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The discovery of motifs in DNA sequences remains a fundamental and challenging problem in computational molecular
biology and regulatory genomics, although a large number of computational methods have been proposed in the past
decade. Among these methods, the Gibbs sampling strategy has shown great promise and is routinely used for finding
regulatory motif elements in the promoter regions of co-expressed genes. In this paper, we present an enhancement
to the Gibbs sampling method when the expression data of the concerned genes is given. A sequence weighting
scheme is proposed by explicitly taking gene expression variation into account in Gibbs sampling. That is, every
putative motif element is assigned a weight proportional to the fold change in the expression level of its downstream
gene under a single experimental condition, and a position specific scoring matrix (PSSM) is estimated from these
weighted putative motif elements. Such an estimated PSSM might represent a more accurate motif model since motif
elements with dramatic fold changes in gene expression are more likely to represent true motifs. This weighted Gibbs
sampling method has been implemented and successfully tested on both simulated and biological sequence data. Our
experimental results demonstrate that the use of sequence weighting has a profound impact on the performance of a
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Gibbs motif sampling algorithm.

1. INTRODUCTION

Discovering motifs in DNA sequences remains a fun-
damental and challenging problem in computational

19’ al-

molecular biology and regulatory genomics
though a large number of computational methods
The mo-

tif finding problem can be simply formalized as the

have been proposed in the past decade.

problem of looking for short segments that are over-
represented among a set of long DNA sequences.
Previously proposed methods for finding motifs
broadly fall into two categories: (a) deterministic
combinatorial approaches based on word statistics
15,14, 2,6 "and (b) probabilistic approaches based on
local multiple sequence alignment 0 1 8 11 Typi-
cal methods in the first category search the promoter
sequences of co-regulated genes for various sized mo-
tifs exhaustively, and then evaluate their significance
by a statistical method, whereas methods in the sec-
ond category rely on local search techniques such as

*Corresponding author.

expectation maximization and Gibbs sampling. The
latter methods also usually represent a motif as a po-
sition specific scoring matriz (PSSM) (which is also
commonly referred to as a position weight matrix).
Gibbs sampling has shown to be a very promis-
ing strategy for motif discovery. The original imple-
mentation of Gibbs sampling was done in the site
sampling mode, which assumes that there is exactly
one motif element (notably a transcript factor bind-
ing site) located in each (promoter) sequence. Since
its first application to find conserved DNA motifs
in the early 90’s 0, quite a few improvements have
been made in the literature to improve its effective-
ness. These improvements include: (a) motif sam-
pling allowing zero or multiple motif elements located
in each sequence *?; (b) incorporation of a higher-
order Markov background model % !1; (¢) column
sampling allowing gaps within a motif *?; (d) incor-
poration of phylogeny information '; and so on. Be-
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sides these enhancements, we observe below two im-
portant aspects common to all previous implementa-
tions of Gibbs sampling (and also common to most
other motif finding algorithms).

First, the promoter DNA sequences upstream of
a collection of co-expressed genes are often taken as
the input to a motif finding algorithm. This is be-
cause that co-expression is usually taken as an evi-
dence of co-regulation, which is in turn assumed to
be controlled by a common motif. Molecular biology
has been revolutionized by ¢DNA microarray and
chromatin immunoprecipitation (ChIP) techniques,
which allow us to simultaneously monitor the mRNA
expression levels of many genes under various condi-
tions. With gene expression data in hand, one gen-
erally applies a selected threshold on fold changes in
the expression level under a single experimental con-
dition relative to some control condition in order to
retrieve a set of co-expressed genes. Here, it natu-
rally gives rise to a question: how to select a thresh-
old properly such that the motif would be more eas-
ily and reliably found? Notice that motif elements
with large fold changes in expression are in general
more likely to represent a true motif 12. However, the
statistical significance (e.g., p-values) of these motif
elements may not increase as the threshold increases,
because an increase in threshold may also simultane-
ously reduce the number of co-expressed genes. On
the other hand, lowering the threshold may cluster
more genes that are less likely co-regulated, and also
decrease the statistical significance as well. This is
a dilemma that was not addressed by any previous
Gibbs sampling algorithm.

Second, a PSSM is commonly used to represent
a probabilistic motif model by taking into account
the base variation of motif elements at different posi-
tions. Specifically, given a PSSM of a motif, Q, each
component ¢; ; describes the probability of observ-
ing base j at position ¢ in the motif. In all previous
implementations of Gibbs sampling, a PSSM is esti-
mated from a set of putative motif elements, which
are sampled from the input promoter sequences, with
components proportional to the observed frequen-
cies of each base at different positions. This relies
on an implicit assumption that has never been ques-
tioned before. That is, all motif elements, regardless
of the downstream genes that they regulate, should

contribute equally to the components of the motif
PSSM. However, we know that expression levels (and
fold changes) vary in a large range even among co-
regulated genes, which could perhaps suggest that
the above assumption might not be fair. In other
words, equating every motif element could result in
an inaccurate PSSM. Note, however, that an accu-
rate motif model for a transcription factor is essential
to differentiate its true binding sites from spurious
ones.

In this paper, we address the above two prob-
lems together by one scheme referred to as sequence
weighting. It is natural to assume that motif ele-
ments with dramatic fold changes in expression are
more likely to represent a true motif. Therefore, we
want to estimate a PSSM such that it can explicitly
reflect such a (nonuniform) likelihood distribution
over motif elements. One way to achieve this is to as-
sign each motif element a weight, e.g., proportional
to the fold change in expression, and then to estimate
each component g;; of the PSSM as the weighted fre-
quencies of base j at position ¢ among all motif el-
ements. One can see that a weighted PSSM favors
putative motif elements showing large fold changes
in expression. On the other hand, a putative motif
element with small fold changes, which is less likely
to represent the true motif, will not affect a weighted
PSSM as much.

The use of fold changes in expression as weights
to estimate PSSMs implicitly assumes that the DNA
sequences of motif elements exhibiting higher fold
changes are more similar to the motif consensus pat-
tern. This is plausible since such motif elements are
more likely to represent the true motif. Moreover,
since the binding energy of a transcription factor
(TF) protein to a DNA site can be approximated as
the sum of pairwise contact energy between the indi-
vidual nucleotides and the protein 2°, different bind-
ing sites may indeed have different affinities for their
cognate transcription factors. In evolution, there is
not only selection force for TF binding sites to re-
main recognized by their TFs, but that also selec-
tion force for preserving the strength of binding sites
17 especially those showing dramatic fold changes in
expression.

We have incorporated the sequence weighting
scheme into the Gibbs sampling algorithm originally



developed in '% 7. In real applications on a set of co-
expressed genes, we can assign each input promoter
sequence a weight proportional to the fold change in
gene expression obtained from a ¢cDNA microarray
experiment, or proportional to the so-called binding
ratio determined by a genome-wide location analysis,
which is a popular approach that combines a modi-
fied chromatin immunoprecipitation procedure with
DNA microarray analysis for studying genome-wide
protein-DNA interactions and transcription regula-
tion '6. In a genome-wide location analysis, a bind-
ing ratio is calculated by taking the average of fold
changes in expression over three independent mi-
croarray experiments.

Our implementation of Gibbs sampling via se-
quence weighting has been successfully tested on
both simulated and real biological sequence data.
We considered two sets of genes regulated by the
transcriptional activator Gald and Stel2 respectively,
and their expression levels and binding ratios were
determined by the genome-wide location analysis 6.
The test results show that the use of sequence weight-
ing has a profound impact on the performance of the
Gibbs motif sampling algorithm.

The rest of the paper is organized as follows.
The next section introduces the basic Gibbs sam-
pling algorithm and the proposed sequence weighting
scheme. Preliminary experiments on simulated data
and real data are presented in Section 3. Section 4
gives some concluding remarks.

2. GIBBS SAMPLING THROUGH
SEQUENCE WEIGHTING

In this section, we start with the description of the
basic Gibbs sampling algorithm, and then introduce
the new method of estimating position specific scor-
ing matrices (PSSMs) via sequence weighting.

2.1. The Motif Model

A DNA motif is usually represented by a set of short
sequences that are all binding sites of some transcrip-
tion factor protein. Due to base variation at binding
sites, the pattern of a DNA motif is conveniently de-
scribed by a probabilistic model of base frequencies
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at each position, for which a common mathematical
representation is a so-called position specific scor-
ing matrix (PSSM). A PSSM Q consists of entries
gi,j, which give the probabilities of observing base j
at position i of a binding site. The main assump-
tion underlying this motif model is that the bases
occurring at different positions of a DNA motif are
probabilistically independent.

Assume that we are given a set of N binding
sites, s1, S2, ..., Sy, of width W each. Let J = 4
be the number of bases in the alphabet {A, C, G, T},
and ¢; ; be the observed count/frequency of base j
at position 7. A widely used method to estimate a
PSSM from these binding sites is simply given by #

qi,j =
»J ¢

where ¢; is the sum of ¢; ; over the alphabet; that is,
J
¢ = Zj:l Cij-
With the PSSM Q, we are able to estimate the
probability P(s|Q) of an arbitrary sequence s being
generated by the motif model as

w
P(s|Q) = [T i
=1

where s; is the base of s at position 4. On the other
hand, a background sequence model P is estimated
to depict the probabilities p; of base j occurring in
the background sequence. The probability of the se-
quence s being generated by P is given by

144
P(s|P) = Hp&-
i=1
Therefore, the likelihood that s is a true binding mo-
tif of interest under the motif mode Q versus the
background model P is given by the formula

P(s]Q)
P(s|P)

L(s|P,Q) =

The most useful quantity characterizing the
quality of a PSSM @ is its information content I,
defined as

1

= —
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2In an actual implementation, a ”pseudocount” should be added to each c; ; in order to avoid a zero frequency for any base not

actually observed.
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where the logarithm is often taken with base 2 to
express the information content in bits. The infor-
mation content thus ranges from 0 to 2, reflecting
the weakest to the strongest motifs.

2.2. Basic Gibbs Sampling Algorithm

The basic motif finding problem is, given a set of
DNA sequences, Sy, Sa, ..
quence segments of specified width W that are over-

., SN, to look for short se-

represented among the input sequences. In real bio-
logical applications, the input sequences (of a typical
size of 800 bps) are usually taken from the upstream
regions of co-expressed genes, W ranges from 5 bp to
16 bp, and the output segments are putative binding
sites.

Gibbs sampling has proven to be a powerful
strategy for finding weak DNA motifs. The most
basic implementation of Gibbs sampling, known as a
site sampler, assumes that there is exactly one bind-
ing site located in each input sequence. The details

of this implementation are described in 1°

. In Fig-
ure 1, we briefly summarize it in order to show how
sequence weighting is incorporated into Gibbs sam-
pling. Note that Si[i,i+W —1] denotes the substring
of width W starting at ¢ and ending at i + W — 1 in

sequence Sj.

2.3. Estimating the PSSM via Sequence
Weighting

To start, we introduce two more notations in order
to incorporate sequence weights into the computa-
tion of a PSSM. Given a set of N binding sites, s1,
S2, ..., SN, of width W each, let wy be the weight
associated with the input sequence Sk, reflecting in
some way the contribution of the sequence Sy, to the
PSSM as discussed above. The sequence weights can
be normalized so that they sum up to N. We define
a binary function §(i, j, k) as

1,if si(i) =7
0, otherwise

o6.3.%) = {

where si(7) is the base at position 4 of sequence k.
In order to incorporate sequence weights into the

Gibbs Sampling algorithm, we propose to compute

ci,; as the weighted count of base j at position 4 of

the binding motif, i.e.

N
Cij = Z wid(i, j, k)
k=1

Then, we estimate g;; as before, but using the
weighted counts ¢; ;. That is,

J
(=
j=1
and
Cr s
gij=—2, 1<i<W,1<j<J
C;

One can easily see that the above is a natural ex-
tension of the original construction of PSSM where
the weights for all sequences involved were assumed
to be equal.

We have implemented the above sequence
weighting scheme into the Gibbs motif sampler soft-

ware developed in 0 7.

Only the necessary parts
of the source code have been modified so that we
could make a fair comparison between the original
Gibbs sampler and this modified version. It is easy
to see that the extra running time caused by sequence

weighting is negligible.

3. EXPERIMENTAL RESULTS

In order to test the performance of the above
weighted Gibbs sampler, we have applied it to both
simulated and real sequence data, and compared its
results with the original Gibbs sampler % 7. The
simulated data sets allow us to compare the perfor-
mance of the algorithms in an idealized situation that
does not involve the complexities of real data. For
our tests on real data, we use two sets of genes in Sac-
charomyces cerevisiae (yeast) that were determined
by ChIP-array experiments ¢ to be co-regulated by
two proteins Stel2 and Gal4, respectively.

3.1. Simulated Data

In our simulation studies, a motif model was cre-
ated as follows. First, 20 short DNA sequences (of
width W) were randomly generated for binding sites
of a common transcription factor with varying de-
grees of conservation. The seed transcription fac-
tor binding site is described by a consensus pattern.
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begin
Initialization:

Repeat until convergence:
Predictive update step:

Sampling step:

end

Input: A set of DNA sequences Sy, Ss,..., Sy and the motif width W
Output: The starting position ay of the motif in each sequence Sk;
A PSSM Q = [¢; ;] for the putative motif model

Randomly select a position ay, for the motif in each sequence Sy,
Estimate the background base frequencies p;, for j from 1 to J, to obtain P

Randomly select a sequence S, from the input sequences
Take the set of putative binding sites {Sg[ag,ar + W —1] |1 <k < N,k # z}
Estimate the PSSM Q from {Si[ag,ar + W —1] |1 <k < N,k # z}

Estimate P(S,[n,n+ W — 1] | Q) for every position n in sequence S,
Estimate P(S,[n,n + W — 1] | P) for every position n in sequence S,
Randomly select a new position a, in S, according to L(S,[n,n+ W —1] | P, Q)

Fig. 1. The basic Gibbs sampling algorithm.

The degree of conservation is measured by the Ham-
ming distances to the consensus pattern, and the
weakest binding sites have one half of their bases
different from those at the corresponding positions
of the consensus. Second, a set of 20 promoter se-
quences of 800 bases long were randomly generated,
each with a binding site implanted at a randomly
selected position. Finally, each promoter sequence
was assigned a weight as the degree of conservation
of the implanted binding site, based on the obser-
vation that binding sites with dramatic fold changes
in gene expression are more likely to represent true
motifs 2. In the test, we chose five different mo-
tif widths (W = 8,10, 12,14, 16), reflecting different
levels of difficulty for motif finding. For each motif
width, 100 test data sets were generated, giving rise
to a total of 500 data sets.

Both the original Gibbs sampler and the
weighted version were applied to search for motifs
in each data set, and the top three motifs were re-
ported from each program. A found motif is con-
sidered correct if its consensus sequence differs from
the the planted motif consensus pattern by at most
two bases. We are interested in the number of times
each program successfully detects the motif inserted
in the 100 tests for each motif width, and the aver-
age rank of the correct motif if it comes up in the
top three. The results are summarized in Table 1.

Each program was run twice on each test data set
with the option of column sampling ** turned on or
turned off, respectively.

We can see that the weighted Gibbs sampling
method was able to find more correct motifs than
the original Gibbs motif sampler in all the tests. It is
particularly promising in the discovery of weak (i.e.,
short) motifs, as twice as many correct motifs were
found by the weighted method when W = 8 (without
column sampling) than by the original Gibbs sam-
pling method.

3.2. Real Biological Data
3.2.1. Stel2

The transcription activator Stel2 is a DNA-bound
protein that directly controls the expression of genes
in response of haploid yeast to mating pheromones
16 We will use it to demonstrate how the sequence
weighting scheme could boost the prediction accu-
racy of the Gibbs sampling method.

The genome-wide location analysis is a promis-
ing approach to monitor protein-DNA interactions

16 Tt combines a modi-

across a whole genome
fied chromatin immunoprecipitation (ChIP) proce-
dure with DNA microarray analysis in order to pro-
vide a relative binding of the protein of interest to a

DNA sequence. Such an analysis on epitope-tagged
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Table 1. Simulation results on 20 sequences of 800 bases
The original Gibbs motif sampler 7> 10 Gibbs sampling via sequence weighting
Tests with column sampling without column sampling with column sampling without column sampling
Times found Avg. rank | Times found Avg. rank | Times found Avg. rank | Times found Avg. rank
W =8 22 2.50 23 1.91 31 1.61 49 1.90
W =10 35 2.03 50 2.00 58 1.97 73 1.97
W =12 53 1.91 73 1.97 7 1.92 88 2.08
W =14 74 1.89 84 1.96 80 1.86 95 1.96
W =16 70 2.00 92 1.85 88 1.76 95 2.00

Stel2 has determined that 29 pheromone-induced
genes in yeast are likely to be directly regulated by
Stel2 16, Figure 2 lists these genes and their binding
ratios extracted from '6. Note that, in the figure,
names with all capital letters, such as STE12, are
used to represent genes, and names that begin with
a capital letter, such as Stel2, represent DNA bind-
ing motifs.

Of great interest is to find the sites bound by
Stel2 in the promoter sequences of these 29 genes.
For this purpose, we extracted up to 800 bp upstream
regions of each gene from the Saccharomyces genome
database, and assigned each sequence a weight as
the relative binding ratio obtained from the genome-
wide location analysis. Both the original Gibbs sam-
pling algorithm and our weighted version were run
on all 29 sequences, and their experimental results
were then compared.

Due to the stochastic nature of Gibbs sampling,
we ran both programs 10 times with different random
seeds, and each time the top ten putative motifs were
reported. One can see that the same motif might be
reported in different runs. Of the 100 putative mo-
tifs, the original Gibbs sampling algorithm did not
find any motif resembling the known Stel2 consen-
sus pattern TGAAACA °. Our algorithm, however,
found the correct Stel2 motif six times in 10 runs,
and ranked the Stel2 motif the second among all
the putative motifs in terms of information content.
Figure 2 lists the putative binding sites found by the
weighted Gibbs sampling method upstream of the
29 genes regulated by Stel2, and Figure 3 shows the
corresponding weighted PSSM. The information con-
tent of this PSSM is 1.09, indicating a very strong
motif that has been detected by our algorithm.

The above experimental results are very encour-
aging, but not surprising to us. One can see from
Figure 2 that, roughly speaking, the higher a relative
binding ratio is, the closer the concerned binding site

is to the known motif consensus pattern (in terms of
sequence Hamming distance). In particular, each of
the top six sequences in the table contains a bind-
ing site exactly matching the Stel2 motif consensus
pattern. Once some of these binding sites have been
selected by chance, they are strongly favored in the
construction of the (weighted) PSSM due to their
large weights. This process tends to recruit more
correct sites, which in turn further improve the speci-

ficity of the PSSM.

3.2.2. Gal4

Gal4 is among the most characterized transcriptional
activators, which activates genes necessary for galac-
tose metabolism 6. Tt provides another test showing
that sequence weighting really improves the perfor-
mance of the original Gibbs sampling algorithm. The
genome-wide location analysis '® found 10 genes to
be regulated by Gal4 and induced in Galactose, with
varying relative binding ratios (see Figure 4).

We performed the same experiment on Gal4d as
we did on Stel2. Of the 100 putative motifs, the orig-
inal Gibbs sampling algorithm once again failed to
find any motif similar to the known Gal4 consensus
pattern CGGN1;CCG. This result was unexpected
by us because the binding sites of Gal4 are actually
well conserved among the input sequences (shown
below). With sequence weighting, however, our al-
gorithm successfully discovered the exact Gal4d motif
with the highest information content (1.80) among
100 putative motifs. These putative binding sites are
listed in Figure 4, while the weighted PSSM is given
in Figure 5. This clearly shows the advantage of se-
quence weighting that we have implemented in the
Gibbs sampling algorithm, although we suspect that
the algorithms might have found or missed the Gal4
motif by chance due to its very low statistical signif-
icance and the stochastic nature of Gibbs sampling.
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Putative binding sites for the transcription activator Stel2 found by the weighted Gibbs sampling method. The column

under Ratio lists the relative binding ratios obtained from the genome-wide location analysis, and the column under Prob lists
the probabilities of the binding sites given by the motif model represented by the PSSM in Figure 3.

Pos A Z o] T
1 0.087732 0. 017588 0.050137 0. 844545
2 0.028292 0. 036817 0. 90678 0.028111
3 0. 7782592 0,045558 0, 078109 0. 0958041
4 0.912007 0.0420862 0. 016592 0.028111
] 0.B3948 0.038565 0.01692 0.105054
3] 0.17a893 0. 780593 0. 016592 0. 045594
7 0.B872697 0. 0350809 0.01e92 0.075314
Fig. 3. The weighted PSSM calculated from the putative binding sites in Figure 2.

The complete results of both tests are available at
http://www.ntu.edu.sg/home/ChenXin/Gibbs.

4. DISCUSSION AND FUTURE
RESEARCH

The selection of a suitable threshold value on ex-

pression level (or binding ratio) in order to retrieve a

set of co-regulated genes and the construction of an

accurate PSSM from a set of promoter sequences to
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Mame Binding sites Ratio Prob

GalLl 348 tattgaagra COGATTAGAAGCCECCS agogooogac 364 B.5 0. 5833
GaLlo 532 cgaggacgca CEGEAGGAGAGTCTTCCGE tTogiagogeT 548 B.5 0. 5853
GALS 513 accccacgtt COETCCACTGETGTECCGE aacatgotec 529 5.9 0.53853
ALz 404 ttogtocgty CEGAGATATCTGCGCCE tTtcaggoote 420 5 0. 5853
MTHL 332 gaaaaaggtc COOEEAMATGGAGTCCS tgogagtttt 348 2.5 0. 5853
GALT 609 dadaagoget CEGACAACTETTGEACCG tgatccgaag 6259 1.5 0.5853
GALEO 620 cttcatttac CGGCGCACTCTOGCCCG aacgacctca 645 1.4 0. 5853
Gyl 432 QOogaacaat CeGEEECAGACTATTCCE QOOAAGAACA 445 1.1 0.5853
FUR4 516 aaagetttca COGATTTCCTAGACCGE 3aAnAAGTCGE 532 1.1 0. 0014
PCL1O 345 TLLLLgOgoc CEGAATATATCTTTTCS ggaagotcgy 561 0.6 0. 0275

HOHH HHH

Fig. 4. Putative binding sites for the transcription activator Gal4 found by the weighted Gibbs sampling. The relative binding

ratios and probabilities of the binding sites are displayed as in Figure 3.

Pos A Z 3 T

1 0. 027807 0.927214 0. 016568 0. 028400
2 0. 027807 0.045826 0. 897958 0. 028400
S 0. 027807 0.018125 0.9256509 0. 028400
15 0. 027807 0.0912106 0. 016568 0.04351%
16 0. 027807 0.899515 0. 044269 0. 028400
17 0. 027807 0.018125 0.9256509 0. 028400

Fig. 5. The weighted PSSM calculated from the putative binding sites in Figure 4.

represent the true motif model are two delicate prob-
lems usually ignored by a Gibbs sampling strategy in
motif discovery. In this paper, we try to tackle these
problems by a sequence weighting scheme in order to
improve the prediction accuracy of the basic Gibbs
sampling algorithm.

Gibbs sampling via sequence weighting can be
effectively applied to find motifs when the gene ex-
pression data is available. As we have noticed before,
several computational methods that take advantage
of gene expression variation have been developed
3,12, 9,4 Byt all differ from ours in various aspects.

12 uses a word-enumeration

For example, MDscan
strategy to exhaustively search for motifs, and is thus
a deterministic combinatorial approach. Moreover, it
needs a threshold value on expression level in order to
extract highly expressed genes, and also treats all pu-
tative binding sites equally when representing a motif
model, regardless of their expression variations. Our
method does not require a preset threshold value.
On the other hand, many computational meth-
ods have been proposed to identify motifs in the pro-
moter regions of genes that exhibit similar expression
patterns across a variety of experimental conditions

3. Here, our proposed method focuses on a single

experimental condition (relative to a control condi-
tion). Previous studies ? showed that focusing on a
single experimental condition is crucial for identify-
ing experiment specific regulatory motifs. One rea-
son for this is that averaging across experiments may
destroy the significant relationship between the ex-
pression of genes and their regulatory motifs present
only in a single experiment.

To summarize, we have proposed in this paper a
sequence weighting scheme for enhancing the motif
finding accuracy of the basic Gibbs sampling algo-
rithm. It was achieved by estimating a PSSM from
the promoter sequences weighted proportionally to
the fold changes in the expression of their down-
stream genes. Our preliminary experiments on sim-
ulated and real biological data have clearly shown
the advantage of this sequence weighting scheme in
a Gibbs sampling. In the future, we would like to
test this method on more real data sets with gene
expression profiles and extend the method to gene
expression data across multiple experimental condi-
tions.
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