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The production of large quantities of diploid genotype data has created a need for computational methods for large-
scale inference of haplotypes from genotypes. One promising approach to the problem has been to infer possible
phylogenies explaining the observed genotypes in terms of putative descendants of some common ancestral haplo-
type. The first attempts at this problem proceeded on the restrictive assumption that observed sequences could be
explained by a perfect phylogeny, in which each variant locus is presumed to have mutated exactly once over the
sampled population’s history. Recently, the perfect phylogeny model was relaxed and the problem of reconstructing
an imperfect phylogeny (IPPH) from genotype data was considered. A polynomial time algorithm was developed for
the case when a single site is allowed to mutate twice, but the general problem remained open. In this work, we solve
the general IPPH problem and show for the first time that it is possible to infer optimal q-near-perfect phylogenies
from diploid genotype data in polynomial time for any constant q, where q is the number of “extra” mutations required
in the phylogeny beyond what would be present in a perfect phylogeny. This work has application to the haplotype
phasing problem as well as to various related problems in phylogenetic inference, analysis of sequence variability in
populations, and association study design. Empirical studies on human data of known phase show this method to
be competitive with the leading phasing methods and provide strong support for the value of continued research into
algorithms for general phylogeny construction from diploid data.

1. INTRODUCTION

Sophisticated computational methods for data re-

finement and interpretation have become a core com-

ponent of modern studies in human genetics. Com-

putational methods have long been central to the

study of phylogenetics, or evolutionary tree building,

particularly the parsimony variants best suited to in-

ferences of relationships over short time scales. The

more specialized problem of haplotype reconstruc-

tion has also benefited tremendously from contribu-

tions from the fields of discrete algorithms and com-

binatorial optimization. In haplotype reconstruc-

tion, also called phasing, one seeks to separate the

alleleic contributions of two chromosomes observed

together in a diploid genotype assay. If we use the

symbols 0 and 1 to represent homozygous and 2 to

represent heterozygous alleles then ‘0221’ is a geno-

type typed on four loci. Two pairs of haplotypes

0001, 0111 and 0011, 0101 are both consistent with

the genotype and the goal of phasing is to correctly

infer the true haplotypes, given the genotypes. The

problem has relevance to basic research into popu-

lation histories as well as to applied problems such

as statistically linking haplotypes to disease pheno-

types.
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The field of computational haplotype reconstruc-

tion began with a fast and simple iterative method

based on the idea that a haplotype that is observed

in one individual is likely to be found in other indi-

viduals as well8. Various statistically motivated al-

gorithms based on heuristic optimization techniques

such as expectation maximization28 and Markov

chain Monte Carlo methods35 have since been de-

veloped. Such algorithms provide significantly im-

proved robustness and accuracy, although still poor

scaling in problem size. Several combinatorial opti-

mization methods have also been formulated based

on Clark’s original method20, although these have

all been intractable in theory and practice. The ad-

vent of large-scale genotyping created a need for new

methods designed to scale to chromosome-sized data

sets.

Recently, a new avenue towards haplotype re-

construction was developed based on phylogenetic

methods. In such an approach, one seeks to iden-

tify the ancestral history that could have produced a

set of haplotype sequences from a common ancestor

such that the inferred haplotypes could give rise to

the observed genotypes. Gusfield19 showed that it is

possible to directly and efficiently infer phylogenies

that could explain an observed set of diploid geno-

types provided the phylogenies are perfect, meaning

that each character mutates only once from the com-

mon ancestor over the entire phylogeny. This prob-

lem is referred to as Perfect Phylogeny Haplotyping

(PPH). Several subsequent results simplified and im-

proved on this original method2, 3, 12, 13. The work

produced a fast, practical method for large-scale hap-

lotyping, in which one breaks a large sequence into

blocks consistent with perfect phylogenies and uses

the phylogenies to phase those sequences.

The perfect phylogeny assumption is quite re-

strictive, though, and several approaches have been

taken to adapt the perfect phylogeny method to

more realistic models of molecular evolution. Data

inconsistent with perfect phylogenies can arise from

multiple mutations of a base over the history of

a species or through the processes of recombina-

tion or gene conversion, which can assemble hybrid

chromosomes in which different segments have dif-

ferent phylogenies. Heuristic methods have allowed

some tolerance to recurrent mutations (for example,

the work by Halperin and Eskin23) resulting in the

generation of imperfect phylogenies. Imperfect phy-

logeny haplotyping has proven to be very fast and

competitive with the best prior methods in accuracy.

Some recent work has been directed at provably op-

timal methods for imperfect phylogeny haplotyping

(IPPH), resulting in a polynomial-time algorithm

for the case when a single site is allowed to mutate

twice (or a single recombination is present), under a

practical assumption on the input data33. But the

general IPPH problem remained open. It appears for

the moment intractable in both theory and practice

to infer recombinational histories in non-trivial cases.

Our Contributions: In this work, we solve the

general IPPH problem and show for the first time

that it is possible to infer imperfect phylogenies with

any constant number q of recurrent mutations in

polynomial time in the number of sequences and

number of sites typed. Our approach builds on both

the prior theory on phylogeny construction from

diploid data13, 33 and a separate body of theory on

the inference of imperfect phylogenies from haplo-

type data4, 14, 21, 25, 31. Our algorithm reconstructs

a q-near-perfect phylogeny in time nmO(q) where m

is the number of characters (variant sites typed), n

is the number of taxa (sequences examined), and q

is the imperfectness of the solution, defined below.

The prior method of Song et al.33 that solves the

1-near-perfect phylogeny haplotyping problem relied

on an empirically but not theoretically supported

assumption that an embedded perfect phylogeny

problem will have a unique solution. We relax this

assumption to allow a polynomial number of such so-

lutions and show that the relaxed assumption holds

with high probability if the population obeys a com-

mon assumption of population genetics theory called

Hardy-Weinberg equilibrium. We thus provide a

theoretical basis for Song et al.’s empirical observa-

tion. We demonstrate and validate our algorithm

by comparing with leading phasing methods using

a collection of large-scale genotype data of known

phase29. We find that our method is efficient and

more accurate on blocks with small q. We further

provide strong empirical support for the value of

continuing research into accelerated algorithms for

phylogeny construction from diploid data.
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2. PRELIMINARIES

We begin by introducing definitions for parsimony-

based phylogeny reconstruction. In such problems,

we wish to study the relationship between a set of n

taxa, each of which is defined over a set of m binary

characters. Input I will be represented by a ma-

trix, where row set R(I) represent taxa and column

set C(I) represent characters. In a haplotype ma-

trix all taxa ri ∈ {0, 1}m and in a genotype matrix

ri ∈ {0, 1, 2}m.

Definition 2.1. A phylogeny for n × m binary in-

put matrix I is a tree T (V, E) and a label func-

tion l : V (T ) → {0, 1}m with the following prop-

erties: R(I) ⊆ l(V (T )) and for all (u, v) ∈ E(T ),

d(l(u), l(v)) = 1 where d is the Hamming distance.

That is, every input taxon appears in T and the

Hamming distance between adjacent vertices is 1.

Definition 2.2. We define the following terms for a

phylogeny T on input I :

• character µ(e) represents mutation on edge

e = (u, v) s.t. l(u)[µ(e)] 6= l(v)[µ(e)].

• vertex v ∈ V (T ) is terminal if l(v) ∈ R(I)

and Steiner otherwise.

• length(T ) = |E(T )| .

• phylogeny T is optimal if length(T ) is min-

imized.

• penalty(T ) = length(T ) − m.

• phylogeny T is q-near-perfect if

penalty(T ) = q and perfect if

penalty(T ) = 0.

We say that a character i mutates on edge e if

µ(e) = i. We will assume that both states 0, 1 are

present in all characters. Therefore the length of an

optimum phylogeny is at least m. This provides a

natural motivation for the penalty of a phylogeny as

defined above. For simplicity, we will drop the label

function l(v) and use v to refer to both a vertex and

the taxon it represents.

The IPPH problem: The input to the problem

is an n×m matrix G, where each row gi ∈ {0, 1, 2}m

represents a (genotype) taxon and each column rep-

resents a character. The output is a 2n × m matrix

H in which each row hi ∈ {0, 1}m represents a hap-

lotype. Furthermore corresponding to every taxon

gi ∈ R(G), there are two taxa h2i−1, h2i ∈ R(H)

with the following properties:

• if gi[c] 6= 2 then h2i−1[c] = h2i[c] = gi[c]

• if gi[c] = 2 then h2i−1[c] 6= h2i[c]

The objective of the IPPH problem is to find an

output matrix H such that the length of the opti-

mum phylogeny on H is minimized. This problem

is clearly NP-hard, since if matrix G contains no 2s,

then the problem is equivalent to reconstructing the

most parsimonious phylogenetic tree15. We therefore

consider the following parameterized version of the

problem. Given matrix G and parameter q, we re-

turn matrix H such that there exists an optimal phy-

logeny T ∗ on H with penalty(T ∗) ≤ q, under the as-

sumption that such a matrix H exists. Note that the

PPH problem is a restriction of IPPH when q = 0.

Definition 2.3. For a set of binary state taxa S and

a set of characters C, the set of gametes GAM(S, C)

is the projection of S on characters C. In other words

(x1, . . . , x|C|) ∈ GAM(S, C) i.f.f. there exists s ∈ S

with s[ci] = xi for all ci ∈ C. A set of characters

C shares k gametes if |GAM(S, C)| = k. A pair of

characters i, j conflict if |GAM(S, {i, j})| = 4.

Pre-processing: We perform a well established

pre-processing step that ensures that for any opti-

mal output matrix H , (0, 0) ∈ GAM(H, {i, j}) for

all i, j ∈ C(H) (See the work of Eskin et al.13). We

assume that the input matrix has no duplicate rows,

since such rows do not change the optimal solution.

Note that such a matrix should have at most q + 1

more taxa than characters, since otherwise, it does

not have a solution to the IPPH problem.

3. ALGORITHM

At a high level, our algorithm has the same spirit as

the algorithm of Song et al.33. The algorithm guesses

characters that mutate more than once and removes

them from the input matrix. It then solves the per-

fect phylogeny haplotyping problem on the remain-

der of the matrix. Finally, our algorithm adds the

removed characters back and performs haplotyping

on the full matrix. In this section, we will use the

same assumption of Song et al.33: for any subset of

characters of the input matrix, if a solution to per-

fect phylogeny haplotyping (PPH) exists, then it is
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function solveIPPH(input matrix G)

(1) guess Q = {i ∈ C(G)|∃e1, e2 ∈ E(T ∗), e1 6= e2, µ(e1) = µ(e2) = i}
(2) let M be matrix G restricted to characters C(G) \Q

(3) let M ′ be the unique solution to perfect phylogeny haplotyping of M

(4) let H ′ be matrix M ′ defined on characters C(G) s.t. ∀h′
2i−1, h

′
2i ∈ R(H ′) and corresponding

taxa gi ∈ R(G).∀ĉ ∈ Q.h′
2i−1[ĉ] = h′

2i[ĉ] = gi[ĉ]

(5) guess κ = {i ∈ C(G) | ∃j ∈ C(G), |GAM(t(T ∗), {i, j})| = 4}
(6) guess GAM(t(T ∗), κ)

(7) loop for c ∈ C(H ′) \ κ

(a) H ′ := processMatrix(H ′, c)

(8) for all couples h′
2i−1, h

′
2i in H ′

(a) resolve state 2 on h′
2i−1, h

′
2i s.t.GAM({h′

2i−1, h
′
2i}, κ) ⊆ GAM(t(T ∗), κ)

function processMatrix(matrix H ′, character c)

(1) initialize the set ∆ := {c}
(2) while |∆| > 0 do

(a) extract a character c from ∆

(b) for all (2, c)-couples h2i−1, h2i

i. for all ĉ ∈ Q with h2i−1[ĉ] = 2(= h2i[ĉ])

A. if |IND(H ′, {c, ĉ})| = 3 then G(c, ĉ) = IND(H ′, {c, ĉ})
else guess three gametes G(c, ĉ)

B. resolve state 2 in ĉ on h2i−1, h2i based on G(c, ĉ)

C. ∆ := ∆ ∪ {c′ /∈ κ|h2i−1[c
′] 6= h2i[c

′]}
i.e. add to ∆ characters c′ /∈ κ for which the current couple is also a (2, c′)-couple

(c) if ∃ĉ ∈ Q. s.t.(c, ĉ) conflict or

for the set H2 of all (2, c)-couples GAM(H2, κ) * GAM(t(T ∗), κ) then

return no solutions

(d) remove c from C(H ′)

(3) return H ′

Fig. 1. Algorithm to solve IPPH

unique. In Section 4, we show that the number of

PPH solutions is polynomial with high probability.

Throughout the paper, we fix an arbitrary opti-

mal phylogeny T ∗, which we will use as a reference

for expository purposes. Let t(T ∗) be the set of all

taxa (Steiner vertices included) in T ∗. Let Q be the

set of characters that mutate more than once in T ∗.

Since |Q| ≤ q, we can find Q by brute force in time

O(
∑q

i=1

(

m
i

)

) = O(qmq).

After finding Q, we can remove the characters

to obtain matrix M with character set C(G) \ Q.

We now use a prior method to solve the perfect phy-

logeny haplotyping (PPH) problem on M in time

O(nm)12. Let M ′ be the unique solution to the

PPH problem. The solution matrix M ′ contains

2n taxa and m − |Q| characters. We can now add

the characters Q to matrix M ′ to obtain H ′. For

all j ∈ Q and h′
2i−1, h

′
2i ∈ H ′ and gi ∈ G, taxa

h′
2i−1[j] = h′

2i[j] = gi[j]. Note that matrix H ′ con-

tains state 2 only on the characters Q (see Fig 3(b)

for an example).

Definition 3.1. A pair of taxa h′
2i−1, h

′
2i ∈ R(H ′) is

defined as a couple. For any c ∈ C(H ′), if h′
2i−1[c] =

2(= h′
2i[c]) or h′

2i−1[c] 6= h′
2i[c] then h′

2i−1, h
′
2i is a

(2, c)-couple.

Note that if c contains both 0 and 1 in a

couple of H ′, then the couple contained state 2
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at character c in the input (before perfect phy-

logeny haplotyping). Let κ = {i ∈ C(G)|∃j ∈
C(G), |GAM(t(T ∗), {i, j})| = 4} be the set of char-

acters that conflict with some other character in

t(T ∗). Note that Q ⊆ κ. To complete the description

and analysis of the algorithm we borrow the follow-

ing definition from prior work13.

Definition 3.2. We say that a (unordered) couple

r1, r2 induces (x, y) at characters (c, c′) if ri[c] =

x, ri[c
′] = y or r1[c] = r2[c] = 2, r1[c

′] = r2[c
′] = y

or r1[c] = r2[c] = x, r1[c
′] = r2[c

′] = 2. We de-

fine IND(H ′, {c, c′}) to denote the set of gametes

induced by the couples of H ′ at c, c′.

The goal now is to convert the {0, 1, 2} ma-

trix H ′ to a {0, 1} matrix H such that the following

correctness conditions are satisfied:

(1) for every (2, c)-couple in H ′ one of the two taxa

should contain state ‘1’ and the other ‘0’ on char-

acter c in H

(2) GAM(H, κ) ⊆ GAM(t(T ∗), κ), i.e. the set of ga-

metes on κ in H is a subset of the set of gametes

on κ in T ∗.

(3) (|GAM(H, {c, c′})| = 4) =⇒ c, c′ ∈ κ, i.e. a pair

of characters share four gametes in H only if they

are both in κ.

In matrix H ′, if a couple contains state 2 at char-

acter c, then replacing it with state 0 on one taxa and

1 on the other is informally referred to as a resolu-

tion. The algorithm to solve IPPH is summarized in

Figure 1. We now go into the details of the steps.

The following lemma shows that Steps 5 and 6 of

function solveIPPH can be implemented efficiently:

Lemma 3.1. Sets κ and GAM(t(T ∗), κ) can be

found in time m2qqO(q) + O(nm).

Proof. We can easily identify κ by brute force in

time O(m|κ|). Since we do not know |κ|, this step

can take time O(2m). We can however do better by

performing such an enumeration over phylogenies as

illustrated in Figure 2. First we construct the unique

perfect phylogeny T for the matrix H ′ restricted to

C(G)\Q which contains m−|Q|+1 vertices in time

O(nm)12. Note that contracting edges e ∈ T ∗ with

µ(e) ∈ Q results in tree T (see Figure 2(b)). We

will begin with T and add the edges e, µ(e) ∈ Q to

obtain T ∗ as follows. Since we know Q already, we

can identify the set of |Q|+q edges (labels µ) in time

O(
(|Q|+q

q

)

) = O(
(

2q
q

)

) = O(4q). There are m−|Q|+1

locations to add an edge that mutates a character in

Q. All possible edge assignments can be enumerated

in time O((m − |Q|+ 1)|Q|+q) = O(m2q). Each enu-

meration assigns a set of edges (multi-set on charac-

ters) Qv to each vertex v of T . We now enumerate all

possible rooted trees Tv with edge labels in Qv for all

vertices v ∈ T in time O((|Q|+q)|Q|+q) = O((2q)2q).

Since the mutations in C(G) \ Q are already fixed

by the perfect phylogeny, the states in all vertices on

characters C(G) \ Q are known. For every root of

Tv, we guess the states in all Q characters in time

O(2q2

), which can be improved to O(qq) (since this

is equivalent to enumerating all tree structures with

edges mutating Q). Note that since we guessed the

states at the root of Tv, we know the states on all

characters for all vertices in Tv (for all v). Further,

for any two roots of Tv, Tv′ , the path that connects

them is given by the path connecting v, v′ in the per-

fect phylogeny T (see Figure 2(c)). Therefore, we can

identify the edges that lie between two mutations of

a character in Q. We can now find κ since for all

i ∈ κ \Q, there exists j ∈ Q and e1, e2, e3 ∈ T ∗ such

that µ(e1) = µ(e3) = j, µ(e2) = i and e2 lies in the

path connecting e1, e3.

Since we know states in all characters of Tv and

T ′
v, we know the states in all the characters for every

vertex in the path connecting them as well. We now

consider the set of all vertices Vκ that lie in the path

connecting two mutations of the same character in T .

It is easy to see that GAM(Vκ, κ) = GAM(t(T ∗), κ).

We can therefore identify κ and GAM(t(T ∗), κ) in

time m2qqO(q) + O(nm).

Figure 3 illustrates how the algorithm performs

haplotyping given κ and GAM(t(T ∗), κ). For refer-

ence Figures 3(a) and 3(b) represent input matrix

G and matrix H ′ as found in Step 4 of solveIPPH.

Function solveIPPH selects c = 2 (Step 7).

Function processMatrix determines G(2, 6) =

IND(H ′, {2, 6}) = {(0, 0), (0, 1), (1, 1)} and guesses

G(2, 7) = {(0, 0), (0, 1), (1, 1)} (Step 2(b)iA). Based

on these two sets of three gametes, the (2, 2)-

couples, rows 9 to 12, are resolved (Step 2(b)iB),

Fig 3(c). Character 2 is removed (Step 2d). No-
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1
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00010

01010
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10001 00101
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0000000

0000010

0000011

7

6
7

6

4 5

1 3

00010 00001

01010 10001 00101

0001010

0001011

0000111

0000101

Fig. 2. Algorithm to determine κ and GAM(t(T ∗), κ) efficiently. (a) optimal phylogeny T ∗ with Q = {6, 7}, κ = {4, 5, 6, 7}(b)
perfect phylogeny T on characters C(G) \ Q (c) the four edges mutating characters 6 and 7 are assigned to three vertices of T ;
rooted trees Tv are constructed on the assigned edges; states on the three roots 0000000, 0001010, 0000111 determine edges {4, 5}
that lie between two mutations of 6, 7. Filled vertices form Vκ.

tice that a character c is removed only when all

the (2, c)-couples are completely resolved (rows 9

to 12). Function solveIPPH then selects c =

3 (Step 7), Fig 3(d). Function processMatrix

guesses G(3, 6) = {(0, 0), (1, 0), (0, 1)} and de-

termines G(3, 7) = IND(H ′, {3, 7}) = {(0, 0),

(0, 1), (1, 1)} (Step 2(b)iA), and using them (2, 3)-

couple, rows 7 and 8, are resolved(Step 2(b)iB),

Fig 3(e). Since the pair of rows (7, 8) is also a

(2, 1)-couple character 1 is added to ∆ (Step 2(b)iC).

Character 3 is removed (Step 2d) and c = 1 is ex-

tracted from ∆ (Step 2a), Fig 3(f). Since there are

no (2, 1)-couples, character 1 is removed (Step 2d),

Fig 3(g). This exhausts all c ∈ C(H ′) \ κ. Func-

tion solveIPPH then resolves state 2 in the first

couple resulting in 0000, 0010 which are both in

GAM(t(T ∗), κ) (Step 8a), Fig 3(h). Since the next

couple has no state 2, we resolve the third couple

which results in 0101, 0111 (Step 8a), completing the

algorithm, Fig 3(i). We now prove the main lemma

that bounds the running time of our algorithm.

Theorem 3.1. If penalty(T ∗) ≤ q, then the algo-

rithm described in Figure 1 returns a solution ma-

trix H that obeys all correctness conditions in time

nmO(q).

Proof. To prove this theorem, we first need three

simple lemmas.

Lemma 3.2. If c1 ∈ κ and c2 ∈ C(H ′) \ κ, then

c1, c2 share exactly three gametes in t(T ∗).

Proof. Every pair of characters share at least three

gametes in T ∗. Characters, c1, c2 cannot share four

gametes since c2 /∈ κ.

Lemma 3.3. For a pair of characters c /∈ κ, ĉ ∈
Q, given a set of three gametes G(c, ĉ), there ex-

ists a unique resolution of state 2 in character ĉ

for any (2, c)-couple s.t. for resulting matrix H ′,

GAM(H ′, {c, ĉ}) ⊆ G(c, ĉ)

Proof. Let r2i−1, r2i ∈ R(H ′) be a (2, c)-couple.

By definition, r2i−1[c] 6= r2i[c]. If r2i−1[ĉ] =

r2i[ĉ] = 2 then the resolution will either cre-

ate GAM({r2i−1, r2i}, {c, ĉ}) = {(0, 0), (1, 1)} or

{(0, 1), (1, 0)}. Only one of the two can be contained

in set G(c, ĉ) established between c and ĉ.

Lemma 3.4. In matrix H ′, for c /∈ κ, ĉ ∈ Q if ev-

ery (2, c)-couple is in {0, 1}m then GAM(H, {c, ĉ})
is fixed where H is any matrix obtained from H ′ by

resolution of 2s.

Proof. For any couple in H ′ if h′
2i−1[ĉ] = h′

2i[ĉ] =

2 then according to the condition of the lemma,

h′
2i−1[c] = h′

2i−1[c] = s. Therefore, for any couple

h2i−1, h2i in H obtained by resolving state 2 on ĉ will

have the property that GAM({h2i−1, h2i}, {c, ĉ}) =

{(s, 0), (s, 1)}.

Corollary 3.1. Although ĉ can contain state 2 in

matrix H ′, Step 2c of function processMatrix in

Figure 1 can test if c, ĉ are conflicting. Furthermore,

if c, ĉ do not conflict at Step 2c, then the final ma-

trix obtained by the algorithm will not have a conflict

between c, ĉ.

We now return to the proof of the main theo-

rem. Step 1 requires at most q
(

m
q

)

enumerations.

Lemma 3.1 shows that given the correct Q, both κ

and GAM(t(T ∗), κ) can be found in time m2qqO(q) +
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Input G
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0000020    

0000111

c   c   c   c   

Fig. 3. Given Q = {6, 7}, κ = {4, 5, 6, 7}, GAM(t(T ∗), κ) = {0000, 0010, 0011, 1011, 1010, 0111, 0101}, the algorithm chooses
c = 2, 3, 1. Based on a set of three gametes, it resolves states 2 in ĉ ∈ Q, in all (2, c)-couples. Shaded regions represent deleted (or
ignored) characters and couples completely resolved by the algorithm. After exhausting all characters c ∈ C(G)\κ, the algorithm
considers the remaining couples and iteratively resolves states 2 s.t. the couples are in GAM(t(T ∗), κ).

O(nm). We now bound the run time for function

processMatrix.

Lemma 3.5. Total run-time for all calls to function

processMatrix is O(2qnm2).

Proof. First notice that once a character c

is removed from ∆ at Step 2a of function

processMatrix, it is never added back throughout

the execution of the algorithm. This is because, func-

tion processMatrix resolves all the states 2 present

in (2, c)-couples and subsequently the character is

deleted (or ignored) for the rest of the algorithm in

Step 2d. This bounds the number of times Step 2a

is executed throughout the algorithm as O(m). To

prove the lemma, we now bound the time for execut-

ing Steps 2a through 2d as O(2qnm).

The number of (2, c)-couples is O(n) and there-

fore Step 2b loops for O(n) times. The cardinality of

Q is at most q and therefore the loop in Step 2(b)i

executes O(|Q|) = O(q) times. The time bound for

guessing the set of gametes G(c, ĉ) shared between c

and ĉ is the hardest to analyze.

Consider any one call to function

processMatrix. Let ci’s represent the characters

added into ∆ during the execution of a call. We

show that if G(cj , ĉ) is guessed at Step 2(b)iA then

for all future ck encountered during the execution

of Step 2(b)iA, |IND(H ′, {ck, ĉ})| = 3. When the

algorithm guessed G(cj , ĉ), by definition of (2, cj)-

couples, h2i−1[cj ] 6= h2i[cj ] and by the condition on

Step 2(b)i, h2i−1[ĉ] = h2i[ĉ] = 2. Also h2i−1[ck] =

h2i[ck] = x since otherwise |IND(H ′, {ck, ĉ})| = 3

(ck and ĉ cannot be identical characters). Let cl

be the character extracted from ∆ and used in the

loop of Step 2b during which ck was added into

∆. This implies the existence of a couple h′
2i−1, h

′
2i

which is both a (2, cl)-couple and a (2, ck)-couple.

However h′
2i−1[ĉ] = h′

2i[ĉ] = y. Again, otherwise

|IND(H ′, {ck, ĉ})| = 3. Therefore matrix H ′ in-

duces gametes (x, 0), (x, 1), (0, y), (1, y) on characters

(ck, ĉ). For all values of x, y ∈ {0, 1}, this results in

three induced gametes. The above proof therefore

shows that the if condition in Step 2(b)iA fails at

most q times for any function call to processMatrix.

Therefore the probability of all guesses performed

at Step 2(b)iA being correct for any single call to

processMatrix is at least 2−q. Equivalently, we

suffer a multiplicative factor of 2q in the run-time

because of this step.

The check performed at Step 2c takes time

O(nm). Assuming q < m, the total running time for

all calls to processMatrix combined is O(2qnm2).

Using Lemma 3.2, we know that c shares exactly

three gametes with all characters ĉ ∈ Q in t(T ∗).

For character c, Step 2(b)iA (guesses) iterates over

the set of all possible gametes shared between c, ĉ.

Given the set of three gametes, Lemma 3.3 shows

that there is a unique resolution of states 2 in the

(2, c)-couples and this is performed in Step 2(b)iB.

Correctness condition 1 holds by the definition of res-

olution. Step 2c of function processMatrix checks

for conditions 2 and 3. Using Corollary 3.1, we know

that c and ĉ cannot conflict because of the reso-
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lution of any of the remaining 2s (ensures correct-

ness condition 3). Finally, there can be no 2s in

character c (since c /∈ Q) or in any of the (2, c)-

couples since it was just resolved. Step 8 of function

solveIPPH iterates n times. At each iteration, it

performs a brute-force step of computing all possi-

ble ways of resolving the 2s. Since only the charac-

ters in Q can contain state 2 at this point, Step 8a

takes O(m2q) time. This step also checks if the re-

sulting gametes on characters in κ are in the pre-

dicted set GAM(t(T ∗), κ)(ensures correctness con-

dition 3). This shows that any matrix found by

the algorithm obeys the correctness conditions and

the running time is nmO(q). Finally, we know that

there exists a set of three gametes G(c, Q) (as de-

fined by t(T ∗)) s.t. resolving based on G will en-

sure that c, ĉ do not conflict and GAM(H ′, κ) ⊆
GAM(t(T ∗), κ). Using these two observations, we

know that if penalty(T ∗) ≤ q, then the algorithm

finds matrix H ′ that obeys the correctness conditions

in the stated time.

We now prove the correctness of our algorithm:

Theorem 3.2. Any solution matrix H obeying all

the correctness conditions is optimal.

Proof. The proof is constructive and demonstrates

the procedure to construct a q-near-perfect phy-

logeny for H . The phylogeny along with correctness

condition 1 guarantees that the returned matrix H

is an optimal solution.

Matrix H satisfies the following two properties:

if a pair of characters c, c′ conflict in H , then c, c′ ∈ κ

(third correctness condition); a q-near-perfect phy-

logeny can be constructed on GAM(H, κ) (since

GAM(H, κ) ⊆ GAM(t(T ∗), κ), second correctness

condition). It can be shown that a q-near-perfect

phylogeny can be constructed for any matrix that

satisfies the above two properties (see Section 7 of

Gusfield and Bansal 21). Such a phylogeny is ob-

tained by constructing the q-near-perfect phylogeny

on on GAM(H, κ), contracting the phylogeny to a

vertex and constructing a perfect phylogeny on the

remaining characters.

Theorem 3.3. The algorithm of Figure 1 returns

an optimal solution H to the IPPH problem in time

nmO(q).

Proof. The proof follows directly from Theo-

rems 3.1 and 3.2.

4. SOLUTIONS TO PPH

We assumed in the preceding sections, following prior

work33, that the perfect phylogeny stage of the algo-

rithm will find a unique solution, but this assumption

does not necessarily hold. To guarantee optimality,

the algorithm would need to enumerate over all solu-

tions to the PPH sub-problem, increasing run-time

proportionally. Prior work showed that the number

of PPH solutions is at most 2k, where k is the number

of characters of G that do not contain the homozy-

gous minor allele13, 19. In the worst case, this could

be as large as m and therefore the number of PPH

solutions can be 2m. This however should not occur

in practice since the underlying population typically

follows a random mating model.

Hardy-Weinberg equilibrium states that the two

haplotypes of any given individual are selected inde-

pendently of one another at random. For any fixed

character, let p be the minor allele frequency and

(1−p) be the major allele frequency. Consider G, an

n × m input genotype matrix to the PPH problem.

The probability under Hardy-Weinberg that none of

the n taxa contain the homozygous minor allele is

(1 − p2)n. This probability could be large for very

small values of p.

It is reasonable to assume that the value of p > c

for some constant c since otherwise SNPs cannot be

detected. In this case, with high probability in n (at

least 1− (1− c2)n), a specific character contains the

homozygous minor allele. Therefore in expectation

the number of characters without a homozygous mi-

nor allele is at most m(1 − c2)n. This expectation,

exponentially tends to zero with n.

We now consider a more general setting when

the value of p is assumed to be uniformly distributed

in [0, 0.5]. Now, the probability that a specific char-

acter does not contain the homozygous minor allele

is:

2

∫ 0.5

0

(1 − p2)ndp

= 2

∫ 1/
√

n

0

(1 − p2)ndp + 2

∫ 0.5

1/
√

n

(1 − p2)ndp
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≤ 2√
n

+ 2

∫ 0.5

1/
√

n

(1 − p2)ndp

≤ 2√
n

+ 2

∞
∑

i=1

∫ (i+1)/
√

n

i/
√

n

(1 − p2)ndp

≤ 2√
n

+
2√
n

∞
∑

i=1

(1 − i2

n
)n

≤ 2√
n

+
2√
n

∞
∑

i=1

e−i2 ≤ 4√
n

Now, if n = Ω(m2), then using Chernoff bounds

we can show that with high probability the number

of characters that lack a homozygous minor allele

is bounded by 2 logm and therefore the number of

solutions to the PPH problem is bounded by m2.

This discussion answers the question raised by

Gusfield on the theoretical estimate for the num-

ber of PPH solutions to expect from a coalescent

model19. Furthermore, since PPH is always per-

formed on SNP blocks with low diversity, it is not

unreasonable to assume n >> m. Since the number

of solutions returned by PPH is O(m2), the IPPH

algorithm described above with high probability just

suffers O(m2) overhead for finding the optimal ex-

tension of each PPH solution.

5. EMPIRICAL VALIDATION

We demonstrate and validate our algorithm by com-

paring with leading phasing methods using a col-

lection of large-scale genotype data of known phase

from a high resolution scan of human chromosome

2129. The study identified common single nucleotide

polymorphisms (SNPs) and typed them on 20 se-

quences through a method that directly identifies

haplotypes rather than genotypes. The SNPs were

partitioned into 4135 haplotype blocks by the au-

thors of that study using a diversity test. We ex-

tracted haplotypes from the ‘haplotype pattern’ file

provided in the supplementary material, which iden-

tifies distinct haplotypes in each block and provides

some inference of missing data when it can be done

unambiguously. We ignored haplotypes which still

had significant missing data, replacing them with

haplotypes randomly selected from the multinomial

distribution of fully-resolved haplotypes in the corre-

sponding block in order to maintain 20 chromosomes

per block. The haplotype blocks were divided into

four sets based on their imperfectness(q = 0, 1, 2, 3+)

using a prior method31. A large majority of blocks

(98%) are 0, 1, or 2 near-perfect. We do not solve

optimally for the 2% with imperfectness 3 or greater

because the run-time for optimal solutions would be

prohibitive. Such blocks can be solved non-optimally

in practice by subdividing into smaller blocks of

lower imperfectness, but such data would not be

comparable to those solved optimally and is there-

fore omitted from our analysis. We then randomly

paired haplotypes to produce 10 diploid genotypes

per block as our final test set. Figure 4 shows that

the length of the blocks is related to q, the imper-

fectness. The tails are heavier for larger values of q

as expected. For instance, this shows that a signifi-

cant fraction of the q = 2 blocks have large number

of characters when compared with q = 1, 0.

 0
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Fig. 4. Distribution of the fraction of blocks as a function
of the number of characters in the block. Data for more than
50 characters not shown.

We compared our method with two popular

phasing packages. We ran the haplotyper28 pack-

age, which uses an expectation-maximization heuris-

tic, with 20 rounds (the recommended value). We

also ran the PHASE35 package, which employs a

Markov Chain Monte Carlo method. Although
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Error rate Total Run Time(secs)

Perfectness #Blocks #SNPs PHASE haplotyper our alg PHASE haplotyper our alg

0 3497 20816 0.11 0.11 0.17 3521.33 337.18 17.21

1 461 4211 0.53 0.47 0.35 805.62 80.62 8.77

2 93 1266 0.83 0.68 0.55 268.02 59.28 1111.18

Fig. 5. Empirical results on Chromosome 21. Blocks with 0, 1, 2 near-perfectness (accounting for 4051 out of 4135 blocks) were
analyzed separately using the three algorithms. Error rate is the number of switch errors divided by the number of blocks. Total
run time is the sum over all blocks.

PHASE can make use of additional information such

as SNP positions, we provided it only the genotypes

as input.

For our own method, with any given q, we enu-

merated all possible phylogenies that are at most

q-near-perfect. Note that this does not guarantee

finding all possible output matrices that are consis-

tent with a q-near perfect phylogeny. Where multi-

ple solutions were obtained, we selected the one that

minimized the entropy of the haplotype frequencies.

For the PPH sub-problem we implemented a fast

prior algorithm13. We note that for simplicity, we

do not implement the algorithm exactly as described.

Rather, function processMatrix does not add char-

acters into ∆ to be processed iteratively. The imple-

mentation however always returns a haplotype out-

put matrix and we report the switch errors33 for the

output.

Table of Figure 5 summarizes the test resultsa.

All methods provide comparable accuracy when

blocks are perfect. We attribute the slightly worse

performance of our method on perfect input to the

fact that we do not use any procedure to select a

maximum-likelihood output matrix among all per-

fect matrices, as is done for prior perfect phylogeny

methods13. All three methods degrade in accuracy

with increase in imperfectness. Our method, how-

ever, scales much better with imperfectness than

do the other two, clearly outperforming them on 1-

near-perfect and 2-near-perfect inputs. Imperfect-

ness can result from recurrent mutations, recom-

binations or incorrect SNP inferences and we at-

tribute our method’s superior performance on im-

perfect data to the fact that it explicitly handles one

of these factors while the others suffer from all three.

Our method is extremely fast for q = 0, where it

reduces to the perfect phylogeny algorithm of Eskin

et al.13 and also substantially outperforms the com-

peting methods for q = 1. Our method’s run time

rapidly increases with larger q, though, as expected

from the theoretical bounds.

6. DISCUSSION AND CONCLUSIONS

We have developed a theory for reconstructing phy-

logenetic trees directly from genotypes that is op-

timal in the number of mutations. As an immedi-

ate application, we solve the general IPPH problem.

We demonstrate practical results that show great

promise in accurately inferring phase from real data

sets. Our results suggest that imperfect phylogeny

approaches can lead to significant improvements in

accuracy over other leading phasing methods. Run

time, while very fast for perfect and almost perfect

data, remains an obstacle for even modest q; this ob-

servation suggests a need for further research in im-

proving theoretical and practical bounds for general

q. Our new method has several immediate applica-

tions in computational genetics:

• Phasing: At present, the method is competitive

with the most widely used tools in accuracy

and, with optimizations, should become compet-

itive in run-time for larger q. Both PHASE and

haplotyper return confidence scores on its re-

sults, which might allow a slower, high-accuracy

method such as ours to function as a fall-back

for regions that those methods cannot infer with

confidence.

• Phylogeny Construction: Our run times are

competitive with typical times to be expected

from other optimal phylogeny reconstruction al-

gorithms, even when the input consists of hap-

lotypes. Our approach may thus be considered

aHaplotyper crashes on 18 blocks which were ignored in the calculation of its accuracy.
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preferable to the standard practice of inferring

haplotypes then fitting them to phylogenies.

• Haplotype Blocks Inference: Our method could

serve as an improved means of identifying

recombination-free haplotype blocks for pur-

poses of association study design by more accu-

rately distinguishing recurrent mutation from re-

combination. The blocks might thus be useful in

improving statistical power in haplotype-based

association testing.

Future empirical studies, enabled by our method,

will be needed to better establish the nature of im-

perfectness in real genotype data and the degree to

which better handling of recurrent mutations will be

of use in practice.
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