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In most real-life gene expression data sets, there are often multiple sample classes with ordinals, which are categorized
into the normal or diseased type. The traditional feature or attribute selection methods consider multiple classes
equally without paying attention to the up/down regulation across the normal and diseased types of classes, while
the specific gene selection methods particularly consider the differential expressions across the normal and diseased,
but ignore the existence of multiple classes. In this paper, for improving the biomarker discovery, we propose to
make the best use of these two aspects: the differential expressions (that can be viewed as the domain knowledge of

we simultaneously take into account these two aspects by employing the 1-rank generalized matrix approximations
(GMA). Our results show that the consideration of both aspects can not only improve the accuracy of classifying the
samples, but also provide a visualization method to effectively analyze the gene expression data on both genes and
samples. Based on the GMA mechanism, we further propose an algorithm for obtaining the compact biomarker by
reducing the redundancy.

1. INTRODUCTION

With the rapid advances of microarray technolo-

gies, massive amounts of gene expression data are

generated in experiments. Analysis of these high-

throughput data poses both opportunities and chal-

lenges to the biologists, statisticians, and computer

scientists. One of the most important features in mi-

croarray data is the very high dimensionality with a

small number of samples. There are over thousands

of genes and at most several hundreds of samples in

the data set. Such characteristic, which has never

existed in any other type of data, has made the tra-

ditional data mining and analysis methods not ef-

fective, and therefore attracted the focus of recent

research. Among these methods, a crucial approach

is to select a small portion of informative genes for

further analysis, such as disease classification and the

discovery of structure of the genetic network 18. Due

to the drastic size difference of genes and samples,

the step of gene selection is also the need of solving

the well-known problem “curse of dimensionality” in

statistics, data mining and machine learning 5.

However, quite different from the traditional fea-

ture selection in other data sets such as text 22,

the final goal of gene selection is to discover the

“biomarker”, a minimal subset of genes that not only

are differentially expressed across different sample

classes, but also contains most relevant genes with-

out redundancy. These two characteristics distin-

guish the task of discovering “biomarker” from the

common feature selection tasks.

Recent gene selection methods fall into two cat-

egories: filter methods and wrapper methods 18. The

wrapper methods 3 are closely “embedded” in the

classifier and thus are often time-consuming. On the

other hand, the filter methods analyze the data by

investigating their domain-specific targets: (1) differ-

ential expression across classes and (2) redundancies

induced by the relevant genes. They are indepen-

dent of the sample classification and are efficient in

analyzing the functions of genes. Therefore, they at-

tracted more focus of the studies in recent years.

The basic goals of these filter methods are to

obtain a subset of genes with maximum relevance

and minimum redundancy 9, 23, 4. Most existing fil-

ter methods follow the methodologies of statistics 9

and information theory 4, 23, 18 to rank the genes

and reduce the redundancy, such as t-like-statistics,

mutual information or information gain based meth-

ods. These methods are computationally efficient.

However, they select the biomarker by only consid-

ering the binary class labels, e.g., healthy/diseased,

∗Corresponding author.

gene expression data) and the multiple classes (that can be viewed as a kind of data set characteristic). Therefore,
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while the sample classes in the observed experiments

are often ordinal with the gradually changing ten-

dency 3. For example, in the Lupus experiment (see

Subsection 5.2), four classes of persons are consid-

ered. They are normal ones, relatives of patient, pa-

tients who show the early symptoms, and patients

whose symptoms are complete. Also some gene ex-

pression experiments a consider classes of samples

that are the composite of normal and disease in-

gredients with different scale, e.g., 1:4 or 3:4. In

these gene expression data, although there are two

types of classes, i.e., positive and negative, the la-

bels of multiple classes show the ordinal scales ac-

cording to the degree of their membership to the

positive or negative type, e.g., ‘normal’, ‘low-grade’

tumor, ‘intermediate-grade’ tumor and ‘high-grade’

tumor 16. However, when dealing with the data sets

with such multiple classes and two types, most ex-

isting filtering methods e.g., information gain and

t-statistics, combine all classes in positive type into

a positive class and similarly combine all classes in

negative type into a negative class, and then do the

filtering process on the two combined classes. Such

analysis may ignore the characteristics of the expres-

sion data within each single class, and therefore may

lose the accuracy of discovering the biomarker with

maximal relevance and minimal redundancy. On the

other hand, most general feature selection methods,

e.g., ReliefF 10, consider the multiple classes, but ig-

nore the special characteristic of gene selection, up

and down regulations. Therefore, they are not spe-

cific to the task of gene selection as well. There have

been few works in the wrapper methods on inves-

tigating the biomarker on these data sets, such as

Gaussian process model based method 3. However,

it is a wrapper method by using the leave-one-out

error and forward selection and therefore is not effi-

cient. Moreover, the original and intuitive objective

of biomarker discovery is that the user can visually

select the differentially expressed genes without re-

dundancy. According to this objective, however, it is

like a black-box screening the user out of the analysis

process.

Therefore, in this paper, we propose a class of

1-rank Generalized Matrix Approximation (GMA) b

filter method to simultaneously rank the genes and

samples to identify the biomarker in the data sets

with multiple classes. The GMA simultaneously

takes into account the global between-class data dis-

tribution (differentially expression) and local within-

class data distribution (collection of low or high

values). As pointed out by Achlioptas and McSh-

erry 1, through the low-rank matrix approximation,

the particular trends or the meaningful dimensions

of the high-dimensional data implicate that the over-

all structure inherent can be easily discovered. This

is the second “blessing of dimensionality” stated by

Donoho 5. Latent semantic indexing 14 to under-

stand text data, the success of HITS 11 and PageR-

ank 13 algorithms to understand the huge WWW

graph adjacency matrix, and recent greedy matrix

approximation for machine learning 17 reveal this

implication. Among these techniques, 1-rank ma-

trix approximation is essential for analyzing the high-

dimensional data 12, 11, 13. One of the efficient tech-

niques for getting the 1-rank matrix is to employ the

discrete dynamical system to quickly converge to the

local optima, which has been widely used and stud-

ied 12, 20, 7, 11.

We followed the framework of the resonance

model introduced in our previous work of visually

analyzing the high-dimensional data 12. We general-

ized it as a novel discrete dynamical system, which is

particularly designed for approximating the gene ex-

pression matrix with the multiple classes, i.e., GMA-1.

In nature, it is a reinforcement mechanism simulat-

ing the resonance phenomenon. Due to the quick

convergence and efficient matrix-vector multiplica-

tions, GMA-1 is quite efficient. As a filter method,

GMA-1 provides the simultaneous ranking of genes

and samples c. By rearranging the gene expres-

sion matrix with GMA-1 rankings, we can visually ob-

serve the overall distribution (see Fig.4) of the values,

where top genes are differentially expressed across

aIn MAQC project, the description of the data sets are available at http://www.fda.gov/nctr/science/

centers/toxicoinformatics/maqc.
bThe 1-rank matrix is a matrix whose rank is 1. It is formally expressed as a multiplication xyT of two vectors x and y. Therefore,

a particular overall structure of the matrix can be approximated and observed by the tendency of xyT . The GMA follows the

framework of the traditional 1-rank matrix approximation in linear algebra and generalizes it by partitioning the matrix.
cThe samples are ranked within each class.
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classes and top samples are important to the class.

Therefore, GMA-1 can satisfy the biomarker discov-

ery. Moreover, the sorted matrix according to the

ranking of both genes and samples can be visually

shown to the user for further analysis. Furthermore,

if the user needs to refine the biomarker for obtain-

ing the compact biomarker, GMA-2 can be employed

to remove redundant genes. We followed the idea

of Jaeger et al. 9 by using the representative of the

dense cluster in the gene correlation matrix of the

biomarker to reduce the redundancy. As observed

and proved in GMA-2, it is able to find clusters with

fixed density. Different from a general clustering al-

gorithm used by Jaeger, GMA-2 is particularly cus-

tomized for finding clusters with the fixed density.

Therefore, CBioMarker combining GMA-1 and GMA-2

yields higher accuracy.

2. BASIC RESONANCE MODEL FOR

APPROXIMATING MATRIX

In this section, we firstly introduce the resonance

model for the purpose of revealing the terrain of the

high-dimensional data set. Then the underlying ra-

tionale of the resonance model, i.e., the 1-rank ma-

trix approximation, is explained by two theorems.

Through the expatiation of the basic mechanism for

approximating the matrix in this section, a general-

ized matrix approximation for the task of biomarker

discovery shall be introduced in the next section.

2.1. Process of Resonance Model

This resonance model has been introduced in 12

for visually analyzing the high-dimensional data set.

The target is to rearrange the matrix for collecting

the large values to the left-top corner of the sorted

matrix (called “mountain”), while leaving the small

values to the right-bottom corner (called “plains”).

In this way, the data terrain (showing where the

“mountains” and “plains” are) can be used to visu-

ally analyze the high-dimensional data sets. Fig.1(a)

and (b) clearly indicates how this process can be

used to visually analyze the matrix through the com-

parison before and after the rearranging process. In

a real-world example, from a yeast gene correlation

data 19 in Fig.1(c), we multiplied the ranking value

vectors of rows and columns, we can get Fig.1(d).

This phenomenon implies that, the resonance model

indirectly does the work of the 1-rank matrix ap-

proximation by using the matrix in Fig.1(d) to ap-

proximate the real matrix in Fig.1(c). Through this

matrix approximation process, the underlying domi-

nant terrain and structure is revealed.

In nature, the resonance model is an iterative

reinforcement learning process of the matrix. It

simulates the resonance phenomenon by introduc-

ing a forcing object õ, such that when an appropri-

ate response function r is applied, õ will resonate

to elicit those objects {oi, . . . } ⊂ O, whose “nat-

ural frequency” is similar to õ. This “natural fre-

quency” represents the makeup of both õ and the

objects {oi, . . . } who resonated with õ when r was

applied. Through the iterative reinforcement pro-

cess, the “frequency” of the forcing object õ and the

ranking values of the objects oi ∈ O are updated and

converged until õ is similar to those objects with the

largest ranking values. In this way, the “frequency”

vector õ of õ and the ranking value vector r of the ob-

ject set can approximate the matrix W by the matrix

rõT , denoted as rõT
≈ W .

In the context of the weighted bipartite graph

G = (O,F , E,W ) and W = (wij)|O|×|F|
d where O

and F are two subsets of vertices, the static ‘natu-

ral frequency’ of oi ∈ O is oi = (wi1, wi2, . . . , wi|F|).

Likewise, the dynamic ‘frequency’ of the forcing ob-

ject õ is defined as õ = (w̃1, w̃2, . . . , ˜w|F|). The com-

ponents of the graph G are clearly shown in Fig.2(a).

Simply put, if two objects of the same ‘natu-

ral frequency’ resonate, they should have a similar

terrain. The evaluation of resonance strength be-

tween objects oi and oj is given by the response

function r(oi,oj) : R
n × R

n → R. We defined

this function abstractly to support different measures

of resonance strength. For example, one existing

measure to compare two terrains is the well-known

rearrangement inequality theorem, where I(x,y) =
∑n

i=1 xiyi is maximized when the two positive se-

quences x = (x1, . . . , xn) and y = (y1, . . . , yn) are or-

dIn the gene expression data, to make sure W is a non-negative matrix, we scale the values of W to the range of [0, 1] by
wij−min

max−min
,

where min and max can be the minimum and maximum of each rows or of the whole matrix. In the rest of the paper, W is
supposed to be a matrix whose range is in [0, 1] if we do not mention.
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(a) 3D matrix before sorting (b) 3D matrix after sorting (c) symmetric matrix S (d) approximation matrix r∗õ∗T of S

Fig. 1. Matrix approximation by the basic linear resonance model (r=c=I): (a) and (b), a small example matrix with 4 rows

and 5 columns to illustrate how the terrain, i.e., “mountains” and “plains” help analyzing the data in both rows and columns;

(c) and (d) symmetric matrix sorted by r∗ and õ∗.

dered in the same way (i.e., x1 > x2 > · · · > xn and

y1 > y2 > · · · > yn) and is minimized when they are

ordered in the opposite way (i.e., x1 > x2 > · · · > xn

and y1 6 y2 6 · · · 6 yn).

Notice if two vectors maximizing I(x,y) are put

together to form M = [x;y] (in MATLAB format),

we obtain the terrain with the “mountain” in the

left side and the “plain” in the right side. For exam-

ple, the response function I is a suitable candidate

to characterize the similarity of terrains of two ob-

jects. Likewise, E(x,y) = exp(
∑n

i=1 xiyi) is also an

effective response function with the function of mag-

nifying the roles of “mountains”.

To find the ‘mountains’ and ‘plains’, the forcing

object õ evaluates the resonance strength of every

objects oi against itself to locate a ‘best fit’ based on

the contour of its terrain. By running this iteratively,

those objects that resonated with õ are discovered

and placed together to form the ‘mountains’ within

the 2-dimensional matrix W . In the same fashion,

the ‘plains’ are discovered by combining those ob-

jects that resonated weakly with õ. This iterative

learning process between õ and G is outlined below.

Initialization Set up õ with a uniform distribu-

tion: õ = (1, 1, . . . , 1); normalize it as õ =

norm(õ)e; then let k = 0; and record this as

õ(0) = õ.

Apply Response Function For each object oi ∈

O, compute the resonance strength r(õ,oi);

store the results in a vector r =
(
r(õ,o1), r(õ,o2), . . . , r(õ,o|O|)

)
; and then

normalize it, i.e., r = norm(r).

Adjust Forcing Object Using r from the previous

step, adjust the terrain of õ for all oi ∈ O.

To do this, we define the adjustment func-

tion c(r, fj) : R
|O| × R

|O| → R, where the

weights of the j-th frequency is given in fj =

(w1j , w2j , . . . , w|O|j). For each frequency fj ,

w̃j = c(r, fj) integrates the weights from fj
into õ by evaluating the resonance strength

recorded in r. Again, c is abstract, and

can be materialized using the inner product

c(r, fj) = r • fj =
∑

i wij · r(õ,oi). Finally,

we compute õ = norm(õ) and record it as

õ(k+1) = õ.

Test Convergence Compare õ(k+1) against õ(k).

If the result converges, go to the next step;

else apply r on O again (i.e., forcing reso-

nance), and then adjust õ.

Matrix Rearrangement Sort the objects oi ∈ O

by the coordinates of r in descending order;

and sort the frequencies fi ∈ F by the coor-

dinates of õ in descending order.

For clearly stating the whole process above, we

further express it in the following formulas,

r(k+1) = norm
(
r(W õ(k))

)
(1)

õ(k+1) = norm
(
c(WT r(k+1))

)
(2)

To illustrate how the matrix is sorted, let’s take

a look at a real-life example from a yeast gene expres-

sion data 19. The symmetric gene correlation matrix

is computed by Pearson correlation measure. After

the resonance model, we obtained the converged r∗

enorm(x) = x/‖x‖2, where ‖x‖2 = (
∑n

i=1 x2
i )1/2 is 2-norm of vector x = (x1, . . . , xn).
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(a) basic resonance model (b) GMA-1: extended resonance model 1 (c) GMA-2: extended resonance model 2

Fig. 2. The resonance models of approximating the matrix for different purposes: (a) collecting the high values into the left-top

corner; (b) simultaneously collecting high/low values into the left-top corners of k classes or submatrices W−

i or W+
i ; (c) collecting

the extremely high similarity/correlation values into the left-top corner to form a dense cluster.

and õ∗ with the decreasing order, and also sorted

oi ∈ O and fj ∈ F accordingly. Certainly, the rows

and columns of the matrix S are also rearranged

with the same orders of oi and fj . The sorted S in

this example is shown in Fig.1(c). We also draw its

corresponding 1-rank approximation matrix r∗õ∗T in

Fig.1(d). This example in Fig.1(c) and (d) illustrates

two observations: (1) the function of the resonance

model is to collect the large values in the left-top

corner of the rearranged matrix and leave the small

values to the right-bottom corner; (2) the underlying

rationale is to employ the 1-rank matrix r∗õ∗T to ap-

proximate S. Actually, it is essential that the value

distribution of r∗õ∗T determines how the values of

the sorted S are distributed.

3. TWO GENERALIZED MATRIX

APPROXIMATIONS BY

EXTENDING RESONANCE MODEL

FOR GENE SELECTION

In this section, we extend and generalize the basic

mechanism of the resonance model in Section 2 for

the purpose of the gene selection in two aspects. The

first is to rank genes and samples for selecting those

differentially expressed genes G={g1, . . . , gk}. The

second is to discover those very dense clusters in the

correlation matrix computed from G, and remove the

redundant genes in G by only selecting one or two

representative genes from each dense cluster. In the

two steps, we particularly designed two extended res-

onance models. From the perspective of the matrix

computation, they are two generalized matrix ap-

proximation methods based on the basic resonance

model.

3.1. GMA-1 for Ranking Differentially

Expressed Genes

Consider the general case of the gene expression data,

suppose the data set consists of m genes and n sam-

ples with k classes, whose number of samples are

n1, . . . , nk respectively and n1 + . . . + nk=n. With-

out losing the generality, we suppose the first k−

classes are negative, the following k+ classes are pos-

itive, and k− + k+ = k. Therefore, a general gene-

sample matrix Wm×n = [ W−
i

︸︷︷︸

16i6k
−

, W+
i

︸︷︷︸

16i6k+

] is shown

with submatrix blocks in Fig.3(a). Because the tar-

get of analyzing differentially expressed genes is to

find up-regulated or down-regulated genes between

negative and positive sample classes, the basic reso-

nance model should be changed, from collecting high

values to the left-top corner of W ′, to:

(1) A series of low values collections in each W−
i into

the left-top corner, and simultaneously a series

of high values collections in each W+
i into the

left-top corner.

(2) Controlling the differences of left-top corners be-

tween the negative classes W−
i and W+

i .

An example figure of such matrix approximation

is illustrated in Fig.4. Therefore, to meet these two

goals, we extended the basic resonance model, called

GMA-1, according to this task as follows.

(1) Transformation of W : before doing the GMA-1,

we need to transform the original gene-sample

matrix W to W ′. The structure of W is made of
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−
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]

(a) original matrix W = [ W−

i
︸︷︷︸

16i6k
−

, W+
i

︸︷︷︸

16i6k+

] (b) transformed matrix W ′ = [ W ′−

i
︸ ︷︷ ︸

16i6k
−

, W ′+
i

︸ ︷︷ ︸

16i6k+

]

Fig. 3. Transformation of the matrix W : the transformed matrix W ′ has the same structure of submatrix blocks as shown
in (a), but with different submatrix W ′−

i and W ′+
i as listed in (b).

the submatrix blocks W−
i and W+

i of negative

classes and positive classes as shown in Fig.3(a).

In the case of finding up-regulated and differ-

entially expressed genes, since we need to collect

the low values of W−
i into the left-top corner, we

need to reverse the values of W−
i so that low val-

ues become high and vice versa. In other words,

we do the transformation by W ′−
i = 1 − W−

i .

In this way, the result of collecting high values

of W ′−
i and W ′+

i into their own left-top corners

naturally lead to the result of collecting the low

values of W−
i into the left-top corners and the

high values of W+
i into the left-top corners. This

is an essential step to meet the first goal afore-

mentioned. We can also use other reverse func-

tions in stead of the simple 1 − x function used

in Fig.3(b). Similarly, we can transform W by

W ′+
i = 1 − W+

i in the case of finding down-

regulated and differentially expressed genes.

(2) The k partitions of the forcing object õ: an im-

plicit requirement in the first goal is that the rel-

ative order of each class (submatrix W ′−
i or W ′+

i )

should be kept the same after doing GMA-1 and

sorting W ′. For example, after running our al-

gorithm, it is required that all columns of the

submatrix W ′−
2 must appear after all columns

of W ′−
1 , although we can change the order of

columns or samples within W ′−
1 or W ′−

2 . To

satisfy this requirement, we partition the orig-

inal forcing object’s frequency vector õ into k

parts corresponding to k classes or submatrices.

Specifically, õ = (õ1; . . . ; õk) f , where each õi

corresponds to a sample class. In the process

of GMA-1, we separately normalize each õi and

then sum their resonance strength vectors to-

gether with the factor α to control the differenti-

ation between the negative and positive classes.

(3) The factor α for controlling the differentiation

between the negative and positive classes: the

frequency vector of õ is divided into k = k− +

k+ parts, each of which is normalized indepen-

dently. Therefore, we can control the differenti-

ation between the negative and positive classes,

by magnifying the resonance strengths r+
i =

norm(W ′+
i õi) of k+ positive classes, or minify-

ing the frequency subvectors r−i = norm(W ′−
i õi)

of k− negative classes. In formal,

r = norm

(
r−1 + . . . + r−k

−

︸ ︷︷ ︸

k
−

negative classes

+ αr+
1 + . . . + αr+

k+
︸ ︷︷ ︸

k+ positive classes

)

(3)

where α > 1 and α as a scaling factor is multi-

plied with the normalized positive classes’ reso-

nance strength vectors. With the increasing of

α, the proportions of positive classes in the res-

onance strength vector r will increase and thus

result in the increasingly large differences in the

top-left corners between positive and negative

classes. In this way, the user can tune α to get

a suitable differential contrast of two types of

classes.

fThe concatenation of k = k− + k+ vectors is expressed in MATLAB format.
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To summarize the above changes of the reso-

nance model, we draw the architecture of the GMA-1

in Fig.2(b) and express its process in the following

formulas:

r
−(k+1)
i =norm

(
W ′−

i õ
−(k)
i

)
, i = 1, . . . , k−

r
+(k+1)
i =norm

(
W ′+

i õ
+(k)
i

)
, i = 1, . . . , k+

r(k+1) =norm
( ∑k−

i=1 r
−(k+1)
i + α

∑k+

i=1 r
+(k+1)
i

)

õ
−(k+1)
i =norm

(
(W ′−

i )T r(k+1)
)
, i = 1, . . . , k−

õ
+(k+1)
i =norm

(
(W ′+

i )T r(k+1)
)
, i = 1, . . . , k+

(4)

Algorithm 3.1 (GMA-1): Biomarker Discovery.

Input: (1) Wm×n, expression matrix from m genes set
G and n samples set S;

(2) (n1, . . . , nk)T , sizes of the k sample classes
with the submatrix structure as in Fig.3(a).

(3) (k−, k+)T , numbers of negative and positive

classes.
(4) regulation option, down or up;
(5) α, differentiation factor.

Output: (1) (g1, . . . , gm), ranking sequence of m genes;
(2) (s1, . . . , sn), ranking sequence of n samples.

1: preprocess W so that the values of W in [0,1] as following

the steps in Subsection 2.1.
2: transform W to W ′ according to formulas in Fig. 3(b)

with the knowledge of the matrix structure given by

(n1, . . . , nk)T , and (k−, k+)T and regulation option.
3: iteratively run equations in Eqn.(4) to obtain the con-

verged r∗ and õ∗

i (i=1, 2, . . . , k).

4: sort r∗ in decreasing order to get the ranking gene
sequence (g1, . . . , gm), and sort each of õ∗

1, . . . , õ∗

k in

decreasing order to get the sorted sample sequence
{comment: Because the positions of all sample classes in
W ′ keep not changing as shown in Fig.3(a), each sorting

of õ∗

i can only change the order of samples within the i-th

sample class W ′

i .}.

where ri, r
+
i , r−i ∈ R

m×1 and õ−
i ∈ R

n
−

i
×1, õ+

i ∈

R
n

+

i
×1. Comparing Eqn.(1) and (2) with Eqn.(4),

besides using the linear functions r = c = I, we

partitioned the matrix W ′ to k submatrix blocks

and divided the frequency vector õ into k subvec-

tors. Therefore, two equations in the basic reso-

nance model are expanded to the (2k + 1) equations

in GMA-1. We also formally summarize it as Al-

gorithm 3.1 GMA-1 for the biomarker discovery. A

real-life example of the overall process in Algorithm

GMA-1 is visually shown in Fig.4.

In practice, GMA-1 can quickly converge. Consid-

ering that GMA-1 is a generalized resonance model by

partitioning the matrix into k submatrices, its com-

putational complexity is the same as the resonance

model on the whole matrix, i.e., O(mn).

3.2. GMA-2 for Reducing Redundancy

by Finding Dense Clusters

It has been recognized that the top-ranked genes may

not be the minimum subset of genes for biomarker

and classification 9, 4, 23, because there are corre-

lations among the top-ranked genes, which induces

the problem of reducing “redundancy” from the top-

ranked gene subsets. One of the effective strategies

is to take into account the gene-to-gene correlation

and remove redundant genes through pairwise corre-

lation analysis among genes 9, 4, 21. In this section,

we proposed to use the GMA-2, an special instance

of the basic resonance model to reduce the redun-

dancy of the top-ranked genes selected by GMA-

1. The GMA-2 is a clustering method to find the

high-density clusters. Then we can simply select

one or more representative genes from each cluster

and therefore reduce the redundancy. The underly-

ing rationale is “members of a very homogeneous and

dense cluster are highly correlated and with more re-

dundancy; while a heterogeneous and loose cluster

means bigger variety in genes”. Although similar

work has been done by Jaeger et al. 9, the authors

used the fuzzy clustering algorithm which is not a

suitable algorithm to control the density of the clus-

ters. Comparing with the fuzzy clustering algorithm,

the GMA-2 can not only find clusters with different

densities, but also provide the membership degree for

a cluster for each gene.

Given a pairwise correlation or similarity matrix

of a set of genes g, the GMA-2 outputs the largest

cluster with the fixed density. To find more clusters

with the fixed density, the GMA-2 can be iteratively

run on the remaining matrix by removing rows and

columns of the genes in clusters already found. Un-

like the GMA-1 which is a generalization of the ba-

sic resonance model, the GMA-2 is actually a special

instance of the basic resonance model. Observing

Fig.1(c) and (d), the linear basic resonance model is

gIn our context, this set of genes are the top-ranked m′ genes selected by the GMA-1.
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able to collect the high values of a symmetric ma-

trix to the left-top corner of the sorted matrix. This

means that it can approximate a high-density cluster.

Therefore, we customized the basic resonance model

to find the dense cluster by setting the response and

adjustment functions to be I or E. When r = c = I,

we called this linear resonance model as RML; and

when r = c = E, this non-linear resonance model

is called RME. The overall architecture of RML and

RME is illustrated in Fig.2(c). With these settings

and S = ST , two equations in the basic resonance

model (i.e., Eqn.(1) and (2)) can be combined to-

gether by removing õ, and therefore RML and RME

can be represented by Eqn.(5) and Eqn.(6) respec-

tively as follows,

r(k+1) = norm
(
Sr(k)

)
(5)

r(k+1) = norm
(
E(Sr(k))

)
(6)

A theoretical analysis is given in the following to

show how RML works.

Given a nonnegative gene correlation matrix S =

(sij)n×n ∈ R
n×n, a nonnegative membership vector

x = (x1, . . . , xn)T ∈ {0, 1}n×1 is supposed to indi-

cate the membership degree of each gene belonging

to the dense and largest cluster, when the values of

x are 0 or 1, D(x) in Eqn.(7) means the density of a

cluster formed by those genes whose corresponding

xi is 1.

D(x) =

n∑

i=1

n∑

j=1

sijxixj = xT Sx (7)

However, there are extensive studies on the prob-

lem of finding the densest subgraph h which is known

as the NP-hard problem 6. A typical strategy in ap-

proximation algorithms is to relax the integer con-

straints (i.e., x take the binary values 0 or 1) in x to

the continuous real numbers, e.g., x ∈ [0, 1]n×1 and

normalize it as ||x||2 =
√∑n

i=1 x2
i = 1. In this way,

the membership degree x changes from the binary

number to the continuous number. According to the

matrix computation theory 8, we have the following

theorem,

Theorem 3.1 (Rayleigh-Ritz). Let S ∈ R
n×n be

a real symmetric matrix and λmax(S) be the largest

eigenvalue of S, then we have,

λmax(S) = max
x∈Rn

xT Sx

||x||2
= max

||x||2=1
xT Sx (8)

and the eigenvector x∗ corresponding to λmax(S) is

the solution on which the maximum is attained.

Theorem 3.1 indicates that the first eigenvector

x∗ of S is the solution of D(x) and therefore reveals

a dense cluster. According to the linear algebra, the

iterative running of Eqn.(5) in RML will lead to the

convergence of r to the first eigenvector of S, i.e.,

r∗ = x∗. Therefore, the RML can reveal the dense

cluster. In practice, we found that the non-linear

resonance model RME works better than the linear

RML by using the exponential function to magnify

the roles of high values in the dense cluster. Hence,

based on RME, the GMA-2 is formally stated in Al-

gorithm 3.2,

Algorithm 3.2 (GMA-2): Find a δ-Dense Cluster

Input: (1) Sn×n, a non-negative gene correlation matrix

from a set of n genes G;
(2) δ, a fixed density threshold.

Output: G′ = {g1, . . . , gk} ∈ G, a sequence of k genes
which forms a dense cluster.

1: run RME on S to get the converged r∗.

2: sort r∗ in decreasing order and get the sequence of genes
(g1, . . . , gn) according to this order. Then set the subset
G2 = {g1, g2} and k = 2.

3: while D(S(Gk)) 6 δ do

4: k = k + 1.

5: set Gk = {g1, . . . , gk} as the top k genes.
6: end while

7: if there is no k satisfying D(S(Gk)) 6 δ then

8: return ∅.
9: end if

10: return Gk−1.

4. ALGORITHM FOR COMPACT

BIOMARKER DISCOVERY

In some cases, the user is more interested in the

biomarker with the minimal genes that can classify

the samples. Therefore, in this section, we discover

the compact biomarker by combining GMA-1 and

GMA-2. We outlined it in Algorithm 4.1, CBioMarker.

hConsidering a nonnegative symmetric matrix is the adjacency matrix of an undirected weighted graph, a dense cluster becomes

the dense subgraph in this graph. Therefore, these two problems are equivalent.
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Similar to that of the basic resonance model, the

computational complexity of GMA-2 is O(n2). There-

fore, the computational complexity of CBioMarker is

at most O(mn+hm′2) if considering the size of S in

each iteration is always m′ (but in fact, S′ is always

smaller than that of the previous iteration after re-

moving the gene dense cluster already found.), where

h is the iteration number in Algorithm CBioMarker

depending on the number of dense clusters found in

S′. Therefore, Algorithm 4.1 CBioMarker is efficient

as well. Our empirical result on the large Leukemia

data set with the size 12582×72 in subsection 5.1

shows that it took about 3 seconds in MATLAB en-

vironment and Pentium IV PC with 512MB RAM.

Algorithm 4.1 (CBioMarker): Outline of Compact

Biomarker Discovery with GMA-1 and GMA-2

Input: (1) Wm×n, a gene expression matrix from a set
of m genes G;

(2) (n1, . . . , nk)T , sizes of the k sample classes
with the submatrix structure as shown in

Fig.3(a).
(3) (k−, k+)T , numbers of negative and positive

classes.

(4) δ, a fixed density threshold of the cluster.
Output: G′ = {g1, . . . , gq} ∈ G, a subset of q genes which

forms a biomarker.

1: run GMA-1 on W ′ to get the gene ranking sequence
(g1, . . . , gm).

2: select the first m′ genes from the ranking gene sequence
(g1, . . . , gm) and compute its correlation matrix S.

3: set G′ = {} and S′ = S.
4: repeat

5: run GMA-2 on S′ with δ and get the highly correlated

gene cluster sequence G′′.
6: if G′′ is not empty then

7: select the first representative gene g1 and add it to

G′, i.e., G′ = {G′, g1}. {comment: the number of

representative genes selected depends on δ. If δ is
high, then one representative gene is enough; other-

wise, select several more.}
8: end if

9: set G′ = G′ − G′′ and S′ = S(G′).
10: until G′′ is empty {comment: it indicates there are no

δ-dense clusters any more.}
11: add the rest of genes that are not clustered and found by

GMA-2 to G′.

12: return G′.

5. EMPIRICAL STUDY

In this section, we conducted the experiments on

two data sets and compared our method with three

most popular filter methods, T-statistics (T), In-

formation Gain (IG) and ReliefF 10. We firstly

used the GMA-1 i, T and IG to rank the genes

and compared them over different feature sizes,

k=2,4,10,20,50,100,200,500,1000. Each resulting fea-

ture subset was used to train an SVM classifier j

with the linear kernel function. Because of the small

number of samples, the Leave-One-Out Cross Val-

idation (LOOCV), a popular performance valida-

tion procedure adopted by many researchers, was

performed to assess the classification performance.

Then for obtaining a minimum biomarker, we ran

the CBioMarker to get the compact biomarker and

similarly used LOOCV accuracy to evaluate it.

5.1. Leukemia Data

We used the Leukemia gene expression data 2, where

besides the classes “ALL” and “AML”, a new class

“MLL” of samples is identified. It contains 12,582

genes and 72 samples with these 3 sample classes.

Therefore, we performed three experiments to test

our method by using one class versus the rest of

classes as positive versus negative: (1) ALL versus

MLL&AML, (2) MLL versus ALL&AML and (3)

AML versus ALL&MLL. In each experiment, the

gene expression matrix partition for our method is

W = [W+
1 ,W−

1 ,W−
2 ] with one positive and two neg-

ative classes. In all three experiments, α was set to

2 for GMA-1. The results are shown in Table 1, 2 and

3. As shown in the three tables, our method GMA-1

outperforms the other methods in,

• High Accuracy: in all three experiments, GMA-1

maintains very high accuracies in different k.

In the experiment “MLL versus ALL&AML”,

where the class MLL is hard to distinguish,

GMA-1 can still obtain high accuracy even when

k is very small.

• Compact biomarker: observing the accuracies of

three methods from the small k to the large,

iBecause GMA-1 can rank genes in terms of up and down regulation respectively, in this experiment of comparing k top-ranking

genes, we selected 0.5k top-ranking genes in up regulation and 0.5k top-ranking genes in down regulation to form k top-ranking

genes given by GMA-1.
jThe SVMlight was used.
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GMA-1 is able to quickly obtain the high accu-

racy in the very small k, while the methods T

and IG require larger k to arrive at the same ac-

curacy (the numbers in bold in three tables show

the minimum k each method requires to get the

highest accuracy). This means that GMA-1 out-

performs the other methods in terms of discov-

ering the compact or minimal biomarker. For

example, in Table 1, the top 2 ranking genes

are found by GMA-1 and their accuracy is 100%,

while the accuracy of the other two methods’ top

2 ranking genes are less than 80%. Similar cases

also appear in Table 2 and 3.

• Stability: not only do the small amount of se-

lected genes have the higher accuracies than the

other methods, but also the the large subset of

selected genes maintain the high accuracy. This

is a stable property with k increasing, and may

be interesting to the biologists when they try to

analyze more relevant genes contributing to the

diseases. In contrast, the method T is not stable,

especially in Table 2 when the samples are hard

to distinguish.

Table 1. LOOCV accuracy rate (%) of ALL versus MLL&AML.

k= 2 4 10 20 50 100 200 500 1000

T 79.2 86.1 91.7 93.1 98.6 98.6 98.6 100 100

IG 76.4 80.6 95.8 98.6 98.6 98.6 98.6 98.6 98.6

RliefF 63.9 86.1 95.8 95.8 98.6 98.6 100 98.6 98.6

GMA-1 100 100 98.6 100 100 100 100 100 100

Table 2. LOOCV accuracy rate (%) of MLL versus ALL&AML.

k= 2 4 10 20 50 100 200 500 1000

T 69.4 65.2 81.9 80.6 84.7 86.1 93.1 90.3 87.5

IG 72.2 88.9 88.9 88.9 98.6 98.6 97.2 98.6 97.2

RliefF 72.2 88.9 95.8 94.4 94.4 94.4 97.2 98.6 98.6

GMA-1 86.0 88.9 97.2 98.6 100 97.2 98.6 98.6 98.6

CBioMarker: find 4 genes with 93.1%

An important factor, which enables GMA-1 to

perform well, is that the matrix approximation has

the global searching ability to take into account the

value distribution of the whole matrix and multi-

ple classes in macroview way. This is different from

the way of individually considering genes, samples,

or gene-to-gene. We then intended to obtain the

minimal biomarker while keeping a relatively high

accuracy (e.g., the accuracy is greater than 90%).

There is no need to find the compact biomarker in

the experiments except “MLL versus ALL&AML”,

because GMA-1 already found 2 genes with the accu-

racy greater than 90%. Therefore, we performed the

algorithm CBiomarker with δ = 0.7 for GMA-2 for the

second experiment. As shown in Table 2, we found 4

genes with the accuracy 93.1%. This result is better

than any other method in Table 2 when k = 4.

Table 3. LOOCV accuracy rate (%) of AML versus ALL&MLL.

k= 2 4 10 20 50 100 200 500 1000

T 66.7 77.8 97.2 98.6 100 98.6 97.2 97.2 97.2

IG 79.2 76.4 87.5 93.1 97.2 97.2 97.2 97.2 97.2

RliefF 86.1 84.7 95.8 94.4 97.2 97.2 97.2 98.6 97.2

GMA-1 90.3 91.7 97.2 97.2 97.2 97.2 97.2 97.2 97.2

To test if the biomarker found by our methods

is effective or not, for instance, we checked two genes

found by GMA-1 in Table 1 with Entrez Gene in NCBI

Website (http://www.ncbi.nlm.nih.gov/entrez).

Two genes are MME which is underexpressed and

LGALS1 which is overexpressed k. By investigat-

ing the result of Armstrong et al. 2, these two genes

were also ranked as the first genes in the underex-

pressed and overexpressed genes respectively. MME

is a common acute lymphocytic leukemia antigen

that is an important cell surface marker in the diag-

nosis of human acute lymphocytic leukemia (ALL);

while LGALS1 was also reported to be highly corre-

lated with ALL 15.

5.2. Lupus Data

In this experiment, we used the unpublished data

set taken from the Lupus gene expression experi-

ments of Microarray core facility in UT SouthWest-

ern Medical Center. We demonstrate the visualiza-

tion ability of our method for facilitating the user

to analyze both the genes and samples simultane-

ously. This data set contains 1,022 genes and 84

kThe GeneBank No. of MME is J03779 and the GeneBank No. of LGALS1 is AI535946.
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samples with 4 sample classes: “NC” (Normal Con-

trol), “FDR” (First-Degree Relative), “ILE” (Incom-

plete Lupus Erythematosus) and “SLE” (Systematic

Lupus Erythematosus). Among these classes, “NC”

and “FDR” are from the normal persons while “ILE”

and “SLE” are from patients.

1 13 33 63 84

NC FDR ILE SLE

13

min

max

NC

(a) sorted W (b) sorted W ′ (c) sorted r∗õ∗T

Fig. 4. Visualization of the sorted matrix W , sorted trans-
formation matrix W ′ =

[
1−WNC, 1−WFDR, WILE, WSLE

]
,

and sorted approximation matrix r∗õ∗T ≈ W ′, where õ∗ is
the concatenation of k vectors: õ∗=(õ∗

1; . . . ; õ∗

k).

We performed GMA-1 with α = 5 on the data.

The sorted matrix W with up regulation setting (see

Fig.3(b)) is visualized by the grey scale image in

Fig.4(a). From this redistribution of the whole ma-

trix, the dominant tendency within each class can

be clearly observed. While the most differentially

expressed genes (or rows) are placed in the top of

W , the low values of the first two classes “NC” and

“FDR” are collected to the left-top corner of each

submatrix WNC and WFDR, and the high values

of the first two classes “ILE” and “SLE” are col-

lected to the left-top corner of each submatrix WILE
and WSLE. In this way, the data within-class distri-

butions and the between-class distribution are fully

considered. To illustrate the process of GMA-1, we

also drew the grey scale image of the transformed

matrix W ′ for up regulation and the final approx-

imation matrix r∗õ∗T given by the converged reso-

nance strength vector r∗ and the frequency distribu-

tion vector õ.

By observing the grey scale image of approxi-

mation matrix r∗õ∗T in Fig.4(c), we found that the

outlier samples of each class are put in the rightmost

place of the corresponding class submatrix. For ex-

ample, the colors of the rightmost sample (the 13-th

column) in the class “NC” are significantly different

from the colors of all other left samples, which indi-

cates that this sample may be an outlier of the class

“NC”. This can also be observed in Fig.4(a) of the

original sorted gene expression matrix. After ana-

lyzing this visualization, besides obtaining the top-

ranking relevant genes, the user can also draw the

conclusion that some normal persons may be early-

stage, undetected patients. Similar cases occur in

the other classes as well.

6. CONCLUSIONS

In this work, we have introduced a novel perspective

of the matrix approximation for filtering the genes

in the multiple-class data sets. It comprehensively

considers the global between-class data distribution

and local within-class data distribution, and there-

fore improves the accuracy of the biomarker discov-

ery. Meanwhile, it provides an overall tendency of

the whole matrix for visualizing and analyzing the

data. Experiments on gene expression data have

demonstrated its efficiency and effectiveness of both

biomarker discovery and visualization.
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