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Motivation: A key class of membrane proteins contains one or more transmembrane (TM) helices, traversing the membrane lipid bilayer. 
Various properties such as the length, arrangement and topology or orientation of TM helices, are closely related to a protein’s functions. 
Although a range of methods have been developed to predict TM helices and their topologies, no single method consistently outperforms 
the others. In addition, topology prediction has much lower accuracy than helix prediction, and thus requires continuous improvements.  
Results: We develop a method based on support vector machines (SVM) in a hierarchical framework to predict TM helices first, fol-
lowed by their topology. By partitioning the prediction problem into two steps, specific input features can be selected and integrated in 
each step. We also propose a novel scoring function for topology models based on membrane protein folding process. When bench-
marked against other methods in terms of performance, our approach achieves the highest scores at 86% in helix prediction (Q2) and 
91% in topology prediction (TOPO) for the high-resolution data set, resulting in an improvement of 6% and 14% in their respective 
categories over the second best method. Furthermore, we demonstrate the ability of our method to discriminate between membrane and 
non-membrane proteins, with higher than 99% in accuracy. When tested on a small set of newly solved structures of membrane proteins, 
our method overcomes some of the difficulties in predicting TM helices by incorporating multiple biological input features. 

                                                           
* Corresponding author. 

1.   INTRODUCTION 

Integral membrane proteins constitute a wide and im-
portant class of biological entities that are crucial for 
life, representing about 25% of the proteins encoded by 
several genomes1-3. They also play a key role in various 
cellular processes including signal and energy transduc-
tion, cell-cell interactions, and transport of solutes and 
macromolecules across membranes4. Despite their bio-
logical importance, the proportion of available high-
resolution structures is exceedingly limited at about 
0.5% of all solved structures5, compared to that of 
globular proteins deposited in the Protein Data Bank 
(PDB)6. In the absence of a high-resolution structure, an 
accurate structural model is important for the functional 
annotation of membrane proteins. A membrane protein 
structural model defines the number and location of 
transmembrane helices (TMHs) and the orientation or 
topology of the protein relative to the lipid bilayer. 
However, experimental approaches for identifying 
membrane protein structural models are time-
consuming7. Therefore, bioinformatics development in 
sequence-based prediction methods is valuable for elu-

cidating the structural genomics of membrane proteins. 
Many different methods have been developed to 

predict structural models of transmembrane helix (TMH) 
proteins. Earlier approaches relied on physico-chemical 
properties such as hydrophobicity8-10 to identify TMH 
regions. Recently, more advanced methods using hidden 
Markov models3,11 and neural networks12 have been 
developed, and they have achieved significant im-
provements in prediction accuracy. Although several 
methods are available, none of them have integrated 
multiple biological input features in a machine-learning 
framework. Furthermore, an evaluation study13 con-
cluded that current accuracies were over-estimated, and 
topology prediction remained a major challenge. 

In this paper, we propose a machine-learning ap-
proach called SVMtmh (SVM for transmembrane helix 
prediction) in a hierarchical classification framework to 
predict membrane protein structure. We divide the pre-
diction task into two successive steps by using a tertiary 
classifier consisting of two hierarchical binary classifi-
ers. The number and location of TMHs are predicted in 
the first step, followed by the prediction of the topology 
in the second step.  
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Our key contributions are as follows: 1) By decom-
posing the prediction into two steps, we reduce the 
complexity involved in each step, and biological input 
features relevant to each classifier can be applied. 2) We 
select multiple input features, including those based on 
different structural parts of a TMH protein, and inte-
grate them to predict helices. 3) For topology prediction, 
we propose a novel topology scoring function based on 
the current understanding of membrane protein insertion. 
To the best of our knowledge, the proposed topology 
scoring function is the first model to capture the rela-
tionship between topogenic factors and topology forma-
tion. 

The performance of SVMtmh is compared with 
other methods across several benchmark data sets and 
SVMtmh achieves a marked improvement in both helix 
and topology prediction. Specifically, SVMtmh 
achieves the highest score at 91% for topology predic-
tion (TOPO) and 86% for helix prediction (Q2) in the 
high-resolution data set, an improvement of 14% and 
6%, respectively, compared to the second highest score. 
In addition, SVMtmh yields the lowest false positive 
rate at 0.5% when tested for discrimination between 
membrane and non-membrane proteins. Finally, we 
apply SVMtmh to analyze a newly solved structure of 
bacteriorhodopsin (bR) and show that our method can 

provide the correct structural model which is in close 
agreement with the structure obtained through X-ray 
crystallography. We also provide a detailed analysis of 
the comparison with other methods and conclude with a 
summary and directions for future work. 

2.   METHODS 

2.1.   System architecture  
The proposed approach uses hierarchical binary classi-
fiers to predict the helices and topology of an integral 
membrane protein. We represent the problem of mem-
brane protein structure prediction as a multiple classifi-
cation process and solve it in two steps using hierarchi-
cal SVM classifiers. The overall framework is described 
in this section. 

Each residue of a TMH protein can be regarded as 
belonging to one of the three classes defined by its posi-
tion with respect to the membrane: inner (i) loop, trans-
membrane helix (H), and outer (o) loop. The aim of 
predicting membrane protein structures is to identify the 
correct class of each residue. Since there are three 
classes for a protein sequence, we design a tertiary clas-
sifier, which consists of two binary classifiers in a hier-
archical structure. An overview of the system architec-
ture is shown in Fig. 1.  
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Fig. 1. Overview of the SVMtmh system architecture. 

32



 3

In Step 1, TM and non-TM residues (H/~H) are 
predicted. We use different feature sets (Section 3.3) to 
train our SVM classifiers and then combine the results 
from the best two combinations into a consensus predic-
tion, which is screened for TMH candidates and subse-
quently assembled into physical TMH segments. In Step 
2, the remaining non-helix residues (~H) from Step 1 
are classified as either inner or outer (i/o) residues. To 
determine if the topology of the protein is an inner (i) or 
an outer loop (o), we apply the proposed alternating 
geometric scoring function. Briefly, the classification 
framework is performed in two steps, each of which 
uses an associated binary classifier (H/~H, i/o).  

We use sliding windows to partition a protein se-
quence into peptides. The optimal length of the sliding 
window, w, is incrementally searched from 3 to 41 for 
both classifiers. The optimal window sizes, w1 for the 
first classifier and w2 for the second classifier, are found 
to be 21 and 29, respectively. 

2.2.   Training and testing  
We train our classifiers with the LIBSVM package14 
and Radial Basis Function (RBF) is chosen as the kernel 
function. The associated parameters (C, γ) are optimized 
at (1.8661, 0.1250). The cost weight is adjusted to avoid 
under-prediction in unbalanced data sets. Since the he-
lix and non-helix classes make up about 30% and 70% 

of the data set respectively, we set the cost weight at 
7/3 for the first classifier. Similarly, we set the cost 
weight at 1/1 for the second classifier to reflect the pro-
portion of the inner and outer loop classes in the data set. 
Ten-fold cross-validation is used to evaluate our method. 
The data set is first divided into ten subsets of equal size. 
Each subset is in turn tested using the classifier trained 
on the remaining nine subsets. Since each residue of the 
whole data set is only predicted once, the overall predic-
tion accuracy is the percentage of correctly predicted 
residues. The values in the feature vectors are scaled in 
the range of [0, 1]. 

2.3.   Helix prediction  

2.3.1.   Feature selection and extraction 

The choice of relevant features is critical in any predic-
tion models. Thus, in the present study we select fea-
tures that capture important relationships between a 
sequence and the structure. TMH proteins are subject to 
global constraints of the lipid bilayer since they contain 
membrane-spanning helices15. Additionally, TM helices 
can be divided into distinct local structural parts, includ-
ing the core and end regions based on the propensity of 
amino acids3. Fig. 2 shows the selection of features to 
capture both the global and local information of a TM 
helix. The representation of each feature is described 
below: 
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Fig. 2. Transmembrane (TM) helix structure in the lipid bilayer: helix core and end regions. Loops connect between the adjacent TM helices. 
We select global and local input features to capture information contained in a TM helix. Global input features: amino acid (AA) and di-peptide (DP
compositions. Local input features: hydrophobicity scale (HS)16 and amphiphilicity (AM)17. The helix core region is surrounded by an aliphatic 
hydrocarbon layer about 30 Å in thickness. The helix end regions are embedded in the water-membrane interface of about 15 Å. 
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1. Amino acid composition (AA): This basic feature 
enables us to capture the global information of a 
TM helix. Each residue of a peptide is represented 
by a vector of length of 20 which is indicated by 1 
in the position corresponding to the amino acid 
type of the residue, and 0 otherwise.  

2. Di-peptide composition (DP): We consider the cou-
pling effect of two adjacent residues that contain 
global information along the sequence. This feature 
is represented by the pair-residue occurrence prob-
ability, P(X,Y) where (X,Y) is an ordered pair of 
amino acids of X followed by Y. The vector space 
of this feature input comprises 400 dimensions. 

3. Helix core feature: Hydrophobicity is used to cap-
ture local information within the core region of a 
TM helix where it is a major stabilizing factor16. 
We select a hydrophobicity scale (HS) recently de-
termined by membrane insertion experiments16. 
Each residue is represented by a vector of length 20 
that has a real value corresponding to its hydropho-
bicity. 

4. Helix ends feature: The end regions of a TM helix 
near the membrane-water interface exhibit a prefer-
ence for aromatic and polar residues, as shown in 
amino acid propensity studies16,17. We select an 
amphiphilicity (AM) index17 as a input feature to 
capture the local information contained in the helix-
capping ends. Each residue is represented by a vec-
tor of length 20 that has a real value corresponding 
to its amphiphilicity. 

2.3.2.   Determination of TMH candidates   

To identify potential TMH regions, it is necessary to 
determine if there are any TMH candidates among our 
initial prediction results. We do this by modifying the 
algorithm proposed in the THUMBUP program18 to 
determine TMH candidates and assemble them into 
physical TMH segments. 
Step 1: Filtering 
We define a cut-off value, lmin, as the minimal length for 
a TMH candidate. A predicted helix segment is a TMH 
candidate if its length is at least lmin; otherwise, it is con-
verted to a non-helix segment. Steps 2 and 3 describes 
the assembly of a TMH candidate. 
Step 2: Extension  
An optimal TMH length, lopt, is set at 21 to reflect the 
thickness of the hydrocarbon core of a lipid bilayer19. If 

the length of a TMH candidate is between lmin and lopt, it 
is extended to lopt from its N- and C-termini. Two or 
more TMH candidates are merged if they overlap after 
the extension.  
Step 3: Splitting  
We define lmax, as the cut-off value for the length of a 
TMH candidate to be split. A TMH candidate whose 
length is greater than or equal to lmax is split into two 
helices, starting from its N- and C-termini with the loop 
in the center. 

We optimize lmin and lmax on the training data set 
(Section 3.1). The optimized values for lmin and lmax for 
the best prediction performance are 9 and 38, respec-
tively. 

2.4.   Topology prediction  

2.4.1.   Input feature 

Using the second classifier, we predict the topology 
label (i/o) of each non-helix residues from the results of 
the first classifier (H/~H). Amino acid composition is 
employed as the input feature. The encoding scheme 
follows the same procedure outlined in the helix predic-
tion section.  

2.4.2.   Alternating geometric scoring 
function 

The purpose of predicting of the topology of a TMH 
protein is to determine the orientation of the protein 
with respect to the membrane. A TMH protein follows 
special constraints on its topology such that it always 
starts with an inner (i) loop or outer (o) loop that must 
alternate in order to connect the TM helices. Therefore, 
the problem of predicting the topology of a TMH pro-
tein is reduced to predicting the topology of the first 
loop located at the N-terminus.  

There is growing body of evidence that the final 
topology is influenced by multiple signals distributed 
along the entire protein in the loop segments, including 
the charge bias, loop size, and folding of the N-terminal 
loop domain20. Furthermore, the widely accepted two-
stage model for membrane protein folding suggests that 
the final topology of a membrane protein is established 
in the early stages of membrane insertion21. These bio-
logical phenomena form the basis of our assumptions 
about topology models. First, we assume that topology 
formation is a result of contributing signals present in  
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the various loop segments. Second, signals embedded in 
the loop segments near the N-terminus are more likely 
to be a factor in the formation of topology since they are 
inserted in the membrane at an earlier time. Based on 
these assumptions, we develop a novel topology scoring 
function that considers the topogenic contribution from 
all loop segments that diminishes over a distance away 
from the N-terminus. 

In the proposed topology scoring function, the con-
tribution of signals in the loop segments varies inversely 
proportional to their distance from the N-terminus in a 
geometric series: Given a transmembrane protein that 
has n non-helical segments (1 and , )js j n n j≤ ≤ ∈ pre-
dicted in the first step: For each sj of length | sj |, we 
define two ratios, Ri and Ro, to represent the predicted 
ratios of topology labels i and o, respectively. 

 ( ) (# of "inside" residues / | |) 100%i jR j s= ×  (1) 

 ( ) (# of "outside" residues / | |) 100%o jR j s= × , (2) 

where Ri + Ro = 100%. To determine the protein topol-
ogy, we define two topology scores, TSi and TSo, where 
TSi is for the N-terminal loop on the inside of membrane 
and TSo is for the outside.  

 
1

( ) [ ( ) (1 ) ( ) ]i i o
j n

TS W j R j R jα α
≤ ≤

= × + −∑  (3) 

 
1

( ) [ (1 ) ( ) ( ) ]o i o
j n

TS W j R j R jα α
≤ ≤

= × − +∑  (4) 

 
1, is odd
0, is even

if j
if j

α
⎧

= ⎨
⎩

 (5) 

 ( 1)( ) 1/ , andj EIW j b b EI− ×= ∈ , (6) 

where b and EI denote the base and the exponent in-
crement, respectively. W(j) is a geometric function 
which assigns weights to the Ri(j) and Ro(j) terms. If 

i oTS TS≥ , then the topology of the N-terminal loop is 

inside; otherwise, the topology is outside.        
For the calculation of topology scores, the geomet-

ric scoring function alternates between the inner (i) and 
outer (o) loops to take into account the alternating na-
ture of the connecting loops. Fig. 3 illustrates the calcu-
lation of alternating geometric scoring function for an 
example protein. 

3.   RESULTS AND DISCUSSION 

3.1.   Data sets 
1. Low-resolution TMH proteins: We train and per-

form ten-fold cross-validation on a collection of 
low-resolution data set compiled by Möller et al.22. 
We select 145 proteins of good reliability from a 
set of 148 non-redundant proteins. We manually 
validate this data set using annotations from 
SWISS-PROT release 49.023 and further remove 
two proteins because they have no membrane pro-
tein annotations. The final data set contains 143 
proteins for which low-resolution topology models 
are available. This entire data set is also used to 
train our model for testing on the following three 
data sets. 

2. High-resolution TMH proteins: We use a collection 
of 36 high-resolution TMH proteins from PDB 
compiled by Chen et al.13 and obtain topology in-
formation for 35 out of 36 proteins. We validate 
this data set using annotations from SWISS-PROT 
release 49.023 and update the topologies of two pro-
teins. 

3. Soluble proteins: A collection of 616 high-
resolution soluble proteins from PDB compiled by 
Chen et al.13 is used to test for discrimination be-
tween membrane and soluble proteins.  

4. Newly solved TMH proteins: Four newly solved 
high-resolution TMH proteins24 are used as an in-
dependent test set.  
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Fig 3. An example of evaluating a TMH protein’s topology with alternating geometric scoring function. Helices are predicted in the first step 
(Section 2.3). A predicted loop segment can have more than one type of topology. We use the proposed alternating geometric scoring function to 
determine the final topology. In this example, Ri(1) = 2/5, Ro(1) = 3/5, Ri(2) = 4/5, Ro(2) = 1/5, Ri(3) = 3/5 and Ro(3) = 2/5. Given a set of optimal 
values for (b, EI) = (1.6, 1.0) indicated in Section 3.6, TSi = 1 × Ri(1) + 1/(1.61. 0) × Ro(2) + 1/(1.62.0) × Ri(3) ≒ 0.7594. Similarily, TSo ≒ 1.2563. 
TSo > TSi, therefore, the final topology for the N-terminal loop is outside (o). 
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3.2.   Evaluation metrics 
There are two sets of evaluation measures for the TMH 
prediction: per-segment and per-residue accuracies13. 
Per-segment scores indicate how accurately the location 
of a TMH region is predicted and per-residue scores 
report how well each residue is predicted. Table 1 lists 
the per-segment and per-residue metrics used in this 
paper.  

In the calculation of per-segment scores, two issues 
must be addressed when counting a helix as correctly 
predicted. First, a minimal overlap of observed helix 
segments must be defined. For this, we use a less re-
laxed criterion which requires at least 9 overlapping 
residues. An evaluation study by Chen et al.13 used a 
more relaxed minimal overlap of only 3 residues. Sec-
ond, we do not allow an overlapping observed helix to 
be counted twice. We use the following examples to 
illustrate these two issues (H = Helix): 

 
Prediction 1 achieves 100% accuracy if the minimal 
overlap is 3 residues. If the minimal overlap is 9 resi-

dues, Prediction 1 achieves 50% accuracy. Prediction 2 
achieves 50% accuracy because it already overlaps with 
the first observed helix. Prediction 3 achieves 100% 
accuracy if the minimal overlap is 3 residues, but the 
second predicted helix is an over-prediction since we 
only count an overlapping observed helix only once. 
Prediction 3 achieves 50% accuracy if the minimal 
overlap is 9 residues because the first predicted helix 
does not satisfy the minimal overlap requirement. In 
addition, the second predicted helix is also an over-
prediction, thus it is not counted. 

3.3.   Performance of input feature 
combinations for helix prediction 

We test the performance of different input feature com-
binations for the first classifier. The following combina-
tions are considered: 1) AA only; 2) AA and any one of 
DP, HS, and AM; 3) AA and any two of DP, HS, and 
AM; and 4) all four features. We also construct a con-
sensus prediction from the two top-performing combi-
nations through probability estimation using LIBSVM25. 
The value of the estimated probability for each residue 
corresponds to the confidence given for its predicted 
class. In the case of disagreement between the predicted 
classes, the consensus prediction takes the result of a 
prediction that has the highest probability. 

Observation: - - HHHHHHHHHHHHH - - - HHHHHHHHHH - -
Prediction 1: - - - - - - - HHH - - - - - - - - HHHHHHHHH - - -
Prediction 2: - - - - HHHHHHHHHHHHHHHHHHHHHHH - - -
Prediction 3: - - HHH - HHHHHHHHH - - - HHHHHHHHH - - -

 
 
Table 1. Evaluation metrics used in this work. Per-segment metrics include okQ , %obs

htmQ , % prd
htmQ and TOPO. Per-residue metrics include 2Q , 

%
2

obs
TQ , and %

2
prd

TQ . Nprot is the number of proteins in a data set. We follow the same performance measures proposed by Chen et al.13 

Symbol Formula Description 

okQ  % %1, 100% for protein
100%, with

0, otherwise

prot

obs prd
htm htm

i

prot

N

i
i if Q Q i

N
δ

δ
∧ =

× =
⎧
⎨
⎩

∑
 

percentage of proteins in which all its  
TMH segments are predicted correctly  

%obs
htmQ  

number of correctly predicted TM in data set
100%

number of TM observed in data set
×  TMH segment recall 

% prd
htmQ  

number of correctly predicted TM in data set
100%

number of TM predicted in data set
×  TMH segment precision 

TOPO    number of proteins with correctly predicted topology
100%

protN
×  percentage of correctly predicted topology 

2Q  100%

number of residues predicted correctly in protein
number of residues in prtoein

prot

prot

N

i

N

i
i

×
∑

 percentage of correctly predicted TMH residues 

%
2

obs
TQ  

number of residues correctly predicted in TM helices
number of residues observed in TM helices

100%×  TMH residue recall 

%
2

prd
TQ  

number of residues correctly predicted in TM helices
number of residues predicted in TM helices

100%×  TMH residue precision 
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Table 2 shows the performance of combinations of 
input features and the consensus prediction. Combina-
tion 5 achieves the highest score for Qok at 71.9% and 
performs consistently well in other per-segment and 
per-residue measures. Combination 6 has a strikingly 
high %

2
obs

TQ score of 85.9%. The purpose of consensus 
prediction is to maximize the benefits of both combina-
tions. In fact, the consensus approach increases the Qok 
score of Combination 6 by 1.5%, while the %

2
obs

TQ score 
only decreases by 0.3%. Compared to Combination 5, 
the consensus has a decrease in Qok of 1.4%, but an in-
crease in %

2
obs

TQ of 3.8%. In addition, the consensus ap-
proach also scores the highest for Q2 at 89.1%. The 
consensus approach is selected as our best model for 
comparison with other approaches. 

3.4.   Performance on high- and low-
resolution data sets  

SVMtmh is compared to other methods for high and 
low-resolution data sets in Table 3. For the low-
resolution set, SVMtmh ranks the highest among all the 

compared methods for per-segment measures in TOPO, 
Qok, and % pred

htmQ  at 84%, 71%, and 95%, respectively.  
Specifically, SVMtmh improves TOPO by 5% over the 
second best method for the low-resolution data set. For 
the high-resolution set, most notably, SVMtmh has the 
highest score at 91% for TOPO, a 14% improvement 
over the second best method. Another marked im-
provement is also observed for the high-resolution set in 

Table 3. Performance of prediction methods for low- and high-resolution data sets. Per-segment and 
per-residue scores of all methods compared are taken from an evaluation by Chen et al.13. TOPO scores 
for the high-resolution data set are re-evaluated due to the update of topology information. The shaded 
area outlines the four top-performing methods. Note that we do not have cross-validation results for all 
other methods. Therefore, their accuracies might be over-estimated. In addition, we use a minimal overlap 
of 9 residues whereas Chen et al.13 used only 3 residues. Methods are sorted by their Qok values for the 
low-resolution data set. 

Low-resolution High-resolution 
Per-segment (%) Per-residue (%) Per-segment (%) Per-residue (%) Methods 

okQ  
%obs
htmQ  % prd

htmQ TOPO 2Q %
2

obs
TQ %

2
prd

TQ okQ %obs
htmQ % prd

htmQ TOPO 2Q %
2

obs
TQ  %

2
prd

TQ  

SVMtmh 71 93 95 84 89 86 81 83 96 98 91 86 82 90 
TMHMM2 68 91 94 77 89 82 84 75 92 96 66 80 72 88 
PHDpsiHtm08 67 95 94 67 89 87 77 84 99 98 57 80 76 83 
HMMTOP2 66 94 93 79 90 85 83 83 99 99 77 80 69 89 
PRED-TMR 58 92 93 90 78 86 61 84 90 76 58 85 
PHDhtm08 57 86 86 68 87 83 75 64 77 76 60 78 76 82 
PHDhtm07 56 85 86 72 87 83 75 69 83 81 69 78 76 82 
SOSUI 49 88 86 88 79 72 71 88 86 75 66 74 
TopPred2 48 84 79 59 88 74 71 75 90 90 57 77 64 83 
DAS 39 93 81 86 65 85 79 99 96 72 48 94 
Ben-Tal 35 79 90 87 67 83 65 94 89 67 79 66 
Wolfenden 29 56 82 80 47 76 64 97 90 71 74 72 
WW 27 90 75 81 83 59 60 79 89 72 53 80 
GES 23 93 68 78 87 53 58 95 89 69 77 68 
Eisenberg 20 90 63 72 89 47 56 93 86 62 80 61 
KD 13 88 59 63 91 42 54 95 91 71 71 72 
Heijne 11 89 55 51 91 35 52 93 83 60 83 58 
Hopp-Wodds 11 87 58 54 90 36 52 94 83 58 83 58 
Sweet 11 87 59 58 88 38 48 91 84 59 80 58 
Av-Cid 10 87 58 53 89 36 47 95 83 58 80 56 
Roseman 9 89 56 48 91 34 45 93 82 61 85 58 
Levitt 9 88 56 49 91 35 45 92 82 55 85 55 
Nakashima 9 88 56 50 90 35 43 90 83 63 83 60 
A-Cid 8 87 57 52 89 35 40 93 79 56 85 55 
Lawson 8 86 57 43 89 32 39 88 83 60 84 58 
Radzicka 6 87 56 41 91 32 36 92 80 56 84 56 
Bull-Breese 6 86 56 40 91 32 33 86 79 55 84 54 
EM 5 89 56 41 91 32 31 92 77 57 85 55 
Fauchere 5 87 56 43 91 33 28 43 62 62 28 56 

 

 
Table 2. Performance of input feature combinations and the con-
sensus method. Input features: AA (amino acid composition), DP 
(di-peptide composition), HS (hydrophobicity scale)16 and AM (am-
phiphilicity)17. 

Per-segment (%)  Per-residue (%) 
No. Input Feature (s) 

okQ %obs
htmQ  % prd

htmQ   2Q  %
2

obs
TQ %

2
prd

TQ

1 AA 71.2 93.8 93.9  89.1 82.9 83.0
2 AA+DP 69.8 94.0 93.8  88.9 81.9 83.2
3 AA+HS 71.2 92.8 94.2  89.1 81.9 84.0
4 AA+AM 70.5 93.6 93.6  89.1 83.0 82.9
5 AA+DP+HS 71.9 93.6 94.2  89.0 81.8 83.7
6 AA+DP+AM 69.0 93.4 94.0  89.0 85.9 80.6
7 AA+HS+AM 68.3 93.3 94.2  88.8 79.8 84.4
8 AA+DP+HS+AM 69.1 92.3 95.4  89.0 80.9 84.3

9 Consensus (5+6) 70.5 93.2 94.9  89.1 85.6 81.4
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which SVMtmh obtains the highest score for Q2 at 86%, 
compared to the second best methods at 80%. Generally, 
SVMtmh performs 3% to 12% better for the high-
resolution set than for the low-resolution in terms of 
per-segment scores. Meanwhile, for per-residue scores, 
the accuracy for the high- and low-resolution data sets 
is similar in the range of 81% to 90%. The shaded area 
in Table 3 denotes the four top-performing approaches, 
which are selected to further predict newly solved mem-
brane protein structures (Section 3.7). 

3.5.   Discrimination between soluble 
and membrane proteins 

To assess our method’s ability to discriminate between 
soluble and membrane proteins, we apply SVMtmh to 
the soluble protein data set. A cut-off length is chosen 
as the minimum TMH length. Any protein that does not 
have at least one predicted TMH exceeding the mini-
mum length is classified as a soluble protein. We calcu-
late the false positives (FP) rates for the soluble protein 
set, where a false positive represents a soluble protein 
being falsely classified as a membrane protein. Simi-
larly, we also calculate the false negatives (FN) rates for 
both high- (FNhigh) and low-resolution (FNlow) mem-
brane protein sets using the chosen cut-off length. 
Clearly, the cut-off length is a trade-off between the FP 
and FN rates. Therefore, the cut-off length selected 
must minimize FP + FNhigh+ FNlow. Fig. 4 shows the FP 
and FN rates as a function of cut-off length. The cut-off 
length at 18, which minimizes the sum of all errors is 
used to discriminate between soluble and membrane 
proteins. Table 4 shows the results of our method com-
pared to the other methods. SVMtmh is capable of dis-
tinguishing soluble and membrane proteins at FP and 
FNlow rates at less than 1% and FNhigh rate at 5.6%. In 
general, most advanced methods such as TMHMM23 
and PHDpsiHtm0812 achieve better accuracies than 
simple hydrophobicity scale methods including Kyte-
Doolittle (KD)8 and White -Wimley (WW)10. 

3.6.   Effect of alternating geometric 
scoring function on topology ac-
curacy 

We characterize the dependency of topology accuracy 
(TOPO) on the values of the base (b) and the exponent 
increment (EI) used in the alternating geometric scoring 
function for the low-resolution data set. Fig. 5 shows 

the relationships between topology accuracy coded by 
colours and the variables in the scoring function. The 
white circles indicate the highest topology accuracy at 
about 84% and their corresponding values for b and EI. 
The region in which half of the white circles (8/16) oc-
cur falls in the ranges for b and EI between [1.5, 2.5] 

Table 4. Confusion between soluble and membrane proteins. The 
results of all compared methods are taken from Chen et al.13. False 
positive rates for soluble proteins are calculated in the second column
In the third and fourth columns, false negative rates for membrane 
proteins are reported. Methods are sorted by false positive rates. 

False negatives (%) 
Methods False 

positives (%) Low-resolution High-resolution

SVMtmh 0.5 0 5.6
TMHMM2 1 4 8
SOSUI 1 4 8
PHDpsiHtm08 2 8 3
PHDhtm08 2 23 19
Wolfenden 2 13 39
Ben-Tal 3 4 11
PHDhtm07 3 16 14
PRED-TMR 4 1 8
HMMTOP2 6 1 0
TopPred2 10 11 8
DAS 16 0 0
WW 32 0 0
GES 53 0 0
Eisenberg 66 0 0
KD 81 0 0
Sweet 84 0 0
Hopp-Woods 89 0 0
Nakashima 90 0 0
Heijne 92 0 0
Levitt 93 0 0
Roseman 95 0 0
A-Cid 95 0 0
Av-Cid 95 0 0
Lawson 98 0 0
FM 99 0 0
Fauchere 99 0 0
Bull-Breese 100 0 0
Radzicka 100 0 0

 

0

20

40

60

80

100

0 5 10 15 20 25 3018 

False positives (FP) 

False negatives (FNlow) (Low resoultion) 

False negatives (FNhigh) (High resoultion) 

Fig. 4. The false positive and false negative rates as a function of 
cut-off length. The x-axis: cut-off length; the y-axis: false positive 
and false negative rates (%). Discrimination between soluble proteins 
and membrane proteins is based on the cut-off length chosen. The cut-
off length at 18 (dashed line) is chosen to minimize the sum of all 
three error rates (FP + FNlow + FNhigh).  
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and [0.5, 1.5], respectively. The set of values for (b, EI) 
we choose for the scoring function is (1.6, 1.0). An in-
teresting observation is that low topology accuracy 
(80%: blue and 79%: navy) occurs in the vertical-left, 
lower-horizontal, and upper-right regions. In the verti-
cal-left (b = 1) and the lower-horizontal (EI = 0) regions, 
the scoring function is simplified to assigning an equal 
weight of 1 to all loop signals regardless of their dis-
tance from the N-terminus. Conversely, in the upper-
right region, when both b and EI are large, the scoring 
function assigns very small weights to the loop signals 
downstream of the N-terminus. The poor accuracy in 
the vertical-left and the lower-horizontal region is a 
result of considering the contribution of every signal in 
the loop segments equally. On the other hand, in the 
upper-right region, the poor performance is due the con-
tribution from downstream signals made negligible by 
the scoring function. Therefore, our analysis supports 
the assumptions we have made about our scoring func-
tion: 1) topology formation is a result of contributing 
signals distributed along the protein sequence, particu-
larly in the loop regions; and 2) the contribution of each 
downstream loop segment on the first loop segment is 
not equal and diminishes as a function of distance away 
from the N-terminus. Our results suggest that the inclu-
sion of both assumptions in modeling membrane protein 
topology is a key factor in achieving the best topology 
accuracy. 

3.7.   Performance on newly solved 
structures and analysis of bacte-
riorhodopsin 

To illustrate the performance of the top four methods on 
the high and low-resolution data sets as shown in Table 
3, we test four recently solved membrane protein struc-
tures not included in the training set. The results are 
shown in Table 5. The best predicted protein is a photo-
synthetic reaction center protein (PDB ID: 1umx_L), for 
which all methods predict all helices correctly (Qok = 
100%). On the other hand, only two methods are capa-
ble of predicting all the helices from a bacteriorhodop-
sin (bR) structure (PDB ID: 1tn0_A) correctly (Qok = 
100%). In terms of topology prediction, most methods 
predict correctly for all four proteins. We devote our 
analysis to bR to illustrate that TMH prediction is by no 
means a trivial task and continuous development in this 
area is indispensable in advancing our understanding of 
membrane protein structures. 

Fig. 6(a) displays the high-resolution structure of 
bR from PDB. Bacteriorhodopsin (bR) is a member of 
the rhodopsin family, which is characterized with seven 
distinct transmembrane helices that can be indexed from 
Helix A to G. Studies of synthetic peptides of each of 
the seven TM helices of bR have shown that Helix A to 
Helix E can form independently stable helices when 
inserted into a lipid bilayer26. However, Helix G does 

 
Table 5. Performance of top four approaches shaded in Table 3 for newly solved membrane proteins. Proteins are 
indicated by their PDB codes and their observed topologies. Topology terms Nin: N-terminal loop on the inside of mem-
brane; Nout: N-terminal loop on the outside of membrane. PRED_TOPO: predicted topology. 

Per-segment (%)  Per-residue (%) 
Protein (observed topology) Methods PRED_TOPO 

okQ %obs
htmQ % prd

htmQ   2Q  %
2

obs
TQ  %

2
prd

TQ

SVMtmh Nout 100 100 100  85 84 94 
TMHMM2 Nout 0 86 100  71 68 87 
PHDpsiHtm08 Nout 0 71 100  76 77 87 1tn0_A (Nout) 

HMMTOP2 Nout 100 100 100  73 69 90 

SVMtmh Nin 0 70 100  87 57 74 
TMHMM2 Nin 0 70 100  86 54 72 
PHDpsiHtm08 Nin 0 50 50  86 52 72 1vfp_A (Nin) 

HMMTOP2 Nin 0 80 89  85 58 63 

SVMtmh Nin 100 100 100  90 91 89 
TMHMM2 Nin 100 100 100  85 78 89 
PHDpsiHtm08 Nout 100 100 100  82 92 75 1umx_L (Nin) 

HMMTOP2 Nin 100 100 100  83 78 83 

SVMtmh Nin 0 70 78  60 62 60 
TMHMM2 Nin 0 70 88  63 57 65 
PHDpsiHtm08 Nin 0 50 56  53 69 53 1xfh_A (Nin) 

HMMTOP2 Nin 0 90 90  71 73 71 
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Fig. 5. The relationship between base (b) and exponent increment (EI) in the alternating geometric scoring function and topology accuracy. 
The x-axis: base (b); the y-axis: exponent increment (EI). The accuracy of topology prediction (TOPO) for low-resolution data set is divided into 8 
levels, each indicated by a colour. The best accuracy (84%) and its associated (b, EI) values occur within the white circles. 

 10 20 30 40 50 60  

          |          |          |          |          |          | 
SEQ&TMH Q A Q I T G R P E W I WL A L G T A L MG L G T L Y F L V K G M G V S D P D A K K F Y A I T T L V P P I A F T MY L S M
SVMtmh         * * * * * * * * * * * * * * * * * * * * * *            * * * * * * * * * * * * * * * * * * * 
TMHMM2          * * * * * * * * * * * * * * * * * * * *             * * * * * * * * * * * * * * * * * * * 
PHDpsiHtm08                * * * * * * * * * * * * * *               * * * * * * * * * * * * * * * * * 
HMMTOP2          * * * * * * * * * * * * * * * * * * * *                     * * * * * * * * * * * 
 100 110 120 130 140 150  

          |          |          |          |          |          | 
SEQ&TMH P L L L L D L A L L V D A D Q G T I L A L V G A D G I M I G T G L V G A L T K V Y S Y R F V WW A I S T A A ML Y I L Y 
SVMtmh * * * * * * * *         * * * * * * * * * * * * * * * * * * * * * *      * * * * * * * * * * * * * * * * * 
TMHMM2 * * * * * * * * * * *       * * * * * * * * * * * * * * * * * * * * * * *     * * * * * * * * * * * * * * * * 
PHDpsiHtm08 * * * * * * * * * * * * * *   * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
HMMTOP2 * * * * * * * * * * *       * * * * * * * * * * * * * * * * * * * *         * * * * * * * * * * * * * * * 
 190 200 210 220 230 240  

          |          |          |          |          |          | 
SEQ&TMH L WS A Y P V V W L I G S E G A G I V P L N I E T L L F MV L D V S A K V G F G L I L L R S R A I F G E A E A P E P S A 
SVMtmh * * * * * * * * * * * *           * * * * * * * * * * * * * * * * * * * * * *                 
TMHMM2 * * * * * * * * * * * * * * * * * * *                                          
PHDpsiHtm08 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *              
HMMTOP2 * * * * * * * * * * * * *     * * * * * * * * * * * * * * * * * *                          

70 80 90

         |          |          | 
L L G Y G L T M V P F G G E Q N P I Y WA R Y A D WL F T T 
* * *              * * * * * * * * * * * * * * 
* * * *               * * * * * * * * * * * * 
* * * * * *                   * * * * * * 
* * * * * * * * *               * * * * * * * 

160 170 180 

         |          |          | 
V L F F G F T S K A E S M R P E V A S T F K V L R N V T V V 
* * * * *                * * * * * * * * * * 
* * * * * * *                    * * * * 
* * * * *                 * * * * * * * * * 
* * * * *                     * * * * * 

249   

        |                      
G D G A A A T S D                      
                              
                              
                              
                              

(a) 
C-terminus (cytoplasmic side)

N-terminus (extracellular side)

A 
B 

C 

D 
E F G 

(b) 
 

Fig. 6(a). The structure of a bacteriorhodopsin (bR) (PDB ID: 1tn0_A). Each helix is coloured and indexed from A to G. Figure is prepared 
with ViewerLite29. Fig. 6(b). Prediction results of bR by the top four methods (* = predicted helix). The observed helices are indicated by col-
our boxes. The region of Helix G (purple) and its predictions are highlighted in grey. 
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not form a stable helix in detergent micelles27 and ex-
hibits structural irregularity at Lys216 by forming a π-
bulge28. However, despite its atypical structure, Helix G 
is important in the function of bR, as it binds to retinal 
and undergoes conformation change during the photo-
synthetic cycle28.  

The results of the predictions by all four ap-
proaches are shown in Fig. 6(b). Interestingly, all ap-
proaches are successful in identifying the first six heli-
ces (Helix A – E) with good accuracy. However, most 
methods do not predict with the same level of success 
for Helix G. In particular, TMHMM2 misses Helix G 
entirely and PHDpsihtm08 merges predictions for Helix 
F and Helix G into one long helix. SVMtmh and 
HMMTOP211 are the only two out of all four methods 
that can correctly identify the presence of Helix G. Fur-
thermore, upon a closer examination of Helix G, 
HMMTOP2 over-predicts by 3 residues at the N-
terminus and severely under-predicts by 9 residues at 
the C-terminus. SVMtmh only under-predicts by 2 resi-
dues at the N-terminus of Helix G. The poor prediction 
results may be due to the intrinsic structural irregularity 
as described earlier, which adds another level of com-
plexity into the TMH prediction problem. Despite the 
difficulties involved in predicting the correct location of 
Helix G, SVMtmh is successful in producing a predic-
tion for the bR structure, which is in close agreement 
with the experimental approach. One possible reason 
for our success in this case could be the integration of 
multiple biological input features that encompass both 
global and local information for TMH prediction. 
TMHMM2 and HMMTOP2 rely solely on amino acid 
composition as sequence information, while 
PHDpsiHtm08 only uses sequence information from 
multiple sequence alignments. In contrast, SVMtmh 
incorporates a combination of both physico-chemical 
and sequence-based input features for helix prediction. 

4.   CONCLUSION 
We have proposed an approach based on SVM in a hi-
erarchical framework to predict transmembrane helix 
and topology in two successive steps. We demonstrate 
that by separating the prediction problem using two 
classifiers, specific biological input features associated 
with individual classifiers can be applied more effec-
tively. By integrating both the sequence and structural 

input features and using a novel topology scoring 
function, SVMtmh achieves comparable or better per-
segment and topology accuracy for both high- and low-
resolution data sets. When tested for confusion between 
membrane and soluble proteins, SVMtmh discriminates 
between them with the lowest false positive rate com-
pared to the other methods. We further analyze a set of 
newly solved structures and show that SVMtmh is ca-
pable of predicting the correct helix and topology of 
bacteriorhodopsin as derived from a high resolution 
experiment. 

With regard to future work, we will continue to en-
hance the performance of our approach by incorporating 
more relevant features in both stages of helix and topol-
ogy prediction. We will also consider some complexi-
ties of TM helices, including helix lengths, tilts, and 
structural motifs, as in the case of bacteriorhodopsin. 
Supported by the results we achieved, our approach 
could prove valuable for genome-wide predictions to 
identify potential integral membrane proteins and their 
topologies. 

While obtaining high-resolution structures for 
membrane proteins presents itself as a major challenge 
in the field of structural biology, the need for accurate 
prediction methods is highly demanded. We believe that 
the continuous development of computational methods 
with the integration of biological knowledge in this area 
will be immensely fruitful. 
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