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A current major focus in genomics is the large-scale collection of genotype data in populations in order to detect

variations in the population. The variation data are sought in order to address fundamental and applied questions
in genetics that concern the haplotypes in the population. Since almost all the collected data is in the form of
genotypes, but the downstream genetics questions concern haplotypes, the standard approach to this issue has been
to try to first infer haplotypes from the genotypes, and then answer the downstream questions using the inferred

haplotypes. That two-stage approach has potential deficiencies, giving rise to the general question of how well one
can answer the downstream questions using genotype data without first inferring haplotypes, and also giving rise to
the goal of computing the range of downstream answers that would be obtained over the range of possible inferred
haplotype solutions. This paper provides some tools for the study of those issues, and some partial answers. We

present algorithms to solve downstream questions concerning the minimum amount of recombination needed to derive
given genotypic data, without first fixing a choice of haplotypes. We apply these algorithms to the goal of finding
recombination hotspots, obtaining as good results as a published method that first infers haplotypes; and to the case

of estimating the minimum amount of recombination needed to derive the true haplotypes underlying the genotypic
data, obtaining weaker results compared to first inferring haplotypes using the program PHASE. Hence our tools
allow an initial study of the two-stage versus one-stage issue, in the context of specific downstream questions, but our
experiments certainly do not fully resolve the issue.

1. INTRODUCTION

The field of genomics is now in a phase where large-

scale data in populations is collected in order to

study population-level variations 8. Variations be-

tween individuals are used to provide insight into

basic biological processes such as meiotic recombina-

tion, or to locate genes that are currently under nat-

ural selection 36, and to help locate the genes that in-

fluence genetic disease or economic traits (through a

technique called “association mapping” or “LD map-

ping”) 15). Algorithms and computation play a cen-

tral role in all of these efforts, and there is a grow-

ing literature on several key problems involved in

both the acquisition and the downstream analysis of

population variation data. In discussing acquisition

and analysis problems, and in order to introduce the

theme of this paper, we must first define some basic

terms, concepts and issues.

In diploid organisms (such as humans) there are

two (not completely identical) “copies” of each chro-

mosome, and hence of each region of interest. A

description of the data from a single copy is called

a haplotype, while a description of the conflated

(mixed) data on the two copies is called a genotype.

Today, the underlying data that forms a haplotype is

usually a vector of values of m single nucleotide poly-

morphisms (SNP’s). A SNP is a single nucleotide

site where exactly two (of four) different nucleotides

occur in a large percentage of the population. Geno-

type data is represented as an n by m 0-1-2 (ternary)

matrix G. Each row is a genotype. A pair of binary

vectors of length m (haplotypes) generate a row i of

G if for every position c both entries in the haplo-

types are 0 (or 1) if and only if G(i, c) is 0 (or 1)

respectively, and exactly one entry is 1 and one is 0

if and only if G(i, c) = 2. The international Hap-

lotype Map Project 7, 8 is focused on determining,

both molecularly and computationally, the common

haplotypes in several diverse human populations.

The Key Issue The key technological fact is

that it is very difficult and costly to collect large-

scale haplotype data, but relatively easy and cheap
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to collect genotype data. But mutation, recombina-

tion, selection, evolution, all operate on haplotypes,

not genotypes, and therefore the “downstream” bio-

logical questions that we want to answer using pop-

ulation variation data (for example, about recombi-

nation hotspots, linkage disequilibrium, natural se-

lection, association mapping, phylogenetic networks,

etc.) are all questions that are most naturally framed

in terms of haplotypes. So, we have the ability to

gather large-scale genotypes in populations, but we

have the need to ask and answer questions about the

underlying haplotypes in populations. To date, the

resolution of this issue has overwhelmingly involved

two independent stages: First, try to infer the “cor-

rect” haplotypes from the genotypes, either inferring

a pair of haplotypes for each genotype in the sample,

or inferring just the frequencies of the haplotypes in

the sample; Second, do the downstream analysis us-

ing those inferred haplotypes.

There is a very large literature on haplotype in-

ference (HI), and on an absolute scale, the under-

lying haplotypes can be inferred with remarkable fi-

delity 25, although problems remain and the field of

haplotype inference is still very active (for example,

even the developer of the most widely used program

PHASE 35 has recently introduced a totally different

approach in order to address much larger data than

PHASE can handle 33). So, the two-stage approach

may in the end be the best way to address many of

the downstream biological questions of interest, but

in general there is some (potential) loss of informa-

tion in any two-stage approach, and certainly this

particular approach has both problems and missed

opportunities. The main problem is that the hap-

lotype inferences are likely to be incorrect to some

extent and is not clear what effect those inaccuracies

will have on the downstream analysis. The missed

opportunities inherent in the two-stage approach is

that by choosing just one set of haplotypes, we do not

address questions about the range of possible answers

to the downstream questions that the collected geno-

type data support. Range questions are of interest

because they provide a kind of “sensitivity analysis”

for any particular chosen answer (for example for an

answer derived from the two-stage approach), and

they address the general question of “how much does

it really help to know the underlying haplotypes that

gives rise to the genotypes” 6, 27, 28? The answer to

that question helps determine how much effort or

money one would be willing to spend to determine

the correct haplotypes (by molecular means or by

gathering more genotype data). Indeed, we are see-

ing results in this general direction. For example,

Halperin, et al. developed a method for tag SNP

selection with genotype data 14.

The Main Theme of This Paper: Motivated

by the above discussion, this paper concerns the solu-

tion to certain downstream biological questions using

genotypic data, without first fixing a choice of hap-

lotypes. In particular, we are concerned with esti-

mating, and bracketing the range of the minimum

amount of recombination needed to derive haplo-

types that can pair to form the observed genotypes,

and with problems of inferring an explicit evolution-

ary history of haplotypes that can pair to form the

observed genotypes. As a byproduct, turning the

two-stage process on its head, we can use some of

these computations to solve the haplotype inference

problem itself. We develop polynomial time algo-

rithms for some problems, non-polynomial but prac-

tical algorithms for other problems, and show the

results of applying these methods to simulated and

real biological data. Our methods provide some tools

to study the two-stage versus one-stage issue, in the

context of specific problems involving recombination.

However, we do not claim that our experimental re-

sults resolve the issue of which approach is best.

2. ADDITIONAL DEFINITIONS

Before discussing our results in detail, we need some

additional definitions.

Given an input set (or matrix) of n genotype

vectors G of length m, the Haplotype Inference (HI)

Problem is to find a set (or matrix) H of n pairs of bi-

nary vectors (with values 0 and 1), one pair for each

genotype vector, such that each genotype vector in

G is generated by the associated pair of haplotypes

in H. H is called an “HI solution for G”. Genotype

data is also called “unphased data”, and the decision

on whether to expand a 2 entry in G to [
0

1
] or to [

1

0
]

in H, is called a “phasing” of that entry. The way

that all the 2’s in a column are expanded is called

the phasing of the column.
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The standard assumption in population genetics
15, 16 is that at most one mutation has occurred in

any sampled site in the evolution of the haplotypes.

This is called the “infinite sites model”. In addition

to mutation, haplotypes may evolve due to recombi-

nation between haplotype sequences. Meiotic recom-

bination takes two equal length sequences and pro-

duces a third sequence of the same length consisting

of some prefix of one of the sequences, followed by a

suffix of the other sequence. Meiotic recombination

is one of the principal evolutionary forces responsible

for shaping genetic variation within species. Efforts

to deduce patterns of historical recombination or to

estimate the frequency or the location of recombi-

nation are central to modern-day genetics 26, and

recombination is at the heart of the logic of asso-

ciation mapping, a technique that is widely hoped

to help locate genes influencing genetic diseases and

important traits 15.

For a given set of haplotypes, computing the

minimum number of recombinations needed to ex-

plain their evolution (under the infinite sites model)

is a standard question of interest, for both practical

and fundamental reasons. For a matrix of haplotypes

H, we define Rmin(H) as the minimum number of

recombination events needed in a derivation of H

from some unknown (or sometimes known) ances-

tral haplotype, under the infinite sites model. The

problem of computing Rmin(H) exactly is NP-hard,

but there is a growing literature on polynomial-time

methods that work on problems of special structure;

on practical heuristics that are exact on small data;

and on efficient methods to compute close bounds on

Rmin(H).

The evolutionary history of a set of haplotypes

H, which evolve by site mutations (assuming the in-

finite sites model) and recombination, is displayed

on a directed acyclic graph called a “Phylogenetic

Network” or an “Ancestral Recombination Graph

(ARG)”. For a formal definition of these graphs,

see Gusfield, et al. 12 or Gusfield 11.

In most of the results in this paper the concept

of site incompatibility is fundamental. Given a hap-

lotype matrix H, two sites (columns) p and q in H

are said to be incompatible if and only if there are

four rows in H where columns p and q contain all

four of the ordered pairs 0,1; 1,0; 1,1; and 0,0. The

test for the existence of all four pairs is called the

“four-gamete test” in the population genetics litera-

ture. The classic Perfect Phylogeny theorem is that

there is a phylogenetic network without recombina-

tion (and hence a tree), that derives haplotypes H, if

and only if there is no incompatible pair of site in H.

An HI solution, H, for G is a called a “PPH solution”

if no pair of sites in matrix H are incompatible. The

problem of determining if there is a PPH solution

can be solved in linear time 9, 32.

3. RECOMBINATION LOWER

BOUNDS OVER GENOTYPES

Let L denote a particular recombination lower bound

method that works on haplotype data, and let L(H)

be the lower bound given by L when applied to hap-

lotype matrix H. That is, L(H) ≤Rmin(H). Given a

genotype matrix G, we define MinL(G) as the min-

imum value of L(H) taken over every HI solution H

for G, that is, over all haplotype matrices that gen-

erate G. Similarly, we define MaxL(G) by changing

“minimum” to “maximum” in the definition. The

two quantities, MinL(G) and MaxL(G), precisely

define the range of results that method L will pro-

duce, over all possible HI solutions for G. Note that

MinL(G) ≤ L(H∗) ≤ Rmin(H∗) where H∗ is the

true (but unknown) set of haplotypes that gives rise

to G, but it is not true that Rmin(H∗) ≤ MaxL(G).

Rather, L(H∗) ≤ MaxL(G).

The motivation for wanting to know MaxL(G)

may be a bit unintuitive. One situation is where we

are interested in the amount of recombination that

must have occurred in the generation of the true hap-

lotypes underlying the observed genotypes G, and

the available tool for studying recombination levels

is the ability to compute L(H) given haplotypes H.

An obvious question in this situation is whether it is

valuable to expend additional resources to better de-

termine more information about the true H (in the

laboratory or by collecting more data). The differ-

ence MaxL(G) − MinL(G) indicates the most that

can be learned about recombination (through the use

of L(H)), even with additional efforts to learn the

true H. In particular, if the difference is small, de-

termination of the true H has little value in this con-

text, and if the difference is large, MaxL(G) bounds

the most that can be learned, even if the true H is
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known.

In the next three sections we develop lower

bound methods that work on a genotype matrix G.

These methods will also be useful in Section 4 where

we develop a method to build a minimum ARG for

a set of genotypes.

3.1. The case of the Hudson-Kaplan

(HK) lower bound

The first and best-known lower bound on Rmin(H)

is the HK bound 19. When L is the HK method,

we use MinHK(G) and MaxHK(G) in place

of MinmL(G) and MaxL(G). Previously, Wiuf
38 showed that MinHK(G) can be computed in

polynomial time. In this section, we show that

MaxHK(G) can also be computed in polynomial

time. We first have to define the incompatibility

graph and to briefly describe the HK bound and

method.

The “incompatibility graph” IG(H) for H is a

graph containing one node for each site in H, and

an edge connecting two nodes p and q if and only

if sites p and q are incompatible. We will refer to a

node of IG(H) and to the site of G it corresponds to,

interchangeably. The HK lower bound on Rmin(H)

can be described and computed as follows: Arrange

the nodes of IG(H) on a line in the order that the

corresponding sites appear in the underlying chromo-

some. Then compute the maximum number of non-

overlapping edges in the embedded graph IG(H).

Two edges that only share a single node are still

non-overlapping. The computed number is the HK

bound, denoted HK(H). It is easy to establish that

HK(H) ≤ Rmin(H), and that HK(H) can be com-

puted in time that is linear in the number of edges

of IG(H).

3.1.1. Efficient algorithm for MaxHK(G)

Given a genotype matrix G, we define the maximal

incompatibility graph for G, denoted MIG(G), as fol-

lows: Each node in MIG(G) corresponds to a site in

G, and there is an edge between nodes p and q if

there exists an HI solution H for G so that the pair

p, q is incompatible. Note that the existence of an

edge (p, q) is determined independently of all other

pairs of sites; the HI solution that is used for one

pair can be completely different from the HI solution

used for another pair. Therefore, we only need to

look at sites p and q to determine if edge (p, q) is in

MIG(G). Graph MIG(G) is a supergraph of every

incompatibility graph IG(H) where H is an HI so-

lution for G. For example, suppose sites p and q in

G are

0 0

0 1

1 0

2 2

Then there is an edge (p, q) in MIG(G) because we

can phase the 2’s in row four as [
0 0

1 1
] to make p, q

incompatible. We now describe the algorithm.

Algorithm MaxHK

1. Construct MIG(G) for input data G.

2. Arrange the nodes of MIG(G) on a line, in the

order that the sites appear in the underlying

chromosome. Then find a maximum-size set,

EG, of non-overlapping edges in MIG(G).

We claim that |EG| = MaxHK(G).

Time analysis: The first step takes O(nm2)

time. The second time takes O(m2) time. Thus,

the algorithm runs in O(nm2) time.

Correctness: For every HI solution H for G,

|EG| ≥ HK(H) because IG(H) is subgraph of

MIG(G). Therefore, |EG| ≥ MaxHK(G). To show

the converse, it is sufficient to show that |EG| ≤

HK(H) for some HI solution H for G. This is not

immediate because it is not necessarily true that

MIG(G) = IG(H) for some HI solution H for G.

But, if we can find an HI solution H for G where all

the edges of EG are in IG(H) (where they will be

non-overlapping), then |EG| ≤ HK(H). The edges

in EG induce a graph, and consider one of the con-

nected components, C, of that graph. Because the

edges in EG are non-overlapping and C is a con-

nected component, the edges in C form a simple con-

nected path along the nodes in C ordered from left

to right in the embedded MIG(G). Let s1, s2, . . . , sk

denote the ordered nodes in C. To construct the de-

sired H, we first phase sites s1, s2 to make pair s1, s2

incompatible (that is possible since edge (s1, s2) is
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in MIG(G)). Now we move to site s3. We want to

make pair s2, s3 incompatible but we have already

chosen how s2 will be phased with respect to s1. The

critical observation is that this prior decision does

not constrain the ability to make pair s2, s3 incom-

patible, although one has to pay attention to how s2

was phased. In choosing how to phase s3 relative to

s2, the only rows in G where a phasing choice has

any effect on whether pair s2, s3 will be incompati-

ble, are the rows where both those sites have value 2

in the genotype matrix G. For one such row k of G,

suppose we need to phase the 2’s in s2, s3 to produce

the pair 0,1 or the pair 1,0 or both, in order to make

pair s1, s2m incompatible. (The case where we need

0,0 and/or 1,1 is similar and omitted.) If column s2

(for row k) has been phased as [
0

1
] we phase s3 (for

row k) as [
1

0
]. Otherwise, we phase s3 as [

0

1
]. In

either case, we will produce the needed binary pairs

in sites s2, s3 for row k. Similarly, we can follow the

same approach to phase sites s4, . . . , sk, making each

consecutive pair of sites incompatible.

In this way, we can construct a haplotyp-

ing solution H for G where all the edges of EG

(and possibly more) appear in IG(H), and hence

|EG| ≤ HK(H) ≤ MaxHK(G). But since |EG| ≥

MaxHK(G), |EG| = MaxHK(G), completing the

proof of the correctness of Algorithm MaxHK.

3.2. The case of connected-component

lower bound

A “non-trivial” connected component, C, of a graph

is a connected component that contains at least

one edge. A trivial connected component has only

one node, and no edges. For a graph I, we

use cc(I) to denote the number of non-trivial con-

nected components in graph I. It has previously

been established 13, 1 that for a haplotype matrix

H, cc(IG(H)) ≤ Rmin(H), and that this lower

bound can be, but is not always, superior to the

HK bound when applied to specific haplotype ma-

trices. Therefore, for the same reasons we want

to compute MinHK(G) and MaxHK(G), we de-

fine MinCC(G) and MaxCC(G) respectively as the

minimum and maximum values of cc(IG(H)) over

every HI solution H for G. In this section we show

that MinCC(G) can be computed in polynomial

time by Algorithm MinCC, using an idea similar to

one used for MaxHK(G). The problem of efficiently

computing MaxCC(G) is currently open.

Algorithm MinCC

1. Given genotype matrix G, construct graph

MIG(G) and remove all trivial components.

2. For each remaining component C, let G(C) be the

matrix G restricted to the sites in C. For

each such C, determine if there is a PPH so-

lution for G(C), and remove component C

if there is a PPH solution for G(C).

3. Let Kc be the number of remaining con-

nected components. We claim that Kc =

MinCC(G).

Time analysis: Constructing MIG(G) takes

O(nm2) time. Finding all components takes O(m)

time. Checking all components for PPH solutions

takes O(nm) time. Thus, the entire algorithm takes

O(nm2) time.

Correctness. We first argue that cc(IG(H)) ≥

Kc for every HI solution H for G. Let H be an arbi-

trary HI solution for G, and consider one of the Kc

remaining connected components, C, found by the

algorithm. Since G(C) does not have a PPH solu-

tion, there must be at least one incompatible pair of

sites in H, and so at least one edge in C must also

be in IG(H). Further, since IG(H) is a subgraph

of MIG(G), every connected component of IG(H)

must be completely contained in a connected compo-

nent of MIG(G). Therefore, there must be at least

one non-trivial connected component of IG(H) con-

tained in C, and so cc(IG(H)) ≥ Kc.

To finish the proof of correctness, it suffices to

find an HI solution H ′ for G where cc(IG(H ′)) = Kc.

Note that we can phase the sites in each connected

component of MIG(G) separately, assured that no

pair of sites in different components will be made

incompatible. This is due to the maximality of con-

nected components, and the definition of MIG(G).

To begin the construction of H ′, for a non-trivial

component C of MIG(G) where G(C) has a PPH

solution, we phase the sites in C to create a PPH

solution. As a result, none of those sites will be in-
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compatible with any other sites in G. Next we phase

the sites of one of the Kc remaining components, C,

so that in H ′, the nodes of C form a connected com-

ponent of IG(H ′). To do this, first find an arbitrary

rooted, directed spanning tree T of C. Then phase

the site at the root and one of its children in T so

that those two sites are made incompatible. Any

other site can be phased as soon as its unique parent

site has been phased. As in the proof of correctness

for Algorithm MaxHK, and because each node has a

unique parent, each site can be phased to be made in-

compatible with its parent site, no matter how that

parent site was phased. The result is that all the

sites of C will be in a single connected component of

IG(H ′), so Kc ≥ cc(IG(H ′). But cc(IG(H)) ≥ Kc

for every HI solution H for G, so MinCC(G) = Kc,

and the correctness of Algorithm MinCC is proved.

Final comments on the polynomial-time

methods

Above, we developed polynomial-time methods to

compute MaxHK(G) and MinCC(G), given geno-

types G. These are two specific cases of our inter-

est in efficiently computing MinL(G) and MaxL(G)

for different lower bounding methods L that work

on haplotypes. Clearly, for the best application

of such numerical values, we would like to com-

pute MinL(G) and MaxL(G) for the lower bound

methods L that obtain the highest lower bounds on

Rmin(H) when given haplotypes H. The HK and

the CC lower bounds are not the best, but are of in-

terest because they allow provably polynomial-time

methods to compute MinHK(G),MaxHK(G) and

MinCC(G). Those results contribute to the theo-

retical study of lower bound methods, and may help

to obtain polynomial-time, or practical methods, for

better lower bound methods. In the next section we

discuss a practical method (on moderate size data)

to compute better lower bounds given genotypes.

3.3. Parsimony-based lower bound

One of the most effective methods to compute lower

bounds on Rmin(H), for a haplotype matrix H, was

developed in Myers, et al. 30, further studied in

Bafna, et al. 2, and optimized in Song et al 34. All of

the methods in those papers produce lower bounds

on Rmin(H) that are much superior to HK(H) and

CC(H), particularly when n > m. Therefore, given

G, we would like to compute the minimum and/or

maximum of these better bounds over all HI solutions

for G. Unfortunately, we do not have a polynomial-

time method for that problem, and we presently solve

it only for very small data. However, we have devel-

oped a lower bounding method that works on geno-

type matrices of moderate size, using an idea related

to the cited methods, and we have observed that

when n > m, the lower bound obtained is often much

superior to MinHK(G) and MinCC(G).

All the lower bound methods in the papers cited

above work by first finding (local) lower bounds for

(selected) intervals or subsets of sites in H, and then

combining those local bounds to form a composite

lower bound on Rmin(H). The composition method

was developed in Myers, et al. 30 and is the same for

all of the methods. What differs between the meth-

ods is the way local bounds are computed. We do

not have space to fully detail the methods, but all

the local bounds are computed with some variation

of the following idea 30: Let Hap(H) be the num-

ber of distinct rows of H, minus the number of dis-

tinct columns, minus 1. Then Hap(H) ≤ Rmin(H).

Hap(H) is called the Haplotype lower bound. When

applied to the entire matrix H, Hap(H) is often

a very poor lower bound, but when used to com-

pute many local lower bounds in small intervals, and

these local bounds are combined with the composi-

tion method, the overall lower bound on Rmin(H)

is generally quite good.

Similar to the methods that work on haplotype

data, given a genotype matrix G, we compute re-

laxed Haplotype lower bounds for many small inter-

vals, and then use the composition method to create

an overall number Ghap(G) which is a lower bound

on the minimum Rmin(H) over every HI solution

H for G. Of course, to be of value, it must be that

Ghap(G) is larger than MinHK(G) and MinCC(G)

for a large range of data.

We now explain how we compute the local

bounds in G that combine to create Ghap(G). When

restricted to sites in an interval, we have a submatrix

G′ of G. An HI solution H ′ for a genotype matrix

G′ is called a “pure parsimony” solution if it mini-

mizes the number of distinct haplotypes used, over
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all HI solutions for G′. If the number of distinct

haplotypes in a pure parsimony HI solution for G′ is

p(G′), and G′ has m′ sites, it is easy to show that

p(G′) − m′ − 1 ≤ Rmin(H ′) for any HI solution H ′

for G′. We call this bound Par(G′). To compute

Ghap(G), we compute the local bound Par(G′) for

each submatrix of G defined by an interval of sites

of G, and then combine those local bounds using the

composition method from Myers, et al 30. It is easy

to show that Ghap(G) ≤ Rmin(H) for every HI so-

lution H for G.

The problem of computing a pure parsimony

haplotyping solution is known to be NP-hard 17, 22,

so computing Par(G′) is also NP-hard. But, a pure

parsimony HI solution can be found relatively ef-

ficiently in practice on datasets of moderate size

by using integer linear programming 10. Other pa-

pers have shown how to solve the problem on larger

datasets 4, 5. Therefore, each local Par(G′) bound

can be computed in practice when the size of G′ is

moderate, and so Ghap(G) can be computed in prac-

tice for a wide range of data.

Our experiments show that Ghap(G) is often

smaller than MinHK(G) or MinCC(G) when n <

m and when the recombination rate is low. However,

when n increases, Ghap(G) becomes higher than

MinHK(G) or MinCC(G). Our simulation shows

that for dataset with 20 genotypes and 20 sites,

Ghap(G) is larger than MinHK(G) or MinCC(G)

for over 80% of the data. As an example, a real bi-

ological data (from Orzack, et al. 31) has 80 rows

and 9 sites. MinHK(G) = MinCC(G) = 2, while

Ghap(G) is 5 (which is equal to Rmin(G) as shown

in Section 5.3).

4. CONSTRUCTING A MINIMUM

ARG FOR GENOTYPE DATA

USING BRANCH AND BOUND

In this section, we consider the problem of construct-

ing an ancestral recombination graph (ARG) that de-

rives an HI solution H and uses the fewest number of

recombinations for the genotype matrix G. We call

such an ARG a minimum ARG for G and denote

the minimum number of recombination in this ARG

Rmin(G). Formally,

Haplotyping on a minimum ARG: Given a

genotype data G, find an HI solution H for G, such

that we can derive H on an ARG with the fewest

number of recombinations. Here, as usual, we as-

sume the infinite sites model of mutations.

It is easy to see this problem is difficult. After

all, there is no known efficient algorithm for con-

structing the minimum ARG for haplotype data 37, 3

and haplotype data can be considered to be a subset

of genotype data. Here, we show that under certain

conditions, we can solve this problem by a branch

and bound method. The intuition of our method

comes from the concept of hypercube of length m

binary sequences.

Note that there are up to 2m possible sequences

in the hypercube that can be on the an ARG that de-

rives an HI solution for G. Conceptually we can build

the ARG as follows. We start from every sequence

node in the hypercube as the root of the ARG. Each

time, we try all possible ways of deriving a new se-

quence by (1) an (unused) mutation from a derived

sequence, or (2) a recombination of two derived se-

quences. The ARG grows when we derive new se-

quences. Once the ARG derives an HI solution for

G, we have found an ARG that is potentially the so-

lution. We can find the minimum ARG by searching

through all possible ways of deriving new sequences

and finding the ARG with smallest number of recom-

binations.

Directly applying the above idea is not practical

when the data size increases. We develop a practical

method using branch and bound. We start building

the ARG by staring from a sequence as the root. At

each step, we maintain a set of sequences that have

been derived. We also maintain the best ARG found

so far, i.e. the ARG that derives an HI solution for

G and use the smallest number of recombinations

(denoted Rmin). We derive a new sequence by a

recombination of two already derived sequences or

an unused mutation from a derived sequence. We

check whether the current ARG derives an HI solu-

tion. If so, we store this solution if this ARG uses

less recombinations than Rmin. If not, we compute

a lower bound on the minimum number of recombi-

nations we need to derive an HI solution, given the

choices we make in the search path. If the lower

bound is not smaller than Rmin, we know the cur-

rent partially built ARG can not lead to a better

solution and thus stop this search path. Otherwise,
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we continue to derive more sequences from the cur-

rent derived sequences. We illustrate the basic proce-

dure of the branch and bound method in Algorithm

GenoMinARG.

Algorithm GenoMinARG

1. Root We maintain a set of sequences called de-

rived set (containing sequences that are part

of the ARG already built so far). Initialize

the derived set with a binary sequence sr

as the root of the ARG. Maintain a vari-

able Rmin as the currently known mini-

mum number of recombinations. Initialize

Rmin to be ∞ (or some pre-computed up-

per bound).

2. Deriving sequences Repeat until all search

paths are explored or terminated. Then Re-

turn to Step 1 if there are more root se-

quences to try. Stop the algorithm other-

wise.

2.1 Through either a recombination or (unused) mu-

tation from sequences in the derived set,

grow the derived set by deriving a new se-

quence.

2.2 Check whether the derived set contains an HI so-

lution. If so, stop this search path. Denote

the number of recombinations in this ARG

Rminc. If Rminc < Rmin, set Rmin ←

Rminc. Continue with the next branch.

2.3 If the recombination lower bound (with the cur-

rent derived haplotypes) is at least Rmin,

stop this search path and continue with the

next search. Otherwise, follow this branch

and continue on step 2.1.

The key to the success of branch and bound is

the use of genotype recombination lower bounds we

presented earlier. We use the lower bound methods

in Section 3 and also improve them with some addi-

tional ideas, which speed up the method significantly.

We omit the details due to the space limit.

Remarks. The branch and bound method seems

to work for many datasets with up to 8 sites. This

method is still useful because there are real biologi-

cal data that contain small number of sites and many

rows. We provide such an example in Section 5.3.

5. APPLICATIONS

5.1. Detecting recombination hotspots

using genotype data

Recombination rates are often believed to vary sig-

nificantly across a genome. A recombination hotspot

refers to a genomic region where the recombination

rate is much higher than in its neighboring regions.

Detecting recombination hotspots is important for

many applications, e.g. association mapping and has

been actively studied recently, for example in Myers,

et al. 29. Bafna and Bansal 2 applied recombination

lower bounds based on haplotypes to reveal recombi-

nation hotspots. Their results on the MHC data 20

and MS32 data 21 indicate that recombination lower

bounds may be useful in identifying locations and

intensity of recombination hotspots.

However, computing recombination lower

bounds on haplotype data has a potential problem.

The real biological data (such as the MHC 20 and

MS32 data 21) are genotypes. It is not clear what

effect the haplotyping error has on recombination

hotspot detection. Here, we compute the exact min-

imum number of recombinations for small intervals

of the genotype data, and thus effectively remove the

haplotyping uncertainty from our results.

Given a set of genotypes G, we move a sliding

window with a small number of (say 6) SNPs. We

denote the submatrix within a window by G′. For

each window, we compute Rmin(G′). Each time,

we move the window by half of its width. We use

Rmin(G′) on these intervals to calculate the average

minimum number of recombinations per kB along

the genome. We first analyze the MHC data. After

removing missing values, there are 277 (out of 296)

SNPs and 50 genotypes. On a Pentium 2.0 GHz ma-

chine, the computation takes 242 seconds when the

window size is 5, and it takes 2865 seconds when the

sliding window size is set to 6. For a few intervals,

the computation of the exact minimum number of

recombinations is slow. We simply time out and use

an efficiently computed recombination lower bounds

instead for these intervals.

Figure 1 plots the average minimum number of

recombinations per KB across the region of interest.

The results we obtained by computing over geno-

types match the results over haplotype data quite
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Fig. 1. Detecting recombination hotspots using genotype data for MHC data. Use a sliding window of 6 SNPs. We assign
position 0 to the leftmost SNP. The results match the ones based on haplotypes.

well. The DNA1/2, DNA3, DMB1/2 and TAP2

hotspots are clearly identifiable and match the re-

sults in Bafna, et al. 2 quite well. We also tested our

method on the MS32 data 21. The result is shown

in Figure 2. Again, we see good matches with the

results reported in Bafna, et al. 2. Five hotspots

are identifiable: NID2, NID1, MS32, MSTM1 and

MSTM2. As in Bafna, et al. 2, NID3 is not signifi-

cant and not detected. Overall, our results by com-

puting minimum number of recombination on geno-

type data match quite well with the results in Bafna,

et al 2.

5.2. Comparing minimum recombination

on genotypes and haplotypes

In Section 4, we demonstrated that for certain geno-

type data, we can build a minimum ARG that derives

an HI solution explaining the given genotypes. This

allows us to compare the minimum recombination

on genotypes, original haplotypes and HI solutions

found by program PHASE.

We generated simulation genotype data as fol-

lows. We first run Hudson’s program MS 18 to gener-

ate 2n haplotypes (denoted Ho). We choose various

scaled recombination rate (denoted ρ) when running

MS. Genotype matrix G with n rows is then gener-

ated by pairing haplotype 2i with haplotype 2i − 1.

We fix the number of sites in the sequences to be a

small number, say 7. We run our method on G, and

obtain an HI solution H. We compare H with the

original haplotypes Ho. As a comparison, we run

program PHASE on G, and compare the PHASE

HI solution (denoted Hp) with Ho. For each data

size and scaled recombination rate, we generate 100

datasets.

For each dataset, we compute Rmin(G), the

minimum number of recombinations on G. We also

compute Rmin(Ho) using program beagle 24. As

a comparison, we compute Rmin(Hp). Note that

Rmin(G) ≤ Rmin(Ho) and Rmin(G) ≤ Rmin(Hp).

Table 1 shows the comparison among

Rmin(G), Rmin(Ho) and Rmin(Hp) for various

data size and ρ. One can see that for a large portion

of the data we simulated, Rmin(G) = Rmin(Ho).

Thus, haplotyping on a minimum ARG may be an

effective approach for the range of data we tested.

Another interesting observation is on the perfor-

mance of PHASE. PHASE is known to be quite

accurate for many data. Our simulation here shows

that PHASE tends to minimize the number of re-

combinations to some extent, at least implicitly. Our

simulation results show that often, but not always,

Rmin(Hp) is between Rmin(G) and Rmin(Ho).

From the simulation we performed, we ob-

served that for some data, Rmin(Ho) is much

closer to Rmin(G) than Rmin(Hp). But on aver-

age, Rmin(Ho) is usually closer to Rmin(Hp) than

Rmin(G). Overall, these experiments suggest that

for the downstream question of computing the min-

imum number of recombination, the two stage ap-

proach by first using PHASE to obtain an HI solu-
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Fig. 2. Detecting recombination hotspots using genotype data for MS32 data. Use a sliding window of 6 SNPs.

Table 1. Comparison of Rmin(Ho),
Rmin(G) and Rmin(Hp). Here, H stands for Rmin(Ho), G

stands for Rmin(G) and P stands for Rmin(Hp). The data
size is the number of genotype rows by the number of sites. ρ

is the scaled recombination rate in Hudson’ program MS. The
next 3 columns display the percentage of datasets where two
compared minimum number of recombinations are equal. For
example, for data 15 by 7, ρ = 40, 43% of data have equal
Rmin(G) and Rmin(Ho). The two columns on the right shows
the average difference between Rmin(G) (resp. Rmin(Hp))
with Rmin(Ho). The value reported for difference are av-

erage differences for the two numbers over the 100 datasets.

Data size ρ G, H P, H G, P H − G H − P

15 by 7 20 56% 68% 63% 0.62 0.45

20 by 7 20 45% 60% 72% 0.68 0.34
15 by 7 30 38% 60% 56% 0.99 0.32

20 by 7 30 44% 56% 68% 0.79 0.34

15 by 7 40 43% 46% 54% 0.87 0.2
20 by 7 40 46% 47% 76% 0.80 0.48

tion Hp and then compute Rmin(Hp) is an effective

approach for the range of data we tested. We want to

point out however that this conclusion would not be

possible without our method of computing Rmin(G),

thus allowing one to study this issue.

5.3. Haplotyping on a minimum ARG

Since we can build a minimum ARG for the input

genotypes, we can construct a HI solution from this

minimum ARG, since the ARG gives a set of hap-

lotypes that can explain the genotypes. Naturally,

we want to study the haplotyping accuracy of this

minimum-ARG method. Here, we use the same sim-

ulated data in 5.2. Table 2 shows the haplotyping

accuracy of our method, and table 3 shows the re-

sult on these dataset of program PHASE. We use

the following three haplotyping accuracy measures:

(a) The standard error 35 is the percentage of incor-

rectly phased genotypes, (b) the switching error 23

is related to the incorrectly phased neighboring het-

erozygotes, and (c) the percentage of mis-phased 2s.

The results show that our method is comparable to

the solutions by PHASE in accuracy. Sometimes, our

method produces an HI solution better than PHASE,

although statistically PHASE is still slightly more ac-

curate for the range of data we tested. This indicates

that finding a single minimum ARG that derives an

HI solution may not be enough to produce more ac-

curate HI solutions than PHASE. Finding an ARG,

either a minimum one or a near-minimum one, that

gives the best haplotyping accuracy remains an in-
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teresting research problem.

Table 2. Accuracy of haplotyping on a minimum ARG. The re-
sults are averaged over 100 datasets for each parameter settings.
The accuracy measures includes standard error, switch accuracy
and % of mis-phased 2s. One can see that, comparing to PHASE,

the min-ARG approach is comparable but underperform slightly.

min-ARG ρ = 20 ρ = 30 ρ = 40
15x7 20x7 15x7 20x7 15x7 20x7

Std. err. 0.269 0.237 0.336 0.276 0.381 0.333
Switch 0.801 0.821 0.750 0.799 0.721 0.752

% of mis-2 10.98 10.00 14.11 11.63 15.90 13.9

Table 3. Accuracy of program PHASE on the same datasets. The
results are averaged over 100 datasets for each parameter settings.

ρ = 20 ρ = 30 ρ = 40
15x7 20x7 15x7 20x7 15x7 20x7

Std. err. 0.256 0.214 0.297 0.265 0.349 0.281
Switch 0.804 0.834 0.787 0.811 0.753 0.793

% of mis-2 10.65 8.98 12.13 11.01 14.49 11.65

Finally, we test our method with the APOE data

from Orzack, et al 31. This data has 47 non-trivial

genotypes (i.e. the genotype contains more than one

2) and 9 sites. This genotype data has a real solu-

tion (i.e. experimentally determined phases). Pro-

gram PHASE produces a solution within 16 seconds

with 4 incorrectly phased genotypes. Our method

takes about 2 minute to find an HI solution with

5 incorrectly phased genotypes, performing slightly

worse than PHASE. A benefit of our method is that

it computes the minimum number of recombinations

for the given genotype data (under the infinite sites

model). For this data, Rmin(G) = 5. We also

note that Rmin(Hp) = 6 and for the real solution,

Rmin(Ho) = 7. This is a small indication that hap-

lotyping on a minimum (or near-minimum) ARG

may be useful, i.e. real data may be derived on a

minimum or near-minimum ARG.
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