
May 24, 2006 18:31 WSPC/Trim Size: 11in x 8.5in for Proceedings RevisedCSB06

1

SORTING GENOMES BY TRANSLOCATIONS AND DELETIONS

Xingqin Qi

Department of Applied Mathematics, Shandong University at Weihai,
Weihai, 264213, China

School of Mathematics and System Sciences, Shandong University,
Jinan, 250100, China

Email: qixingqin@163.com

Guojun Li

School of Mathematics and System Sciences, Shandong University,
Jinan, 250100, China

Department of Biochemistry and Molecular Biology, University of Georgia,
Athens, Georgia 30602, USA

Email: guojun@csbl.bmb.uga.edu

Shuguang Li

School of Mathematics and System Sciences, Shandong University,
Jinan, 250100, China

Department of Mathematics and Information Science, Yantai University,
Yantai, 264005, China

Email: sgliytu@hotmail.com

Ying Xu

Department of Biochemistry and Molecular Biology, University of Georgia,
Athens, Georgia 30602, USA
Email: xyn@csbl.bmb.uga.edu

Given two signed multi-chromosomal genomes Π and Γ with the same gene set, the problem of sorting by translocations
(SBT) is to find a shortest sequence of translocations transforming Π to Γ, where the length of the sequence is called

the translocation distance between Π and Γ. In 1996, Hannenhalli gave the formula of the translocation distance

for the first time, based on which an O(n3) algorithm for SBT was given. In 2005, Anne Bergeron et al. revisited
this problem and gave an elementary proof for the formula of the translocation distance which leads to a new O(n3)

algorithm for SBT. In this paper, we show how to extend Anne Bergron’s algorithm for SBT to include deletions,
which allows us to compare genomes containing different genes. We present an asymptotically optimal algorithm for

transforming Π to Γ by translocations and deletions, providing a feasible sequence with length at most OPT +2, where

OPT is the minimum number of translocations and deletions transforming Π to Γ. Furthermore, this analysis can be
used to approximate the minimum number of translocations and insertions transforming one genome to another.

1. INTRODUCTION

A translocation considered here is always reciprocal
which exchanges non-empty tails between two chro-
mosomes. Given two multi-chromosomal genomes Π
and Γ, the problem of sorting by translocations (ab-
breviated as SBT) is to find a shortest translocation
sequence that transforms Π to Γ. SBT was first in-
troduced by Kececioglue and Ravi 1 and was given a
polynomial time algorithm by Hannenhalli 2. Berg-
eron, Mixtacki and Stoye 3 pointed out an error in

Hannenhalli’s sorting strategy and gave a new O(n3)
algorithm for SBT. Li et al. 4 gave a linear time
algorithm for computing the translocation distance
(without producing a shortest sequence). Wang et
al. 5 presented an O(n2) algorithm for SBT.

Note that all above algorithms assume that the
two genomes have the same gene content. Such is
of course rarely the case in biological practice. In
this paper we consider a more general case: when
the gene set of Γ is a subset of the gene set of Π.
Clearly, in such case, “deletions” are needed. Write
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A for the set of genes in both Π and Γ, write AΠ

for those in Π only. We assume that each gene in
A appears exactly once in each genome. We will try
to computer the minimum number of translocations
and deletions transforming Π to Γ, which is denoted
as dtd(Π,Γ). We present an asymptotically optimal
algorithm, which provides a feasible sequence with
length at most dtd(Π,Γ) + 2.

The paper is organized as follows. The necessary
preliminaries are given in Section 2 and Section 3. A
lower bound on dtd(Π,Γ) is given in Section 4. In
Section 5 and Section 6 we give the approximation
algorithm and its analysis respectively. Conclusions
are given in Section 7.

2. PRELIMINARIES

As usual, we represent a gene by a positive integer
and an associated sign (“+” or “−”) reflecting the
direction of the gene, and the corresponding element
is said to be positive element or negative element. A
chromosome is a sequence of genes and does not have
an orientation. A genome is a set of chromosomes.

A chromosome is orientation-less, therefore flip-
ping a chromosome X = x1, ..., xk into −X =
−xk, ...,−x1 does not affect the chromosome it repre-
sents. Hence, a chromosome X is said to be identical
to a chromosome Y iff either X = Y or X = −Y . As
a convention we illustrate a chromosome horizontally
and read it from left to right. Genomes Π and Γ are
said to be identical if their sets of chromosomes are
the same. Let X = (X1, X2) and Y = (Y1, Y2) be two
chromosomes, where X1, X2, Y1, Y2 are sequences of
genes. A prefix-prefix translocation switches X1

with Y1 resulting in (Y1, X2), (X1, Y2). A prefix-
suffix translocation switches X1 with Y2 resulting
in (−Y2, X2), (Y1,−X1). The resulting genome after
applying a translocation ρ on genome Π is denoted as
Π · ρ. For a chromosome X = (x1, ..., xk), the num-
bers +x1 and −xk are called tails of X. The set of
tails of all the chromosomes in Π is denoted by T (Π).
Genomes Π and Γ are co-tailed if T (Π) = T (Γ).
Therefore, SBT is limited to genomes that are co-
tailed.

In the following, w.l.o.g, we assume that the el-
ements in each chromosome of the target genome
Γ are positive and in increasing order. For ex-
ample, let Π = {(4, 3), (1, 2,−7, 5), (6,−8, 9)} and

Γ = {(1, 2, 3), (4, 5), (6, 7, 8, 9)}. Reader(s) are as-
sumed to have a thoughtful understanding of Refs. 2
and 3.

2.1. The Cycle Graph

For a chromosome X = (x1, ..., xk), replace every
positive element +xi by ordered pair (xt

i, x
h
i ) of ver-

tices and replace every negative element −xi by or-
dered pair (xh

i , xt
i) of vertices. Vertices u and v are

neighbors in X if they are adjacent in the ordered list
constructed in aforementioned manner. We say that
vertices u and v are neighbors in a genome if they are
neighbors in some chromosome in this genome. For
gene x, vertices xt and xh are always neighbors and
for simplicity, we exclude them from the definition of
“neighbors” in the following discussion.

The bicolored cycle graph G(Π,Γ) of Π with re-
spect to Γ which have the same gene content is de-
fined as follows. The vertex set V contains the pairs
of vertices xt and xh for every gene x in Π, i.e. V={u:
u is either xt or xh, where x is a gene in Π}. Vertices
u and v are connected by a black edge iff they are
neighbors in Π. Vertices u and v are connected by a
gray edge iff they are neighbors in Γ.

A gray edge (u, v) in G(Π,Γ) is interchromosomal
if u, v belong to different chromosomes, otherwise is
intrachromosomal. Each vertex has degree either 2
or 0, hence the graph can be uniquely decomposed
into a number of disjoint cycles. A cycle is interchro-
mosomal if it contains at least one interchromosomal
gray edge, otherwise is intrachromosomal.

2.2. The Sub-permutation

A segment is an interval I = xi, ..., xj within a chro-
mosome X = x1, x2, ..., xm. Let VI be the set of
vertices induced by genes in I, i.e., VI ={u: u is
either xt

k or xh
k , i ≤ k ≤ j}. We refer to left

vertex corresponding to xi and right vertex corre-
sponding to xj as Left(I) and Right(I) respectively.
Define IN(I)=VI \ {Left(I), Right(I)}. An edge
(u, v) in G(Π,Γ) is said to be inside the interval I if
u, v ∈ IN(I).

A sub-permutation(SP) is an interval I =
xi, xi+1, .., xj within a chromosome X of Π such that
(i) there exists no edge (u, v) with u ∈ IN(I), v /∈
IN(I) and (ii) that is not the union of smaller such
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intervals.
We refer to a SP by giving its first and last el-

ement such as (xi...xj). A minimal sub-permutation
(MSP) is a SP not containing any other SPs. A SP
is trivial if it is of the form (i...i+1) or (−(i+1)...−i),
otherwise is non-trivial.

2.3. The Forest of SPs

Two different SPs of a chromosome are either dis-
joint, nested with different endpoints, or overlapping
on one element. When two SPs overlap on one ele-
ment, we say that they are linked. Successive linked
SPs form a chain. A chain that can not be extended
to the left or right is called maximal. The nesting
and linking relation of SPs on a chromosome can be
shown in the following way.

Definition 2.1. Given a chromosome X and its
SPs, define the forest FX by the following construc-
tion:

1. Each non-trivial SP is represented by a round
node.

2. Each maximal chain that contains a non-
trivial SP is represented by a square node whose (or-
dered) children are the round nodes that represent
the non-trivial SPs of this chain.

3. A square node is the child of the smallest SP
that contains this chain.

The above definition can be extended to a forest
of a genome by combining the forests of all chromo-
somes:

Definition 2.2. Given a genome Π consisting of
chromosomes {X1, X2, ..., XN}. The forest FΠ is the
union of forests FX1 , ..., FXN

.

Note that a leaf of FΠ corresponds to a MSP of
Π. Denote the number of leaves and trees of FΠ by L

and T respectively. If T = 1 and L is even, genome
Π has an even-isolation. We will refer to a MSP that
is a leaf in FΠ as simply a leaf.

2.4. The Translocation Distance

Let ρ(X, Y, i, j) be a translocation acting on chromo-
somes X = (x1, ..., xp) and Y = (y1, ..., yq), where
the cleavages occur in X between xi−1 and xi and
in Y between yj−1 and yj . Let f ∈ {xt

i−1, x
h
i−1}

and g ∈ {xt
i, x

h
i } such that f and g are neighbors in

X. Let u ∈ {yt
j−1, y

h
j−1} and v ∈ {yt

j , y
h
j } such that

u and v are neighbors in Y . Then ρ acts on black
edges (f, g) and (u, v). Let ∆c denote the change in
the number of cycles after performing a transloca-
tion on Π. Then ∆c ∈ {−1, 0, 1} 2. A translocation
is proper if ∆c = 1, improper if ∆c = 0 and bad if
∆c = −1.

It is easy to see each interchromosomal gray edge
(u, v) in G(Π,Γ) determines a proper (prefix-prefix
or prefix-suffix) translocation ρ of Π by cutting the
two black edges incident on u and v respectively. In
the following, as in Ref. 2, we only consider proper
translocations determined by interchromosomal gray
edges.

We say that a translocation destroys a SP C if
C is not a SP in the resulting genome. The only
way to destroy a SP with translocations is to ap-
ply a translocation with one cleavage in the SP, and
one cleavage in another chromosome. Such translo-
cations always merge cycles and thus are always bad.
Yet, a translocation may destroy more than one SP
at the same time. In fact, at most two MSPs on two
different chromosomes, plus all SPs containing these
two MSPs, can be destroyed by a single transloca-
tion. If a translocation destroys two MSPs on dif-
ferent chromosomes at the same time, we say the
translocation merges the two MSPs. Anne Bergeron
et al. 3 proved that it is also possible to eventually
merge two MSPs that initially belong to two differ-
ent trees of the same chromosome.

Lemma 2.1. 3 If a chromosome X of genome Π
contains more than one tree, and no other chromo-
some of Π contains non-trivial MSP, then the trees
can be separated on different chromosomes by proper
translocations without modifying FΠ.

Lemma 2.2. 3 Given two genomes Π and Γ with
the same gene set, assume there are N chromosomes
and n genes in both Π and Γ. Let c be the num-
ber of cycles in G(Π,Γ). The minimum number of
translocations for transforming Π to Γ is dt(Π,Γ) =
n−N − c + t, where

t =





L + 2, if L is even and T=1
L + 1, if L is odd
L, if L is even and T 6= 1
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A translocation ρ is valid if dt(Π,Γ) − dt(Π ·
ρ,Γ) = 1. A translocation is safe if it does not create
any new non-trivial SPs. Based on this formula, A.
Bergeron et al. gave an O(n3) efficient algorithm for
SBT (hereafter called Algorithm I). For complete-
ness, we describe it in the following.

Algorithm I
1. if L is even and T = 1

destroy one leaf such that L′ = L− 1
2. if L is odd

perform a bad translocation such that
T ′ = 0, or T ′ > 1 and L′ = L− 1

3. while Π is not sorted do
if there exist MSPs on different chromo-
somes then

perform a bad translocation such that
T ′ = 0, or T ′ > 1 and L′ = L− 2

else
perform a proper translocation such that
T and L remain unchanged.

end while

For above algorithm, we have two points to re-
mark.

Remark 2.1. Through Algorithm I, we always try
to merge a pair of valid MSPs on different chromo-
somes, i.e., merging them will not create an even-
isolation in the resulting genome. How to select a
pair of valid MSPs to merge has been introduced in
the proof of Lemma 4 in Ref. 3.

Remark 2.2. Through Algorithm I, we always try
to destroy a valid MSP on some chromosome, i.e.,
destroying it will not create an even-isolation in the
resulting genome. How to select a valid MSP to de-
stroy has been described in the proof of Theorem 2
in Ref. 3.

3. ON SORTING BY
TRANSLOCATIONS AND
DELETIONS

Returning to the problem at hand, i.e., when the
gene set of Γ is a subset of the gene set of Π, to
find the minimum of translocations and deletions re-
quired to transform genome Π to Γ. Let Π̃ be a
genome which is induced from Π by deleting from Π

all the genes in AΠ. We always assume genomes Π
and Γ are co-tailed, that implies Π̃ and Γ are co-tailed
too. Thus one can use Algorithm I to transform Π̃
to Γ.

3.1. The New Definition for Cycle
Graph

Given that the genes of AΠ are destined to be
deleted, their identities and signs are irrelevant,
and could be replaced with any symbols different
from those used in A. For any segment of form
S = u1, u2 · · ·up−1, up, where u1, up correspond to
two elements of A, and for all i, 2 ≤ i ≤ p − 1,
ui corresponds to a gene of AΠ, we replace S by
S′ = u1δ(u1)up, where δ(u1) is the segment of AΠ

between u1 and up. And u1 and up are separated by
a δ.

Example 3.1. Let S = +1,−a,+2,−3,+b,−c,+4,

−5 be a segment on a chromosome of Π, then S

can be rewritten as +1, δ(1h),+2,−3, δ(3t),+4,−5,
where δ(1h) = −a, δ(3t) = +b,−c.

We represent genomes Π and Γ by the redefined
cycle graph G(Π,Γ), where V is the set of vertices,
B is the set of black edges and D is the set of gray
edges. These three sets are defined as follows:

• V = {xs}s∈{h,t}
x∈A

• The black edges pertain to genome Π. There
are two kinds of black edges: direct black edges which
link two adjacent vertices in Π; indirect black edges
which link two vertices separated by a δ. For an in-
direct black edge e = (a, b), then δ(a), the segment
of elements in AΠ between a and b, is called the label
of e.

• Gray edges link adjacent vertices in Γ.

An indirect cycle (or indirect SP) is one con-
taining at least one indirect black edge, otherwise
is direct. Color the leaves corresponding to indirect
MSPs red, and the leaves corresponding to direct
MSPs blue.

An example is given in the following Fig.1, where
Π = {(1,−2, 3, 8, 4,−5, a, b, c, 6), (7, 9,−10, 11,−12,

13, 14,−15, d, e, f, 16)}. Indirect black edges are in-
dicated by thick lines.

159160       



May 24, 2006 18:31 WSPC/Trim Size: 11in x 8.5in for Proceedings RevisedCSB06

5

1t 1h 2h 2t 3t 3h 8t 8h 4t 4h 5t5h 6t 6h

7t 7h 9t 9h 10t10h 11t 11h 12t12h 13t 13h 14t 14h 15t15h 16t 16h

Cycle Graph

(1...3) (4...6)
(9...11)

(11...13)
(14...16)

Forest

Fig. 1. The cycle graph G(Π, Γ) and the forest FΠ.

3.2. The New Definition for a
Translocation

In G(Π,Γ), an indirect black edge determines not an
adjacency of genome Π but an interval containing
only genes to be deleted. We thus have to redefine
what we mean by “the bad translocation acting on
two black edges” or “the proper translocation de-
termined by an interchromosomal gray edge”. Let
e = (a, b) be one indirect edge in G(Π,Γ). The seg-
ment [x, δ(a)] designates the interval bounded on the
left by x and on the right by the element of AΠ ad-
jacent to b. The segment [δ(a), x] designates the in-
terval bounded on the left by the element of AΠ ad-
jacent to a and on the right by x. To give Definition
3.1 simply, we define δ(a) = ∅ for a direct black edge
e = (a, b). Then the segment [x, δ(a)] designates the
interval bounded on the left by x and on the right
by a. The segment [δ(a), x] designates the interval
bounded on the left by b and on the right by x.

Definition 3.1. Assume the two black edges e =
(a, b) and f = (c, d) are on two different chro-
mosomes X = x1, ..., a, δ(a), b, ..., xp and Y =
y1, ..., c, δ(c), d, ..., yq, where xi(1 ≤ i ≤ p) and yj

(1 ≤ j ≤ q) are vertices of G(Π,Γ).
(1) The translocation determined by g = (a, c)

exchanges the segment [x1, a] of X with the segment
[δ(c), yq] of Y .

(2) The translocation determined by g = (b, d)
exchanges the segment [x1, δ(a)] of X with the seg-
ment [d, yq] of Y .

(3) The translocation determined by g = (a, d)
exchanges the segment [x1, a] of X with the segment
[y1, δ(c)] of Y .

(4) The translocation determined by g = (b, c)

exchanges the segment [x1, δ(a)] of X with the seg-
ment [y1, c] of Y .

(5)The translocation determined by e and f ex-
changes the segment [x1, δ(a)] of X with the segment
[y1, c] of Y .

4. A LOWER BOUND ON dtd(Π, Γ)

Algorithm I can be generalized to graphs containing
direct and indirect edges by making use of the new
definition of a translocation.

Lemma 4.1. A proper translocation determined by
an interchromosomal gray edge of a cycle C trans-
forms C into two cycles C1 and C2, at least one of
which is of size 1, say C1. Then the black edge of C1

is direct.

Corollary 4.1. An interchromosomal cycle C of
size k is transformed by Algorithm I with k − 1
translocations, into k cycles of size 1. If C is di-
rect, the k cycles are all direct. If not, only one of
these cycles is indirect.

By Corollary 4.1, for each interchromosomal in-
direct cycle, Algorithm I gathers all the genes to be
deleted into a single segment. At the end, a single
deletion is required for each interchromosomal indi-
rect cycle. Now consider the intrachromosomal indi-
rect cycles which are forming MSPs. The merging of
two MSPs is achieved by combining two intrachro-
mosomal cycles C1 and C2 one from each of the two
MSPs. This gets rid of the two MSPs and creates an
interchromosomal cycle. The destroying of one MSP
M is achieved by combining one intrachromosomal
cycle C1 ∈ M with another cycle C2 which is not in
any MSP. This gets rid of M and creates an inter-
chromosomal cycle. The resulting interchromosomal
cycles can be resolved as described above. For either
destroying or merging, if both C1 and C2 are indi-
rect, we will save one step of deletion. Thus we get
the optimal sorting scheme: So that there are as few
deletions and translocations as possible, we just need
to merge as many as possible of pairs of indirect

cycles through Algorithm I.
Given two genome Π and Γ with different genes,

denote the number of red leaves in FΠ by r(Π,Γ) and
the number of indirect cycles in G(Π,Γ) by ci(Π,Γ).
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Lemma 4.2. The number of merging of pairs
of indirect cycles through Algorithm I is at most
b r(Π,Γ)

2 c+ 1.

Proof. We will prove it in the following subcases.
subcase 1: if L is even and T = 1. In such

case, two MSPs M1 and M2 will be destroyed in step
1 and 2 respectively, and the left MSPs are paired
to merge in step 3. If both M1 and M2 are indi-
rect, there are at most b r(Π,Γ)−2

2 c mergings of pairs
of indirect cycles in step 3, thus there are at most
b r(Π,Γ)−2

2 c+2 = b r(Π,Γ)
2 c+1 mergings of pairs of in-

direct cycles through Algorithm I;a if only one of M1

and M2 is indirect, then there are at most b r(Π,Γ)−1
2 c

mergings of pairs of indirect cycles in step 3, thus
there are at most b r(Π,Γ)−1

2 c+1 ≤ b r(Π,Γ)
2 c+1 merg-

ings of pairs of indirect cycles through Algorithm I;
if neither of M1 and M2 is indirect, it is impossible
to merge a pair of indirect cycles in steps 1 and 2,
thus there are at most b r(Π,Γ)

2 c mergings of pairs of
indirect cycles through Algorithm I.

subcase 2: if L is odd. In such case, step 1 is
not executed. One MSP M will be destroyed in step
2, and the left MSPs are paired to merge in step 3. If
M is indirect, there are at most b r(Π,Γ)−1

2 c mergings
of pairs of indirect cycles in step 3, thus there are
at most b r(Π,Γ)−1

2 c + 1 ≤ b r(Π,Γ)
2 c + 1 mergings of

pairs of indirect cycles through Algorithm I; if M is
direct, it is impossible to merge a pair of indirect cy-
cles in step 2, so there are at most b r(Π,Γ)

2 c mergings
of pairs of indirect cycles through Algorithm I.

subcase 3: if L is even and T 6= 1. In such
case, steps 1 and 2 are not executed. So there are at
most b r(Π,Γ)

2 c mergings of pairs of indirect cycles in
step 3, i.e., through Algorithm I.

Theorem 4.1. dtd(Π,Γ) ≥ dt(Π̃,Γ) + ci(Π,Γ) −
b r(Π,Γ)

2 c−1, where Π̃ is the induced genome by delet-
ing from Π all the genes in AΠ and dt(Π̃,Γ) is the
translocation distance between Π̃ and Γ.

5. DESIGN AN ALGORITHM

We will approximate dtd(Π,Γ) by merging as many
as possible of pairs of indirect MSPs through Al-
gorithm I. To do this, when some MSP must be de-
stroyed, our strategy prefers to destroy a direct MSP.

Our sorting scheme requires careful consideration of
MSP choice and cycle (i.e., black edge) choice for
each MSP. In summary:
MSPs merging

1. Choose a pair of valid MSPs M1 and M2,
having the same color if possible.

2. If both M1 and M2 are indirect, choose an
indirect black edge e in M1 and an indirect
black edge f in M2; otherwise, choose any
black edge e in M1 and f in M2.

3. Apply the (prefix-prefix) translocation de-
termined by e and f by Definition 3.1.

MSP destroying

1. Choose a valid MSP M , direct if possible.

2. Choose a black edge e in M , and a black edge
f on a different chromosome not contained
in any MSP.

3. Apply the (prefix-prefix) translocation de-
termined by e and f by Definition 3.1.

5.1. Special Cases and Corresponding
Sub-procedures

We always try to merge a pair of “valid” MSPs with
“the same color”, or destroy a “valid” “direct” MSP.
But in some cases, the two conditions for “merging”
or “destroying” are not compatible. We list the fol-
lowing six cases. For a tree with x leaves, we denote
it by x-tree. If x is even, it is called an even-tree,
otherwise, is called an odd-tree.

Case 1: T = 3, one is an even-tree, the other
two are 1-trees. All leaves of the even-tree have color
i, the leaves of both the two 1-trees have color j,
where i 6= j.

Sub-procedure 1: Ignore the color of leaves
and apply Algorithm I on G(Π,Γ).

Case 2: T = 2, one is an x-tree, the other is a
1-tree, where x is odd and x ≥ 3. The leaf of the
1-tree has color i. The rightmost leaf R of the odd-
tree has color k, the leftmost leaf L of the odd-tree
has color l, the other internal leaves of the odd-tree
have color j, where i 6= j.

Sub-procedure 2:

aSince MSP destroying may merge a pair of indirect cycles.
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1. Apply a sequence of proper translocations
without changing FΠ until the two trees are
on different chromosomes by Lemma 2.1.

2. If k = l = i, then

2.1. merge the leaf of the 1-tree with the
middle leaf of the odd-tree.b

2.2. merge R with L.

3. Ignore the color of leaves and apply Algo-
rithm I on G(Π,Γ).

Case 3: T = 2, one is an x-tree, the other is a
y-tree, where x, y ≥ 2 and x+y is even. All leaves of
the x-tree have color i, all leaves of the y-tree have
color j, i 6= j.

Sub-procedure 3:

1. Apply a sequence of proper translocations
without changing FΠ until the two trees are
on different chromosomes by Lemma 2.1.

2. Merge the middle leaves of the two trees.c

3. Flip the chromosome on which the tree of
color j is on the right of the tree of color i.

4. Keep merging the pair of leftmost leaves of
color j on different chromosomes until at
most one leaf of color j is left.d

5. Keep merging the pair of rightmost leaves
of color i on different chromosomes until at
most one leaf of color i is left.

6. Ignore the color of leaves and apply Algo-
rithm I on G(Π,Γ).

Case 4: T = 1, L is odd and L ≥ 3. The right-
most leaf R has color i, the leftmost leaf L has color
j, and the other internal leaves all have color red.

Sub-procedure 4:

1. If i = j =blue, then

1.1 destroy the middle (red) leaf of the
tree.e

1.2 merge R with L.

2. Ignore the color of leaves and apply Algo-
rithm I on G(Π,Γ).

Case 5: T = 2, one is an even-tree, the other is
a 1-tree. All leaves of the even-tree have color red,
and the leaf of the 1-tree has color blue.

Sub-procedure 5: Ignore the color of leaves
and apply Algorithm I on G(Π,Γ).

Case 6: T = 1, L is even and all leaves of FΠ

are red.
Sub-procedure 6: Ignore the color of leaves

and apply Algorithm I on G(Π,Γ).

5.2. Main Lemmas

The following lemmas will be central in providing an
invariant for the sorting algorithm.

Lemma 5.1. 3 If a chromosome X of genome Π
contains more than one tree, then there exists a
proper translocation involving chromosome X.

Lemma 5.2. 2 If there exists a proper translocation
in Π, then there exists a proper translocation ρ in
Π such that Π · ρ does not have any new non-trivial
MSP.

Lemma 5.3. 3 If a chromosome X of genome Π
contains more than one tree, and no other chromo-
some of Π contains non-trivial MSP, then there ex-
ists a proper translocation involving X that does not
modify FΠ.

Lemma 5.4. In the process of Algorithm I, if some
MSP must be destroyed, we can always destroy a
“valid” “direct” MSP as long as it is not the Case
4, 5 or 6.

Lemma 5.5. Let Π be a genome whose forest FΠ

has L ≥ 4 leaves and T ≥ 2 trees, where L is even
and FΠ is not the Case 1, 2 or 3. If there are same
color leaves on different chromosomes, then there ex-
ists a bad translocation merging a pair of same color

leaves such that the forest FΠ′ has L′ = L− 2 leaves
and T ′ 6= 1 trees.

Proof. We will prove it by discussing on T .
subcase 1: T = 2. Assume the two trees are

x-tree and y-tree, where x + y ≥ 4. Clearly, the two
trees must be on different chromosomes. When x ≥ 2

bThis will make R and L be on different chromosomes.
cThis will create four trees.
dIt is feasible since we always use a prefix-prefix translocation to merge MSPs.
eThis will make R and L be on different chromosomes.
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and y ≥ 2, since FΠ is not Case 3, there must exist
a pair of same color leaves between the two trees.
Merging this pair of same color leaves will result in a
genome Π′ with L′ = L− 2 leaves and T ′ 6= 1 trees.
When x = 1, y ≥ 3 (y = 1, x ≥ 3, respectively), since
FΠ is not the Case 2, there exists an internal leaf l1
of y-tree (x-tree, respectively) such that l1 has the
same color with the only leaf l2 of x-tree (y-tree, re-
spectively). Merging l1 and l2 will result in a genome
Π′ with L′ = L− 2 leaves and T ′ 6= 1 trees.

subcase 2: T = 3. Since FΠ is not the Case 1,
there exist a pair of same color leaves l1 and l2 on
different chromosomes such that either l1 or l2 is a
leaf of some x-tree, where x ≥ 2. Clearly, merging
l1 and l2 will result in a genome Π′ with L′ = L− 2
leaves and T ′ 6= 1 trees.

subcase 3: T ≥ 4. In this case, merging any
pair of same color leaves on different chromosomes
will result in a genome Π′ with L′ = L−2 leaves and
T ′ 6= 1 trees.

Lemma 5.6. Let Π be a genome whose forest FΠ has
L ≥ 4 leaves and T ≥ 2 trees, where L is even and
FΠ is not the Case 1, 2 or 3. If there does not exist
any pair of same color leaves on different chromo-
somes, then there exists a valid proper translocation
of Π without changing L.

Proof. We will prove it by discussing on T .
subcase 1: T = 2. The two trees must be on

the same chromosome. By Lemma 5.3, there exists
a valid proper translocation without changing FΠ.

subcase 2: T ≥ 3. Since there are only two
kind of colors, all trees in FΠ must be on at most
two chromosomes.

If the trees are on one chromosome, by Lemma
5.3, there exists a valid proper translocation without
modifying FΠ.

Otherwise, assume the two chromosomes are X

and Y , and all leaves on X have color i while all
leaves on Y have color j, where i 6= j. Since T ≥ 3,
either X or Y has more than one tree. Then by
Lemmas 5.1 and 5.2, there exists a proper transloca-
tion without changing L. The resulting genome must
have more than two trees, thus this proper translo-
cation is valid.

Lemma 5.7. Let Π be a genome having no leaves.
If Π is not sorted, then there always exists a safe
proper translocation on Π.

Proof. Since Π is not sorted and FΠ = ∅, there must
be an interchromosomal gray edge in GΠ,Γ, which
determines a proper (prefix-prefix or prefix-suffix)
translocation. Then by Lemma 5.2, there exists a
safe proper translocation on Π.

5.3. The Approximation Algorithm

Our extended algorithm for merging as many as pos-
sible of pairs of indirect MSPs is given in the follow-
ing Algorithm II.

Algorithm II

1. if L is even and T = 1
if it is Case 6, go to sub-procedure 6;
else, destroy a valid blue leaf by Lemma
5.4.

2. if L is odd

(a) if L = 1, destroy this leaf.

(b) if it is Case 4 or 5, go to sub-procedure
4 or 5 respectively;
else, destroy a valid blue leaf by Lemma
5.4.

3. while L ≥ 4 do

(a) if it is Case 1,2 or 3, go to sub-
procedure 1, 2 or 3 respectively.

(b) if there exist same color leaves on dif-
ferent chromosomes then

perform a valid bad translocation
merging a pair of same color
leaves by Lemma 5.5.

else,
perform a valid proper transloca-
tion by Lemma 5.6.

4. if L = 2 ( comment: there must be T = 2)

(a) perform proper translocations without
changing FΠ until the two leaves are on
different chromosomes by Lemma 2.1.

(b) perform a bad translocation merging
this two leaves.

5. Perform safe proper translocations on Π un-
til Π is sorted by Lemma 5.7.
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Let G1(Π,Γ) be the graph containing only length
1 cycles obtained by applying Algorithm II to the
graph G(Π,Γ). Now we apply the following Proce-
dure Deletion on G1(Π,Γ).

Procedure Deletion
For each indirect edge e = (a, b) of G1(Π,Γ)

Delete the gene segment between a and b, la-
beled by δ(a).

We call Algorithm II augmented by Procedure
Deletion the Translocation-Deletion algorithm. It is
clear that the algorithm transforms genome Π to
genome Γ. Let β(Π,Γ) be the number of mergings
of pairs of indirect cycles in Algorithm II.

Theorem 5.1. The number of translocations and
deletions obtained by the Translocation-Deletion al-
gorithm is Apxtd(Π,Γ) = dt(Π̃,Γ) + ci(Π,Γ) −
β(Π,Γ).

6. ANALYSIS OF
TRANSLOCATION-DELETION
ALGORITHM

Let α(Π,Γ) be the number of mergings of pairs
of indirect MSPs during Algorithm II. Obviously,
β(Π,Γ) ≥ α(Π,Γ). Assume that there are rstep 3

red leaves at the beginning of step 3. Assume there
are rsi red leaves when sub-procedure i happens and
there will be yi pairs of red MSPs merged in sub-
procedure i, where i = 1, 2, ..., 6.

Lemma 6.1. For i = 1, 2, 3, 4, 5, 6, if rsi
is even,

yi = b rsi

2 c − 1; if rsi is odd, yi = b rsi

2 c.

Proof. We discuss the six cases respectively.
Case 1 appears. rs1 is even. In sub-procedure 1,

two red leaves are used to merge with two blue leaves
respectively, the other red leaves if exist are paired
to merge, so y1 = b rs1−2

2 c = b rs1
2 c − 1.

Case 2 appears. If k = l = i, then rs2 is odd. In
sub-procedure 2, one red leaf is used to merge with
a blue leaf, the other red leaves if exist are paired
to merge, so y2 = b rs2−1

2 c = b rs2
2 c. If k = i, l = j

or k = j, l = i, then rs2 is even. In sub-procedure 2,
two red leaves are used to merge with two blue leaves
respectively, the other red leaves if exist are paired
to merge, so y2 = b rs2−2

2 c = b rs2
2 c − 1. If k = l = j,

then rs2 is odd. In sub-procedure 2, one red leaf is

used to merge with a blue leaf, the other red leaves if
exist are paired to merge, so y2 = b rs2−1

2 c = b rs2
2 c.

Case 3 appears. If rs3 is even, in sub-procedure
3, two red leaves are used to merge with two blue
leaves respectively, the other red leaves are paired to
merge, so y3 = b rs3−2

2 c = b rs3
2 c − 1. If rs3 is odd,

in sub-procedure 3, the middle red leaf is used to
merge with the middle blue leaf, the other red leaves
are paired to merge, so y3 = b rs3−1

2 c = b rs3
2 c.

Case 4 appears. If i = j =blue, then rs4 is odd.
In sub-procedure 4, one red leaf is cut, the other
red leaves are paired to merge, so y4 = b rs4−1

2 c =
b rs4

2 c. If all leaves of the odd-tree are red, then
rs4 is odd. In sub-procedure 4, one red leaf is de-
stroyed, the other red leaves are paired to merge, so
y4 = b rs4−1

2 c = b rs4
2 c. If only one of the rightmost

and leftmost leaf is red, then rs4 is even. In sub-
procedure 4, a red internal leaf will be destroyed, an-
other red leaf will be used to merge with the only one
blue leaf, the other red leaves are paired to merge,
so y4 = b rs4−2

2 c = b rs4
2 c − 1.

Case 5 appears. rs5 is even, in sub-procedure 5,
one red leaf is destroyed and another red leaf is used
to merge with the blue leaf, the other red leaves are
paired to merge, so y5 = b rs5−2

2 c = b rs5
2 c − 1.

Case 6 appears. rs6 is even, in sub-procedure
6, two red leaves are destroyed respectively, and
the other red leaves are paired to merge, so y6 =
b rs6−2

2 c = b rs6
2 c − 1.

Since when Cases i = 4, 5 or 6 appears in Al-
gorithm II, rsi

= r(Π,Γ) and α(Π,Γ) = yi, so we
have

Lemma 6.2. If one of Cases 4, 5, 6 appears in Al-
gorithm II, then α(Π,Γ) = b r(Π,Γ)

2 c if r(Π,Γ) is odd,
and α(Π,Γ) = b r(Π,Γ)

2 c − 1 if r(Π,Γ) is even.

Lemma 6.3. If one of Cases 1, 2, 3 appears in Al-
gorithm II, then α(Π,Γ) = b r(Π,Γ)

2 c − 1 if r(Π,Γ) is
even, and α(Π,Γ) = b r(Π,Γ)

2 c if r(Π,Γ) is odd.

Proof. Clearly, rstep 3 = r(Π,Γ). Note that a red
leaf is always merged with another red leaf in step
3 until one of the Cases 1, 2, 3 appears. Assume
that there are xi pairs of indirect MSPs which have
been merged in step 3 when sub-procedure i hap-
pens, i = 1, 2, 3. Since rsi

+ 2xi = rstep 3 = r(Π,Γ),
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rsi and r(Π,Γ) have the same parity. We have
α(Π,Γ) = yi + xi. So by Lemma 6.1, if r(Π,Γ) is
even, α(Π,Γ) = xi + b rsi

2 c − 1 = b rsi
+2xi

2 c − 1 =
b r(Π,Γ)

2 c − 1; otherwise, α(Π,Γ) = xi + b rsi

2 c =
b rsi

+2xi

2 c = b r(Π,Γ)
2 c.

Lemma 6.4. If none of the six cases appears in Al-
gorithm II, α(Π,Γ) = b r(Π,Γ)

2 c.

Proof. Since none of the six cases appears in Algo-
rithm II, if r(Π,Γ) is even, a red leaf is always merged
with another red leaf; if r(Π,Γ) is odd, except one
red leaf is merged with a blue leaf, the others are
paired to merge, so α(Π,Γ) = b r(Π,Γ)

2 c.

By Lemmas 6.2− 6.4, we have

Lemma 6.5. α(Π,Γ) ≥ b r(Π,Γ)
2 c − 1

Theorem 6.1. Apxtd(Π,Γ)− dtd(Π,Γ) ≤ 2.

Proof. By Theorems 4.1 and 5.1, Apxtd(Π,Γ) −
dtd(Π,Γ) ≤ b r(Π,Γ)

2 c + 1 − β(Π,Γ) ≤ b r(Π,Γ)
2 c + 1 −

α(Π,Γ) ≤ 2.

Example 6.1. See Fig.1, there are two in-
direct cycles in G(Π,Γ) and five non-trivial
MSPs: (1...3), (4...6), (9...11), (11...13), (14....16),
where (4...6) and (14...16) are indirect. Π̃ =
{(1,−2, 3, 8, 4,−5, 6), (7, 9,−10, 11,−12, 13, 14,−15,

16)} and dt(Π̃,Γ) = 16 − 2 − 7 + 6 = 13. If in step
2 of Algorithm II, (1...3) is chosen to destroy, the
resulting forest will be Case 2, then β(Π,Γ) = 0,
so Apxtd(Π,Γ) = 13 + 2 − 0 = 15; if (11...13) is
chosen to destroy, (4...6) will merge with (14...16)
and (1...3) will merge with (9...11) respectively, then
β(Π,Γ) = 1, so Apxtd(Π,Γ) = 13 + 2− 1 = 14. Note
that 14 is the shortest number of translocations and
deletions transforming Π to Γ.

7. CONCLUSIONS

In this paper, we give an asymptotically optimal al-
gorithm when the gene set of Γ is a subset of the gene
set of Π. In fact, the problem of transforming Π to
Γ with a minimum of translocations and insertions
can be approximated by the translocation-deletion
analysis, where Π takes the role of Γ, and vice versa.
To the best of our knowledge, this is the first time to
consider SBT when the genomes have different gene
sets.
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