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Computational search of genomes for RNA secondary structure is an important approach to the annotation
of non-coding RNAs. The bottleneck of the search is sequence-structure alignment, which is often computationally
intensive. A plausible solution is to devise effective filters that can efficiently remove segments unlikely to contain
the desired structure patterns in the genome and to apply search only on the remaining portions. Since filters can be
substructures of the RNA to be searched, the strategy to select which substructures to use as filters is critical to the
overall search speed up. Such an issue becomes more involved when the structure contains pseudoknots; approaches
that can filter pseudoknots are yet available. In this paper, a new effective filtration scheme is introduced to filter
RNA pseudoknots. Based upon the authors’ earlier work in tree-decomposable graph model for RNA pseudoknots,
the new scheme can automatically derive a set of filters with the overall optimal filtration ratio. Search experiments
on both synthetic and biological genomes showed that, with this filtration approach, RNA structure search can speed
up 11 to 60 folds whiling maintaining the same search sensitivity and specificity of without the filtration. In some
cases, the filtration even improves the specificity that is already high.

1. INTRODUCTION

Non-coding RNAs (ncRNAs) do not encode proteins
yet they play fundamental roles in many biological
processes including chromosome replication, RNA
modification, and gene regulation 7, 19, 28. Due to
the explosive growth of fully sequenced genome data,
homologous searching using computational meth-
ods has recently become an important approach to
annotating genomes and identifying new ncRNAs
16, 21, 22. In general, a computational searching tool
scans through a genome and aligns its sequence seg-
ments to an RNA profile. Since secondary structure

generally determines the biological functions of an
ncRNA and is preserved across its homologs, a pro-
file needs to include both sequence conservation and
secondary structure information. For example, com-
pared with profiling models based on Hidden Markov
Models (HMMs) 14, Covariance models (CMs) 6 con-
tain additional emission states that can emit base
pairs to generate stems. CMs can thus be used as
structural profiles to model RNA families. However,
for pseudoknots, which contain at least one pair of
crossing stems, the sequence-structure alignment is
computationally intractable. RNA structure search
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in genomes or large databases thus remains difficult.
Search on genomes can be speeded up with filtra-

tion methods. With simpler sequence or structural
models, it is possible to efficiently remove genome
segments unlikely to contain the desired pattern. A
few filtration methods Ref. 2, 16, 27 have been devel-
oped to improve the search efficiency. For example,
in tRNAscan-SE 16, two efficient tRNA detection al-
gorithms are used as filters to preprocess a genome
and remove most parts that are unlikely to contain
the searched tRNA structure. The remaining part
of the genome is then scanned with a CM to iden-
tify the tRNA. FastR 2 considers the structural units
of an RNA structure. It evaluates the specificity of
each structural unit and construct filters based on
the specificities of these structural units. In 27, an al-
gorithm is developed to safely “break” the base pairs
in an RNA structure and automatically select filters
from the resulting HMM models. These approaches
have significantly improved the computational effi-
ciency of genome annotation. However, all of them
have yet been applied to search for structures that
contain pseudoknots.

Filters, like the structure to be searched, need
to be profiled with appropriate models. Most of the
existing searching tools 3, 13, 15, 16 use CMs to pro-
file the secondary structure of an ncRNA. While CM
based searching tools can achieve high accuracy, they
are incapable of modeling pseudoknots. In addition,
the time complexity for optimally aligning a sequence
segment to a CM profile is too high for a thorough
search of a genome 13. A few models 4, 20, 23, 26

based on stochastic grammar systems have been pro-
posed to profile pseudoknot structures. However, for
all these models, the computation time and memory
space costs needed for optimal structure-sequence
alignment are O(N5) and O(N4) respectively. In
practice, these models cannot be directly used for
searching. Heuristic approaches 3, 8, 15 can signifi-
cantly improve the search efficiency for pseudoknots.
These approaches either cannot guarantee the search
accuracy 8 or have the same drawback in computa-
tion efficiency as CM based approaches 3, 15.

A tree decomposable graph model has been in-
troduced in our previous work 25. In particular, the
secondary structure of RNAs is modeled as a confor-
mational graph, while a queried sequence segment

is modeled with an image graph with valued ver-
tices and edges. The sequence-structure alignment
can be determined by finding in the image graph the
maximum valued subgraph that is isomorphic to the
conformational graph. Based on a tree decomposi-
tion of the conformational graph with tree width t, a
sequence-structure alignment can be accomplished in
time O(ktN2) 25, where k is a small parameter (prac-
tically k ≤ 7), and N is the size of the conformational
graph. The tree width t of the RNA conformational
graph is very small, e.g, t = 2 for pseudoknot-free
RNAs and can only increase slightly for pseudoknots.
Experiments have shown that this approach is signif-
icantly faster than CM based searching approaches
while achieving an accuracy comparable with that of
CM.

In this paper, based on the tree decomposable
model, we develop a novel approach of filtration. In
particular, based on the profiling model in our previ-
ous work, a subtree formed by tree nodes containing
either of the two vertices that form a stem can be
used as a filter. A filter can thus be constructed for
each vertex in the conformational graph. Based on
the intersection relationship among the subtrees of
filters, we are able to construct a filter graph. In
the graph each vertex represents a maximal subtree
and two vertices are connected with an edge if the
corresponding subtrees intersect. We associate every
vertex in the filter graph a weight, which is the filtra-
tion ratio of the filter that can be measured based on
randomly generated sequences. We thus select filters
that correspond to the maximum weighted indepen-
dent set in the graph. A filter graph is a chordal
graph and we thus are able to compute its maximum
weighted independent set in time O(n2), where n is
its number of vertices. Filters can thus be selected
in time O(n2).

We have implemented this filter selection algo-
rithm and combined it with the original tree decom-
position based searching program to improve its com-
putational efficiency. To test its accuracy and com-
putational efficiency, we used this combined search
tool to search for RNA structures inserted into ran-
dom generated sequences. Our testing results showed
that, compared with the original searching program,
this filtering approach is significantly faster and can
achieve improved specificity. Specifically, it achieved
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20 to 60 fold speed up for pseudoknot-free RNAs and
11 to 45 fold speedup for RNAs containing pseudo-
knots. In addition, for some tested structures, this
approach is able to achieve an improvement in speci-
ficity from about 80% to 92%. We then used this
combined searching tool to search a few biological
genomes for ncRNAs. Our testing results showed
that this combined program can accurately deter-
mine the locations of these ncRNAs with significantly
reduced computational time, e.g, compared with the
original searching program, it achieved 6 to 142 fold
speed up for genome searchings for pseudoknots.

2. ALGORITHMS AND MODELS

2.1. Tree Decomposable Graph Model

In our previous work 25, the consensus secondary
structure of an RNA family was modeled as a topo-
logical relation among stems and loops. The model
consists of two components: a conformational graph
that describes the relationship among all stems and
loops and a set of simple statistical profiles that
model individual stems and loops. In the confor-
mational graph, each vertex defines one of the base
pairing regions of a stem. The graph contains both
directed and undirected edges. Each undirected edge
connects two vertices that form the pairing regions
of a stem. In addition, the vertices for two base re-
gions are connected with a directed edge (from 5’
to 3’) if the sequence part between them is a loop.
Technically, two additional vertices s (called source)
and t (called sink) are included in the graph. Figure
1(a) and (b) show the consensus structure of an RNA
family and its conformational graph. In general, we
can construct a consensus structure from the multi-
ple structural alignment of a family of RNAs. In this
model, in addition to the conformational graph, indi-
vidual stems are profiled with the Covariance Model
(CM) 6, and loops are profiles with HMM 14.

To align the structure model to a target se-
quence, we first preprocess the target sequence to
identify all possible matches to each individual stem
profile. All pairs of regions with statistically signifi-
cant alignment score, called the images of the stem,
are identified. Then an image graph is constructed
from the set of images for all stems in the structure.
In particular, each vertex represents an image for one

pairing region of a stem; two vertices for the base
pairing regions of a stem are connected with a non-
directed edge. In addition, a directed edge connects
the vertices for two non-overlapping base regions (5’
to 3’). To reduce the complexity of the graph, a pa-
rameter k is used to define the maximum number of
images that a stem can map to. It can be computed
based on a statistical cut-off value and its value is
generally small in nature. Figure 1(c) and (d) illus-
trate the mapping from stems to their images and
the corresponding image graph constructed.

The optimal structure-sequence alignment be-
tween the structure model and the target sequence
thus corresponds to finding in the image graph a
maximum weighted subgraph that is isomorphic to
the conformational graph. The weight is defined
by the alignment score between vertices (stems) and
edges (loops) in the conformational graph and their
counterparts in the image graph. The subgraph iso-
morphism problem is NP-hard. Interestingly, the
conformational graph for the RNA secondary struc-
ture is tree decomposable; efficient isomorphism al-
gorithms are possible.

Definition 2.1 (24). Let G = (V, E) be a graph,
where V is the set of vertices in G, E denotes the set
of edges in G. Pair (T, X) is a tree decomposition of
graph G if it satisfies the following conditions:

(1) T = (I, F ) defines a tree, the sets of vertices and
edges in T are I and F respectively,

(2) X = {Xi|i ∈ I, Xi ⊆ V }, and ∀u ∈ V , ∃i ∈ I

such that u ∈ Xi,
(3) ∀(u, v) ∈ E, ∃i ∈ I such that u ∈ Xi and v ∈ Xi,
(4) ∀i, j, k ∈ I, if k is on the path that connects i

and j in tree T , then Xi ∩ Xj ⊆ Xk.

The tree width of the tree decomposition (T, X) is de-
fined as maxi∈I |Xi| − 1. The tree width of the graph
G is the minimum tree width over all possible tree
decompositions of G.

Figure 2 provides an example for a tree decom-
position of a given graph. Tree decomposition is a
technique rooted in the deep graph minor theorems
24; it provides a topological view on graphs. Tree
width of a graph measures how much the graph is
“tree-like”. Conformational graphs for the RNA sec-
ondary structure have small tree width. For example,
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Fig. 1. (a) An RNA structure that contains both nested and parallel stems. (b) The corresponding conformational graph. (c)
A secondary structure (top), and the mapped regions and images for its stems on the target sequence (bottom). The dashed
lines specify the possible mappings between stems and their images. (d) The image graph formed by the images of its stems on
a target sequence. (il1, ir1) and (jl1, jr1) for stem 1, and (il2, ir2) and (jl2, jr2) for stem 2.
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Fig. 2. (a) An example of a graph. (b) A tree decomposition for the graph in (a).

the tree width is 2 for the graph of any pseudoknot-
free RNA and it can only increase slightly for all
known pseudoknot structures 25. For instance, the
conformational graph shown in Figure 5 for sophis-
ticated bacterial tmRNAs has tree width 5.

We showed in our previous work 25 that given a
tree decomposition of the conformational graph with
tree width t, the maximum weighted subgraph iso-
morphism can be efficiently found in time O(ktN2),
where N is the length of the structure model and k
is the maximum number of images that a stem can

map to.

2.2. Automated Structure Filter

We observe that any subtree in a tree decomposi-
tion of a conformational graph induces a substruc-
ture and is thus a structure profile of smaller size. It
can be used as a filter to preprocess a genome to be
annotated. In particular, the left and right regions
of any stem si in an RNA structure have two cor-
responding vertices vl

i and vr
i in its conformational

graph. In the tree decomposition of the conforma-
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tional graph, these two vertices induce a maximal
connected subtree Ti, in which every node contains
either of the vertices. We choose subtrees with this
maximal property since each of them contains the
maximum amount of structural information associ-
ated with the stem. This is also to ensure that when
the RNA structure contain a simple pseudoknot, the
pseudoknot will be included in some filter.

This way, we thus can obtain up to O(N) such
subtrees, where N is the size of the conformational
graph. However, subtrees may intersect and it would
be more desirable to select a set of disjoint subtrees to
preprocess the genome. For this, we construct a filter
graph as follows. In the graph each vertex represents
a maximal subtree defined above and two vertices
are connected with an edge if the corresponding sub-
trees intersect. Figure 3 shows an example for the
filter graph of a given RNA structure.

We associate every vertex in the filter graph a
weight, which is the filtration ratio of the filter re-
sulted from the corresponding subtree. The filtration
ratio of a filter is defined as the percentage of nu-
cleotides that pass the corresponding filtration pro-
cess and it is obtained as follows. For each filter, we
randomly generate a sequence of sufficient length and
compute the distribution of the scores of alignment
between the filter profile and all the sequence seg-
ments in the generated sequence. For a filter with
filtration ratio f , we assign a weight of -ln f to its
corresponding vertex. To achieve a minimum filtra-
tion ratio, we need to find the maximum weighted
independent set in the filter graph. We show in the
following that this independent set can be found eas-
ily.

According to 10, the filter graph constructed
from a tree decomposition is actually a chordal
graph, in which any cycle with length larger than
3 contains a chord. Also for any chordal graph,
there exists a tree decomposition for the graph such
that the vertices contained in every tree node induce
a clique and the tree decomposition can be found
in time O(|V |2), where V is the vertex set of the
chordal graph 9. Then given such a tree decomposi-
tion, a simple dynamic programming algorithm can
be developed to find the maximum weight indepen-
dent set.

Theorem 2.1. For an RNA secondary structure

that contains n stems, there exists an algorithm of
time O(n2) that can select a set of disjoint filters
with the maximum filtration ratio.

2.3. Filter-Sequence Alignment

For a given filter F , the vertices contained in the
tree bags of its corresponding subtree induce a sub-
graph in the conformational graph; such an induced
subgraph is its filter conformational graph. An align-
ment between a structural filter profile and a target
sequence is essentially an isomorphism between its
filter conformational graph H and some subgraph of
the image graph G for the target sequence. To find
such an isomorphism, we adopt the general dynamic
programming technique 1 over the tree decomposi-
tion of H . However, since the general technique can
only be directly applied to a subgraph isomorphism
on small fixed graph H and graph G of a small tree
width 17, we introduce some additional techniques to
solve the problem in our setting. We present a sum-
mary and some details of the new optimal alignment
algorithm in the following.

The dynamic programming over the tree decom-
position to find an optimal alignment is based on
the maintenance of a dynamic programming table
for each node in the tree. An entry in a table in-
cludes a possible combination of images of vertices
in the corresponding tree node and the validity and
partial optimal alignment score associated with the
combination. The table thus contains a column allo-
cated for each vertex in the node and two additional
columns V and S to maintain validity and partial
optimal alignment scores respectively.

In a bottom up fashion, the algorithm first fills
the entries in the tables for all leaf nodes. Specif-
ically, for vertices in a leaf node, a combination of
their images is valid if the corresponding mapping
satisfies the first two conditions for isomorphism (see
section 2) and the partial optimal alignment score
for a valid combination is the sum of the alignment
scores of loops and stems induced by images of ver-
tices that are only contained in the node. For an
internal node Xi in the tree, without loss of gener-
ality, we assume Xj and Xk are its children nodes.
For a given combination ei of images of vertices in
Xi, the algorithm checks the first two conditions for
isomorphism (section 2 in 25) and sets ei to be in-
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Fig. 3. (a) The conformational graph for a secondary structure that includes a pseudoknot. (b) A tree decomposition for the
graph in (a). (c) A filter graph for the secondary structure in (a). (d) Substructures of the filters.
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Fig. 4. A sketch of the dynamic programming approach for optimal alignments. The algorithm maintains a dynamic program-
ming table in each tree node. Starting with leaves of the tree, the algorithm follows a bottom-up fashion. In computing the table
for a parent node, only combinations of the images of the vertices in the node are considered. In every such combination, only
one locally best combination (computed in the children tables) is used for vertices that occur in the children nodes but not in the
parent node.

valid if one of them is not satisfied. Otherwise, the
algorithm queries the tables for Xj and Xk. ei is
set to be valid if and only if there exist valid entries

ej and ek from the tables of Xj and Xk such that
ej and ek have the same assignments of images as
that of ei for vertices in Xi ∩ Xj and Xi ∩ Xk re-
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spectively. The partial optimal alignment score for a
valid entry ei includes the alignment scores of stems
and loops induced by images of vertices only in Xi

and the maximum partial alignment scores over all
valid entries ej ’s and ek’s with the same assignments
of images for vertices in Xi ∩Xj and Xi ∩Xk as that
of ei in tables for Xj and Xk respectively. Figure 4
provides an example for the overall algorithm.

The alignment score is the sum of the scores for
aligning individual stems and loops in the structure
profile. The alignment score for a stem is calculated
between the stem profile and a chosen image in the
target of the stem. Since any loop in the structure
is between some two stems, the alignment score for
a loop is calculated between its profile and the se-
quence segment in the target within the two cho-
sen images for the two stems. The time complexity
for this dynamic programming approach is O(ktN2),
where k is the number of images for each vertex in
the conformational graph, t is the tree width of its
tree decomposition and N is its number of vertices.

3. EXPERIMENTAL RESULTS

We performed experiments to test the accuracy and
efficiency of this filtration based approach and com-
pared it with that of the original tree decomposition
based program. The training data was obtained from
the Rfam database 12. For each family, we choose up
to 60 sequences with pair-wise identities lower than
80% from the structural alignment of seed sequences.

In practice, to obtain a reasonably small value
for the parameter k, the upper bound on the num-
ber of images that a stem can map to, we constrain
the images of a stem within certain region, called the
constrained image region of the stem, in the target se-
quence. We assume that for homologous sequences,
the distances from the pairing region of a given stem
to the 3’ end follow a Gaussian distribution. For a
stem, we compute the mean and standard deviation
of distances from its two pairing regions to the 3’
end of the sequence respectively, evaluated over all
training sequences. For training data representing
distant homologs of an RNA family with structural
variability, we can effectively divide data into groups
so that a different but related profile can be built
for each group and used for searches. This ensures a
small value for the parameter k in the models.

As a first profiling and searching experiment, we
inserted several RNA sequences from the same family
into a random background generated with the same
base composition as the sequences in the family. We
then used this filtration based approach and the orig-
inal tree decomposition based program to search for
the inserted sequences. We compared the sensitivity
and specificity of both approaches on several different
RNA families. Finally, we tested the performance of
our approach by searching for non-coding RNA genes
in real biological genomes.

3.1. On Pseudoknot-Free Structures

We implemented this filter selection algorithm and
combined it with our tree decomposition based
searching tool to improve searching efficiency. To
test its accuracy and computational efficiency, we
used this program to search for about 30 pseudoknot-
free RNA structures inserted in a random back-
ground of 105 nucleotides generated with the same
base composition as the RNA structure. In particu-
lar, we computed the filtration ratio of each selected
filter with a random sequence of 10000 nucleotides,
which is generated with the same base composition
as that of the sequence to be searched. The statis-
tical distribution of alignment scores for each filter
and the overall structural profile is determined on the
same sequence using a method similar to that used
by RSEARCH 13. To improve the computational ef-
ficiency, we determine the maximum size of the sub-
structure for each filter; a window with a size that
is about 1.2 times of this value is used for searching
while this filter is used.

The order that the selected filters are applied is
critical to the performance of searching. However,
the number of possible orders for l selected filters
is up to l! and we thus are unable to exhaustively
search through all possible orders and find the best
one. In practice, we develop a heuristic method to
determine the order of filters. In particular, we con-
sider both the filtration ratio and the computation
time of a filter. For each selected filter, we associate
it with the value ln f

T , where f is its measured fil-
tration ratio and T is the computation time needed
for the filter to scan the testing sequence. We then
apply the structural profiles of filters to scan the tar-
get sequence with an increasing order of this value.
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A sequence segment passes the screening of a filter
if its corresponding alignment Z-score is larger than
2.0. For final processing, we use the original tree de-
composition based algorithm to process the remain-
ing sequence segments. An alignment Z-score larger
than 5.0 is reported as a hit. In our experiments, for
each stem, the algorithm selects k images with the
maximum alignment scores within the constrained
image region of the stem. In order to evaluate the
impact of the parameter k on the accuracy of the
algorithm, we carried out the same searching experi-
ments for each given k. Table 1 shows the number of
filters selected for each tested structure and the fil-
tration ratio for the one that is first applied to scan
the genome.

Table 2 shows that on the tested RNA families,
the filtration based approach achieves the same or
better searching accuracy than that of the original
approach. In particular, a significant improvement
on specificity is observed on a few tested families.
From Table 3, compared to the original approach, the
filtration based approach consumes a significantly re-
duced amount of computation time. On most of the
tested families, the filtration based searching is more
than 30.0 times faster than our original approach.

3.2. On Pseudoknot Structures

We also performed searching experiments on sev-
eral RNA families that contain pseudoknot struc-
tures. For each family, we inserted about 30 struc-
tures that contain pseudoknots into a background
randomly generated with the same base composition
as that of the inserted sequences. The training data
was also obtained from the Rfam database 12 where
we selected up to 40 sequences with pair wise iden-
tity lower than 80% from the seed alignment for each
family.

For each tested pseudoknot structure, the filtra-
tion ratio for the first filter that is applied to scan the
genome is shown in Table 4. Tables 5 and 6 compare
the searching accuracy and efficiency between the fil-
tration based approach and the original one. It is
evident that on families with pseudoknots, the fil-
tration based algorithm achieves the same accuracy
as that of the CM based algorithm when parame-
ter k reaches a value of 7. In addition, the filtration
based approach is more than 20 times faster than the

original approach on most of the tested pseudoknot
structures.

3.3. On Biological Genomes

We used the program to search biological genomes for
structural patterns that contain pseudoknots: corona
virus genomes, tmRNA, and telomerase RNAs. For
example, the secondary structure formed by nu-
cleotides in the 3’ untranslated region in the genomes
of the corona virus family contains a pseudoknot
structure. This pseudoknot was recently shown to
play important roles in the replication of the viruses
in the family 11. We selected four genomes from
the corona virus family and used the algorithm to
search for this pseudoknot. For bacteria, the tm-
RNA is essential for the trans-translation process and
is responsible for adding a new C-terminal peptide
tag to the incomplete protein product of a broken
mRNA 18. The secondary structure of tmRNA con-
tains four pseudoknots; Figure 5 provides a sketch
of the stems that constitute the secondary structure
of a tmRNA. The tree decomposition based algo-
rithm was also used to search for tmRNA genes on
the genomes of two bacteria organisms, Haemophilus
influenzae and Neisseria meningitidis. Both of the
genomes contain more than 106 nucleotides. Among
the bacteria containing tmRNAs, these two are rel-
atively distant from each other evolutionarily. To
test the accuracy and efficiency of the algorithm on
genomes with a significantly larger size, we used the
algorithm to search for the telomerase RNA gene in
the genomes of two yeast organisms, Saccharomyces
cerevisiae and Saccharomyces bayanus, both of which
contain more than 107 nucleotides. Telomerase RNA
is responsible for the addition of some specific simple
sequences onto the chromosome ends 5.

The parameter k used in the tree decomposition
based algorithm for searching all genomes is 7. Table
4 also shows the filtration ratio of the first applied
filter obtained on different values of k for each pseu-
doknot structure. Table 7 provides the real locations
of the searched patterns and the identified location
offsets deviating from the real locations annotated
by the filtration based and the original approaches
respectively. The table clearly shows that compared
with the original approach, the filtration based ap-
proach is able to achieve the same accuracy with a
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Table 1. The number of filters selected on tested pseudoknot free
structures. For each structure, the filtration ratio for the first filter
used to scan the genome is also shown.

RNA Number of Selected Filters Filtration Ratios

k = 6 k = 7 k = 8

EC 1 0.147 0.084 0.084

EO 1 0.082 0.049 0.049

Let 7 2 0.110 0.074 0.055

Lin 4 3 0.045 0.030 0.030

Purine 1 0.042 0.042 0.021

SECIS 1 0.089 0.036 0.036

S box 3 0.189 0.189 0.189

TTL 2 0.093 0.056 0.056

EC, EO and TTL represent Entero CRE, Entero OriR, and
Tymo tRNA-like respectively.

Table 2. A comparison of the searching accuracy of filtration based approach and the original tree decompo-
sition based program in terms of sensitivity and specificity.

RNA Without Filtration With Filtration

k = 6 k = 7 k = 8 k = 6 k = 7 k = 8

SE SP SE SP SE SP SE SP SE SP SE SP

EC 100 80.65 100 80.65 100 80.65 100 91.18 100 93.93 100 96.87

EO 100 100 100 100 100 100 100 100 100 100 100 100

Let 7 95.8 100 100 100 100 100 95.8 100 100 100 100 100

Lin 4 100 94.11 100 94.11 100 94.11 100 100 100 100 100 100

Purine 93.10 96.43 93.10 96.43 93.10 96.43 93.10 96.43 93.10 100 93.10 100

SECIS 100 97.30 100 97.30 100 97.30 100 97.30 100 97.30 100 97.30

S box 100 92.86 100 96.30 100 96.30 100 96.30 100 100 100 100

TTL 100 96.67 100 96.67 100 96.67 100 96.67 100 96.67 100 96.67

SE and SP are sensitivity and specificity in percentage respectively.

Table 3. The computation time for both approaches on all pseudoknot free RNA fam-
ilies.

RNA Without Filtration With Filtration

k = 6 k = 7 k = 8 k = 6 k = 7 k = 8

RT RT RT RT SU RT SU RT SU

EC 2.85 3.21 3.38 0.07 40.71× 0.08 40.13× 0.11 30.73×
EO 4.91 5.26 5.42 0.17 28.88× 0.23 22.87× 0.27 20.07×

Let 7 14.97 16.38 16.92 0.24 62.38× 0.31 52.84× 0.34 49.76×
Lin 4 3.22 4.25 5.10 0.11 29.27× 0.14 30.36× 0.16 31.87×
Purine 7.09 8.49 9.61 0.25 28.36× 0.33 25.72× 0.38 25.29×
SECIS 9.14 10.23 10.89 0.15 60.94× 0.20 51.15× 0.23 39.73×
S box 29.76 34.76 41.01 1.22 24.39× 1.71 20.33× 1.81 22.65×
TTL 5.01 6.10 7.07 0.20 25.05× 0.24 25.42× 0.30 23.57×

RT is the computation time in minutes; SU is the amount of speed up compared to the
original approach.

significantly reduced amount of computation time.
Both programs achieve 100% sensitivity and speci-
ficity for searches in genomes. The table also shows
that on real biological genomes, the selected filter
sets can effectively screen out the parts of the genome
that do not contain the desired structures and thus
improve the searching efficiency.

4. CONCLUSIONS

In this paper, we develop a new approach to im-
prove the computational efficiency for annotating
non-coding RNAs in biological genomes. Based on
the graph theoretical profiling model proposed in our
previous work, we develop a new filtration model
that uses subtrees in a tree decomposition of the con-
formational graph as filters. This new filtering ap-
proach can be used to search genomes for structures
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Table 4. The number of filters selected on tested pseudoknot structures.
For each structure, the filtration ratio for the first filter used to scan the
genome is also shown.

RNA Number of Selected Filters Filtration Ratios

k = 6 k = 7 k = 8

Alpha RBS 3 0.095 0.071 0.071

Antizyme FSE 1 0.078 0.066 0.042

HDV ribozyme 3 0.030 0.030 0.010

IFN gamma 5 0.069 0.035 0.035

Tombus 3 IV 3 0.067 0.048 0.048

corona pk3 1 0.028 0.014 0.014

PK3 1 0.027 0.013 0.013

tmRNA 11 0.220 0.220 0.070

Telomerase 2 0.130 0.130 0.130

Table 5. The search sensitivity (SE) and specificity (SP) for both filtration based and original approaches on
RNA sequences containing pseudoknots.

RNA Without Filtration With Filtration

k = 6 k = 7 k = 8 k = 6 k = 7 k = 8

SE SP SE SP SE SP SE SP SE SP SE SP

Alpha RBS 95.80 92.00 100 96.00 100 96.00 95.80 96.0 100 96.0 100 96.0

Antizyme FSE 96.43 100 100 100 100 100 92.86 100 100 100 100 100

HDV robozyme 100 97.37 100 97.37 100 97.37 100 97.37 100 97.37 100 97.37

IFN gamma 100 100 100 100 100 100 90 100 100 100 100 100

Tombus 3 IV 100 100 100 100 100 100 100 100 100 100 100 100

corona pk3 100 97.37 100 97.37 100 97.37 97.30 100 100 100 100 100

Table 6. The computation performance for both searching algorithms on some RNA families that
contain pseudoknots.

RNA Without Filtration With Filtration

k = 6 k = 7 k = 8 k = 6 k = 7 k = 8

RT RT RT RT SU RT SU RT SU

Alpha RBS 0.31 0.42 0.55 0.02 15.50× 0.03 14.00× 0.05 11.00×
Antizyme FSE 0.13 0.18 0.23 0.003 43.33× 0.004 45.00× 0.006 38.33×
HDV ribozyme 0.34 0.52 0.79 0.01 34.00× 0.02 26.00× 0.03 26.33×
IFN gamma 0.72 1.07 1.52 0.04 18.00× 0.05 21.40× 0.06 25.33×
Tombus 3 IV 0.27 0.40 0.57 0.01 27.00× 0.03 13.33× 0.05 11.40×
corona pk3 0.15 0.20 0.26 0.005 30.00× 0.007 28.57× 0.01 26.00×

The amount of RT is in hours; SU is the amount of speed up compared to the original approach.

-A-B-D-E-F-G-H-g-h-I-J-j-i-K-L-M-N-m-O-o-l-k-n-P-p-Q-R-S-r-q-s-T-U-V-W-X-v-u-t-Z-!-z-1-@-#-2-3-x-w-f-e-d-b-$-4-a-

PK1 PK2 PK3 PK4

Fig. 5. Diagram of stems in the secondary structure of a tmRNA. Upper case letters indicate base regions that pair with the
corresponding lower case letters. The four pseudoknots constitute the central part of the tmRNA gene and are labeled as Pk1,
Pk2, Pk3, Pk4 respectively.

containing pseudoknots with high accuracy. Com-
pared to the original method, a significant amount
of speed up is also achieved. More importantly, this

filtering method allows us to apply more sophisti-
cated sequence-structure alignment algorithm on the
remaining portions of the genome. For example, we
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Table 7. A comparison of the accuracy and efficiency for both algorithms on searching biological
genomes.

OR ncRNA Without Filtration With Filtration Real location GL

L R RT L R RT SU Left Right

BCV 3’PK 0 0 0.053 0 0 0.008 6.63× 30798 30859 0.31

MHV 3’PK 0 0 0.053 0 0 0.007 7.57× 31092 31153 0.31

PDV 3’PK 0 0 0.048 0 0 0.004 12.00× 27802 27882 0.28

HCV 3’PK 0 0 0.047 0 0 0.006 7.83× 27063 27125 0.27

HI tmRNA −1 −1 44.0 −1 −1 0.32 137.50× 472210 472575 18.3

NM tmRNA 0 0 52.9 0 0 0.37 142.97× 1241197 1241559 22.0

SC TLRNA −3 −1 492.3 −3 −1 8.74 56.33× 307691 308430 103.3

SB TLRNA −3 2 550.2 −3 2 9.28 59.29× 7121532 7122282 114.8

OR is the name of the organism; GL is the length of the genome in multiples of 105 nucleotides. BCV
is Bovine corona virus; MHV is Murine hepatitus virus; PDV is Porcine diarrhea virus; HCV is Human
corona virus; HI and NM represent Haemophilus influenzae and Neisseria meningitidis respectively, and
SC and SB represent Saccharomyces cerevisiae and Saccharomyces bayanus respectively. L and R are the
left and right offsets of the resulting locations respectively compared to the real locations. RT is the single
CPU time needed to identify the ncRNA in hours. For tmRNA and telomerase RNA searches, RT was
estimated from the time needed by a parallel search with 16 processors. SU is the amount of speed up
compared to the original approach.

are able to search remote homologs of a sequence
family using a few alternative profiling models for
each stem or loop. This approach can be used to find
remote homologs with unknown secondary structure.
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