an overlap between a pathway and
a regulatory module. This holds for some of the known
metabolic pathways, however it is not always the case and
relationships between pathways and modules can be one
of several types as presented in Figure 3:

(1) one to one – a pathway overlaps with a regulatory
module, i.e. the genes participating in the pathway
are co-regulated (see Figure 3a). (e.g. Homoserine
methionine biosynthesis).

(2) many to one (module sharing) – a module is shared
by several pathways, i.e. the genes participating in
several pathways are co-regulated (see Figure 3b).
(e.g. valine biosynthesis and isoleucine biosynthe-

sis).
(3) one to many – a pathway overlaps several mod-

ules, i.e. not all the genes participating in a pathway
are co-regulated but they can be grouped in few co-
regulated groups (see Figure 3c).

(4) mixed – a pathway overlaps several modules and
share some of them with other pathways (see Fig-
ure 3d). (e.g. folic acid biosynthesis).

M1

P1

(a)

M1

P2P1

(b)

M2M1

P1

(c)

P1 P2

M2M1

(d)

Fig. 3. Relationships between pathways and modules. a.
One to one: the pathway P1 overlaps module M1. b. Many to
one (module sharing): The pathways P1 and P2 share the mod-
ule M1. c. One to many: The pathway P1 overlaps both mod-
ules M1 and M2. d. Mixed: The pathways P1 and P2 share the
module M2 while P1 overlaps with module M2 as well.

Regulatory modules are explored in depth in Ref. 45,
where several probabilistic models and inference algo-
rithms are presented. For information on other related
studies and extended discussion see the appendix in
Ref. 7.

It is important to emphasize that these methods and
others described in this section are technically different
from our approach and most of them are targeted towards
pathway analysis. Our current work focuses on a prob-
abilistic framework for metabolic pathway assignment
which enables us to address problems like ambiguous as-
signments, protein complexes and missing enzymes in
the same context. In addition to expression data and
metabolic knowledge, our framework can be extended to
use other types of high throughput data.
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5. DISCUSSION

In this paper we present an algorithm for probabilistic as-
signment of genes to pathways. Given a genome, our al-
gorithm uses pathway blueprints (from MetaCyc or other
sources), database annotations and similarity data (from
Biozon) and genome-wide mRNA expression data to de-
termine the characteristic expression profiles of pathways
and assess the affinity of each gene with each pathway.

We test and demonstrate the power of our method
on the Yeast genome. Although it is difficult to evaluate
our algorithm, since the amount of experimentally val-
idated data is limited, our results so far are significant
and very encouraging and for most pathways the top as-
signment is also an experimentally verified one. The al-
gorithm can also predict complexes and accommodates
multifunctional enzymes.

While in this work we refer to a pathway as a well de-
fined entity, in reality this is not the case and cellular pro-
cesses are tightly related. Moreover, since cellular pro-
cesses form a complex and highly connected network it
is difficult to delineate the boundaries of individual path-
ways and the same process might be defined differently
by different groups (see Ref. 7). This further motivates a
probabilistic approach that assigns each gene with a cer-
tain probability to each pathway. And although we ad-
here to pathway diagrams that were determined in the lit-
erature, our procedures can be modified to redefine path-
way boundaries so as to correlate better with regulatory
modules (see section 4). Furthermore, our method can
be easily applied to fill pathway holes in pathways with
uncharacterized or unassigned reactions (as discussed in
section 3 of the Supplementary Material).

It should be noted that while all pathways included in
our analysis can be associated with Yeast genes based on
annotation and functional prediction, some of the path-
ways might not exist in Yeast after all. An example of
such a pathway is cysteine biosynthesis II which exists in
mammals but not in Yeast. In Yeast, cysteine is obtained
from homoserine and reactions making up this pathway
overlap reactions in two other pathways (therefore in our
analysis, all the reactions in this pathway have violated
constraints). In this view, our method can also help to val-
idate whether certain pathways exist in a given genome.

As our examples demonstrate, clustering alone can-
not solve the pathway reconstruction problem and it is
necessary to add additional constraints and prior knowl-
edge to generate effective pathway models. This empha-

sizes the fundamental difference between our work and
studies that are based on clustering of expression pro-
files. Furthermore, our results also indicate that even
with these constraints and prior knowledge, expression
data alone cannot discover all pathways and therefore ad-
ditional datasets such as interaction data and subcellular
location data are necessary to improve the models and we
intend to integrate such datasets in future versions of our
algorithm.

Besides the aforementioned extensions, there are
other improvements and future directions that we would
like to pursue. For example, we would like to improve
function prediction. Currently, this is done based on
database annotations or based on sequence similarity.
However, the later is problematic and often genes are
assigned based on similarity to multiple enzymatic reac-
tions. To address this problem we intend to develop bet-
ter methods to characterize enzymatic domains, using a
methodology similar to the one we introduced in Ref. 46
and Ref. 24.

Finally, our algorithm can be applied to other
genomes given a compatible expression dataset, and us-
ing a similar analysis to the one reported here we have
started mapping pathways in the human genome.

6. SUPPLEMENTARY MATERIAL

A detailed description of our algorithm, the evaluation
methodology and additional examples are available in the
online supplementary material at biozon.org/ftp/
data/papers/pathway-assignment-em/.
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