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Thermodynamic RNA secondary structure prediction is an important recipe for the latest generation of functional
non-coding RNA finding tools. However, the predicted energy is not strong enough by itself to distinguish a single
functional non-coding RNA from other RNA. Here, we analyze how well an RNA molecule folds into a particular
structural class with a restricted folding algorithm called Thermodynamic Matcher (TDM). We compare this energy
value to that of randomized sequences. We construct and apply TDMs for the non-coding RNA families RNA I and
hammerhead ribozyme type III and our results show that using TDMs rather than universal minimum free energy
folding allows for highly significant predictions.

1. INTRODUCTION

In this section, we discuss shortly the state of the art

in RNA gene prediction and classification, and give

an outline of the new approach presented here.

1.1. RNA gene prediction and

classification

The term “RNA genes” is defined, for the purpose of

this article, as those RNA transcripts that are not

translated to protein, but carry out some cellular

function by themselves. Recent increased interest in

the manifold regulatory functions of RNA have led

to the characterization of close to 100 classes of func-

tional RNA1, 2. These RNA regulators mostly exert

their function via their tertiary structure.

RNA genes are more difficult to predict than pro-

tein coding genes for two reasons: (1) There is no

signal such as an open reading frame, which would

be a first necessary indicator of a coding region. (2)

Comparative gene prediction approaches are difficult

to apply, because sequence need not be preserved

in order to preserve a functional structure. In fact,

structure preservation in the presence of sequence

variation is the best indicator of a potentially inter-

esting piece of RNA3, 4. This means that, in one way

or another, structure must play an essential role in

RNA gene prediction.

Whereas the full 3D structure of an RNA

molecule currently cannot be computed, its 2D struc-

ture, the particular pattern of base pairs that form

helices, bulges, hairpins etc., can be determined by

dynamic programming algorithms based on an elab-

orate thermodynamic model5–7. Unfortunately, the

minimum free energy (MFE) structure as defined

and computed by this model is often weakly deter-

mined, and does not necessarily correspond to the

functional structure in vivo. And of course, every

single stranded RNA molecule, be it functional or

not, attains some structure.

However, if there is a functional structure, pre-

served by evolution, it should be well-defined, ac-

cording to two criteria:

• Energy Criterion: The energy level of the MFE

structure should be relatively low, to ensure that

the structure is stable enough to execute a specific

function.

• Uniqueness Criterion: The determined MFE

structure should not be challenged by alternative

foldings with similar free energy.

Much work has been invested in the Energy Cri-

terion: Can we move a window along an RNA se-

quence, determine the MFE of the best local folding,

and where it is significantly lower than for a random

sequence, may we hope for an RNA gene, because

evolution has selected for a well-defined structure?

Surprising first results were reported by Seffens &

∗Corresponding author.
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Digby8, indicating that mRNAs (where one would

not even expect such an effect) had lower energies

than random sequences of the same nucleotide com-

position. However, this finding was refuted by Work-

man & Krogh9, who showed that this effect goes

away when considering randomized sequences with

conserved dinucleotide composition. Rivas & Eddy10

studied the significance of local folding energies in

detail, reporting two further caveats: First, local in-

homogeneity of CG content can produce a seemingly

strong signal. Second, variance in MFE values is

high, and a value of at least 4 standard deviations

from the mean (a Z-score of 4) should be required be-

fore a particular value is considered an indicator of

structural conservation. In most recent work, Clote

et al.11 studied several functional RNA families, com-

paring their MFE values against sequences of the

same dinucleotide composition. They found that,

on the one hand, there is a signal of smaller-than-

random free energy, but on the other hand, it is not

significant enough to be used for RNA gene predic-

tion.

A weak signal can be amplified by using a com-

parative approach. Washietl et al.12 suggest that, by

scanning several well-aligned sequences, significant

Z-scores can be obtained. The tool RNAz 3 is based

on this idea. Of course, a good sequence alignment

is not always available.

All in all, it has been determined that the Energy

Criterion is not useless, but also not strong enough

by itself to distinguish functional RNA genes from

other RNA.

A first move to incorporate the Uniqueness Cri-

terion has been suggested by Le et al.13. They

compute scores based on energy differences: They

compare the MFE value to the folding energy of a

“restrained structure”, which is defined by forbid-

ding all base pairs observed in the MFE structure.

This essentially partitions the folding space into two

parts, taking the MFE structure within each part

as the representative structure. This can be seen as

a binary version of the shape representative struc-

tures defined by Giegerich et al.14. Just recently, the

complete probabilistic analysis of abstract shapes of

RNA has become possible15, which would allow us

to base the Le et al. approach on probabilities de-

rived from Boltzmann statistics. This appears to be

a promising route to follow. Here, however, we take

yet another road in the same direction.

1.2. Outline of the new approach

After gene prediction via the Energy Criterion, the

next step is to analyze the candidate structure, in

order to decide whether it is a potential member of a

known functional class. The structural family mod-

els provided in Rfam16, 17 are typically used for this

purpose. We suggest to combine the second step with

the first one: We ask how well the molecule folds

into a particular structural class, and compare this

energy value to that of randomized sequences. We

shall show that in this way we can obtain significant

Z-scores. Note that this approach contains the ear-

lier one as a special case: If the “particular class”

holds all feasible structures, we are back with simple

MFE folding. The Le et al. approach, by contrast,

is not subsumed by this idea, as their partitioning is

derived from the sequence at hand, while ours is set

a priori.

The term Thermodynamic Matcher (TDM) has

been suggested by Reeder et al.18 for an algorithm

that folds an RNA sequence into a particular type

of structure in the energetically most favorable way.

This is similar to using covariance models based on

stochastic context free grammars, but uses thermo-

dynamics rather than statistics. A first example of a

TDM was the program pknotsRG-enf, which folds an

RNA sequence into the energetically best structure

containing at least one pseudoknot somewhere.

Although the idea of specialized thermodynamic

folding appears to be an attractive supplement to co-

variance models16, to our knowledge, no other TDMs

have been reported. This is most likely due to the

substantial programming effort incurred when im-

plementing such specialized folding algorithms un-

der the full energy model. However, these efforts

are reduced by the technique of algebraic dynamic

programming19, 20, which allows to produce such a

folding program – at least an executable draft – in

one afternoon of work. Subsequent experimentation

may be required to make the draft more specific, as

explicated below. By this technique, we have been

able to produce TDMs for nine RNA families so far,

and our results show that using TDMs rather than

universal MFE folding allows for highly significant
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predictions.

struct = comp | AD

comp struct

comp = SR

base comp base

| IL

regioncomp region

| BL

regioncomp

| BR

comp region

| ML

struct

| HL

region

| SS

region

Fig. 1. General folding grammar GGF : The terminal symbol
“base” denotes one of the nucleotides A,C,G,U, and “region”
is a sequence of nucleotides. struct and comp are non-terminal
symbols, and the corresponding productions are shown above.
These productions can be read as follows: An RNA secondary
structure can be a single component or a component next to
some other struct . A component is either a single stranded re-
gion (SS), or it is composed (AD) from stacking regions (SR)
and loops (BR,BL,IL,ML), which can be arbitrarily nested
and terminated by a hairpin loop (HL).

The same results as with our TDMs in this pa-

per can be computed using RNAmotif 21, by using

the free energy as score function. However our mo-

tifs will result in exponential many structures for a

input sequence. For every structure the energy has

to be separately computed resulting in exponential

runtime.

1.3. Tree grammars

RNA secondary structure, excluding pseudo-

knots, can be formally defined with regular tree

grammars15. Similar to context free string gram-

mars, a set of rules, called productions, transforms

non terminal symbols into trees labeled with ter-

minal and non terminal symbols. Formally, a tree

grammar G is a tuple (Σ, V, P, A) where Σ is a set

of terminal symbols, V is a set of variables with

Σ ∩ V = ∅, P is a production set, and A is a des-

ignated variable called axiom. The language L(G)

of a tree grammar G is the set of trees that do not

contain variables, which can be derived by iteratively

applying productions starting with the axiom.

Figure 1 shows tree grammar GGF for RNA sec-

ondary structures. GGF is a simplified version of the

base grammar our TDMs are derived from, which

is more complex and takes into account the latest

energy model for RNA folding. We use GGF to illus-

trate the basic concepts of TDMs. Note that the se-

quence of leaf nodes (in left-to-right order) for a tree

T ∈ L(G) is the primary sequence for T . RNA struc-

ture prediction and stochastic context free grammar

approaches to align RNA structures, are problems of

computing an optimal derivation for a primary se-

quence.

SR

base SR base

base BL base

region SR

base HL base

region

C U CC G GCG C A G

Fig. 2. This is one possible derivation of the grammar GGF

for the sequence “CUCCGGCGCAG”. Note that this is just
one of many possible trees/structures.

2. THERMODYNAMIC MATCHERS

The RNA folding problems means finding the en-

ergetically best folding for a given sequence under

a certain model. Throughout this article, we con-

sider the Zuker & Stiegler model, which describes the

structure space and energy contributions for RNA
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secondary structures and is used in a wide range

of folding routines7, 15, 6. As indicated above, the

structure space for an RNA molecule can be defined

with a tree grammar and the folding problem be-

comes a parsing problem19, 20. We use this view

and express (or restrict) folding spaces in terms of

tree grammars, thereby obtaining thermodynamic

matchers. The informal notion of a structural motif

is formally modeled by a specialized tree grammar.

Let G be a grammar that describes the folding

space for some structural motif, e.g. only those struc-

tures that have a tRNA-like hairpin structure. G

typically differs from GGF by absence of some rules,

while other rules may be duplicated and special-

ized. FG denotes the structure space for the gram-

mar G, in other words: all possible trees that can

be derived from the grammar’s axiom. A thermody-

namic matcher TDM G(s) is an algorithm that calcu-

lates the minimum free energy and the corresponding

structure from the structure space FG for some nu-

cleotide sequence s. MFEG(s) is the minimum free

energy calculated by TDM G(s). Since the same en-

ergy model is used, the minimal free energy of the

restricted folding can not be lower than the minimal

free energy of the general folding, we always have

MFEG(s) ≥ MFEGF (s). Note that it is not always

possible to fold a sequence into a particular motif.

In this case, a TDM returns an empty result.

2.1. Z-scores

A Z-score is the distance from the mean of a distribu-

tion normalized by the standard deviation. Mathe-

matically: Z(x) = (x− µ)/δ, with µ being the mean

and δ the standard deviation. Z-scores are useful

for quantifying how different from normal a recorded

value is. This concept has been applied to eliminate

an effect that is well known for minimum free en-

ergy folding: The energy distribution is biased by

the G/C content of a sequence as well as its length

and dinucleotide composition.

To calculate the Z-score for a particular se-

quence, the distribution of MFE values for random

sequences with the same dinucleotide composition

must be known. The lower the Z-score, the lower

is the energy compared to energies from random se-

quences. Clote et. al.11 observed that Z-score dis-

tributions for RNA genes are lower than Z-score dis-

tribution for random RNA. However, this difference

is fairly small and only significant if the whole dis-

tribution is considered. It is not sufficient to distin-

guish an individual RNA gene from random RNA10.

The reason for the insufficient significance of Z-scores

are the combinatorics of RNA folding. There is of-

ten some structure in the complete search space that

obtains a low energy.
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Fig. 3. Z-score histogram for 10000 random sequences with
a length of 100 nucleotides, for two TDMs and the general
folding.

Here, our aim is not the general prediction of

non-coding RNA, but the detection of new mem-

bers of a known, or at least defined, RNA fam-

ily. By restricting the folding space, we can, as we

demonstrate in Section 3, shift Z-scores for family

members into a significant zone. Structures with

MFEGF = MFEG for a grammar G get a lower Z-

score, since the distribution MFEG for random RNA

is shifted to higher energies. Even if this seems to be

right for the grammars used in this paper, the effect

of a folding space restriction on the energy distribu-

tion is not obvious. Clearly, the mean is shifted to

more positive values, but the effect on the variance is

not yet understood mathematically. Therefore, our

applications must provide evidence that the Z-scores

are affected in the desired way.

Let DG(s) be the frequency distribution of MFE

values for random sequences with the same dinu-

cleotide frequency as s, i.e. the minimum free energy

versus the fraction of structures s′ obtaining that

energy with TDM G(s′). ZG(s) is the Z-score for a

sequence s with respect to the distribution DG(s).
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The value-mean and the standard deviation can be

determined by a sampling procedure. For our exper-

iments, we generate 1000 random sequences preserv-

ing the dinucleotide frequencies of s.

The distribution of Z-scores for random RNA se-

quences is shown in Figure 3. Interestingly, a restric-

tion of the folding space does not affect the Z-score

distribution. At least this holds for the TDMs shown

in this paper. For a reliable detection of RNA genes,

a Z-score of lower than -4 is needed10. Our exper-

iments showed that over 99.98% of random RNAs

have Z-scores greater then -4. To distinguish RNA

genes from other RNA on a genomic scale, a thresh-

old should be set to a Z-value such that the number

of false predictions is trackable.

2.2. Design and implementation

Designing a thermodynamic matcher means defining

its structure space. On the one hand it must be large

enough to support good sensitivity, and on the other

hand it must be small enough to provide good speci-

ficity. A systematic analysis of the relation between

structure space restriction and its effect on specificity

and sensitivity of MFE based Z-scores is subject of

our current research.

Fig. 4. Consensus structure for RNAI genes taken from the
Rfam database.

The design of a TDM for an RNA gene requires

a consensus structure. If an RNA family is listed in

the Rfam database, the consensus shown there is a

good starting point; at least the structural part of it.

Alternatively, the consensus of known sequences can

be obtained with programs that predict a common

structure, like PMmulti22 and RNAcast23.

motif = AD

hloop AD

SS AD

region hloop AD

SS hloop

region

hloop = SR

base hloop base

| IL

regionhloop region

| BL

regionhloop

| BR

hloop region

| HL

region

Fig. 5. Simplified version of the grammar GRNAI . Recon-
sider the grammar in Figure 1. Instead of an axiom that de-
rives arbitrary RNA structures, the axiom motif derives three
hairpin loops (hloop) connected by single stranded regions.

We now exemplify the design of a TDM. For in-

stance, we are interested in stable secondary struc-

tures that consist of three hairpin loops separated by

single stranded regions, like the structures of RNAI

genes as shown in Figure 4. A specialized gram-

mar for RNAI must only allow structures compatible

with this motif. A simplified version of the grammar

GRNAI , which abstracts from length constraints for

stems and loops, is given in Figure 5.

Since we want to demonstrate that with a search
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space reduction new members of an RNA family can

be detected by their energy based Z-score, we do not

incorporate explicit sequence constraints in a ther-

modynamic matcher other than those necessary to

form the required base-pairs. However, this could be

easily incorporated in our framework.

We use the algebraic dynamic programming

(ADP) framework19 to turn RNA secondary struc-

ture space grammars into thermodynamic matchers.

In the context of ADP, writing a grammar in a text

based notation is equivalent to writing a dynamic

programming structure prediction program. This

approach is similar to using an engine for searching

with regular expressions. There is no need to imple-

ment the search routines, it is only a matter of spec-

ifying the search results. A grammar, which consti-

tutes the control structure of an unrestricted folding

algorithm, is augmented by an evaluation algebra in-

corporating the established energy rules5. All TDMs

share these rules, only the grammar changes.

The time complexity of a TDM depends on the

motif complexity. If multiloops are included the run-

time is O(n3) where n is the length of the sequence

that is folded. Without multiloops the time com-

plexity is O(n2), if the size of bulges and loops is

bounded by a constant. In both cases the memory

consumption scales with O(n2).

3. RESULTS

We constructed TDMs for the non-coding RNA fami-

lies RNAI and hammerhead type III ribozyme (ham-

merheadIII) taken from the Rfam database Version

7.016, 17. All TDMs used in this section utilize the

complete energy model for RNA folding6 and there-

fore have more complex grammars than the gram-

mars presented to explain our method.

To assess if TDMs can be used to find candi-

dates for an RNA family, we searched for known

members in genomic data. The known members are

those from Rfam seeds, which are experimental val-

idated. We apply our TDMs to genomes containing

the seed sequences and measure the relation between

Z-score threshold, sensitivity, and specificity. We de-

fine sensitivity as TP/(TP+FN) and specificity as

TN/(TN+FP), where TP is the number of true pos-

itives, TN is the number true negatives, FP is the

number of false positives, and FN is the number of

false negatives.

3.1. RNA I

Replication of ColE1 and related bacterial plasmids

is initiated by a primer, the plasmid encoded RNAII

transcript, which forms a hybrid with its template

DNA. RNAI is a shorter plasmid-encoded RNA that

acts as a kinetically controlled suppressor of replica-

tion and thus controls the plasmid copy number24.

Sequences coding for RNAI fold into stable sec-

ondary structures with Z-scores reaching from −3.6

to −6.7 (Table 1).

Table 1. Z-score for the RNAI seed sequences
computed with TDMGGF

and TDMGRNAI
.

EMBL Accession number ZGGF
ZGRNAI

AF156893.2 -6.61 -7.31
X80302.1 -4.88 -6.20
Y17716.1 -5.74 -6.29
Y17846.1 -5.06 -6.16
U80803.1 -6.33 -6.84
D21263.1 -3.96 -5.33
S42973.1 -4.53 -5.82
U65460.1 -6.73 -7.41
X63534.1 -3.63 -5.41
AJ132618.1 -5.93 -6.71

The Rfam consensus structure consists of three

adjacent hairpin loops connected by single stranded

regions (Figure 4). Structures for this consensus

are described by the grammar GRNAI (Figure 5).

If we allow for arbitrary stem lengths in our motif,

all structures that consist of three adjoined hairpins

would be favored by TDM GRNAI
. This has an unde-

sired effect: It would be possible to fold a sequence,

that folds (with general folding) into a single hair-

pin with low energy, into a structure with one long

and two very short hairpins. Although the energy of

the restricted folding is higher than the energy of the

unrestricted folding, it would still obtain a good en-

ergy resulting in a low Z-score. Clearly, these struc-

tures do not really resemble the structures of RNAI

genes. In refinement, each stem loop is restricted to

a minimal length of 25 nucleotides and the length

of the complete structure is restricted to up to 100

nucleotides. These restrictions are compatible with

the consensus of RNAI and increase the sensitivity
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and specificity of TDM GRNAI
. Sequences from the

seed obtain ZGRNAI
values between −5.33 and −7.41

(Table 1). For random RNA the frequency distribu-

tion of ZGRNAI
is similar to ZGGF

(see Figure 3). The

ZGRNAI
score difference is large enough to distinguish

RNAI genes from random RNA.
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(a) General folding (TDMGGF
)
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(b) Restricted Folding (TDMGRNAI
)

Fig. 6. TDM scan for RNAI in a plasmid of Klebsiella pneu-

moniae (EMBL Accession number AF156893). The known
RNAI gene is located at position 4498 indicated by the dotted
vertical line. (a) In steps of 5 nucleotides, the score ZGGF

is
shown for the following 100 nucleotides and for their reverse
complement. The Z-scores for both directions are drawn ver-
sus the same sequence position. The position where the known
RNAI gene starts achieves a low Z-score, but there is another
position with a lower Z-score (position ∼ 1450) and positions
with nearly as low scores (around position 750). (b) shows
corresponding values for ZGRNAI

. The RNAI gene now clearly
separates from all other positions. Sequences that fold into
some unrelated stable structure are penalized because they
cannot fold into a stable RNAI structure.

To verify whether RNAI genes can also be distin-

guished from genomic RNA, we applied our matcher

to 10 plasmids that contain the seed sequences (one

in each of them). The Plasmid length ranges from

108 to 8193 nucleotides in this experiment. All plas-

mids together have a length of ∼ 27500 nucleotides.

For each plasmid, a 100 nucleotides long window was

slid from 5’ to 3’ with a successive offset of 5. ZGRNAI

was computed for every window. RNA I can be lo-

cated on both strands of the plasmid. Therefore,

TDM GRNAI
was also applied to the reverse comple-

ment. Overall, this results in ∼ 11000 ZGRNAI
scores.

An RNAI sequence was counted as positive hit if a

Z-score in the range of 5 nucleotides to the left or

right of the starting position of an RNAI gene has

a Z-score equal or lower than the current threshold.

In this region, no negative hits are counted. Figure

6 shows the result for a plasmid of Klebsiella pneu-

moniae.

It is also possible to use a complete sequence as

input for a TDM. However, this will return the best

substructure (or substructures) in terms of energy,

which not always corresponds to the substructure

with the lowest Z-score.
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Fig. 7. Sensitivity and specificity versus the Z-value thresh-
old. TDMGRNAI

improves sensitivity and specificity compared
to TDMGGF

.

If we set the Z-score threshold to −5, we obtain

for TDM GRNAI
a sensitivity of 100% and a specificity

of 99.89%, which means 10 true positives and 12 false

positives (for all plasmids). For TDM GGF
, we obtain

only a sensitivity of 80% and a specificity of 99.10%,

which means 8 true positives and 99 false positives.

A threshold of −3.5 is required to find all RNAI genes

of the seed. The specificity in this case is 96.71% re-

sulting in 362 false positives. (Figure 7). Although

the specificity is fairly low, it makes a big difference

to the number of false positives for genome wide ap-

plications.

3.2. Hammerhead ribozyme (type III)

The hammerhead ribozyme was originally discovered

as a self-cleaving motif in viroids and satellite RNAs.

These RNAs replicate using the rolling circle mech-
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anism, which generates long multimeric replication

intermediates. They use the cleavage reaction to re-

solve the multimeric intermediates into monomeric

forms. The region able to self-cleave has three base

paired helices connected by two conserved single

stranded regions and a bulged nucleotide. Hammer-

head type III ribozymes (HammerheadIII) form sta-

ble secondary structures with Z-scores varying from

-6 to -2 for general folding.

The seed sequences from the Rfam database vary

in their length. 6 sequences have a length of around

80 nucleotides. All other seed sequences are around

55 nucleotides long. To be able to use length con-

straints, which are not too vague, we removed the 6

long sequences for our experiment. Thus, TDM GHH

is not designed to search for HammerheadIII can-

didates with a sequence length larger than 60 nu-

cleotides.

Fig. 8. Consensus structure for hammerhead ribozyme type
III genes taken from the Rfam database.

Grammar GHH describes the folding space for

the consensus structure shown in Figure 8. The max-

imal length of our motif is 60 nucleotides. The sin-

gle stranded region between the two stem loops in

the multiloop has to be between 5 and 6 nucleotides

TDM GHH
improves the distribution of Z-scores for

the seed sequences (Figure 9).

Most sequences now obtain a Z-score smaller

than −4, but some obtain a higher score. These se-

quences are only about 45 nucleotides long. They

fold into two adjacent hairpin loops and do not form

a multiloop with TDM GGF
They are forced into our

HammerheadIII motif with considerable higher free

energy. If a family has many members, it might be

necessary to separately consider subfamilies.
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Fig. 9. Z-scores distribution for 68 hammerhead ribozyme
type III sequences.

We applied TDM GHH
to 59 viroid sequences with

length of 290 to 475 nucleotides. HammerheadIII

can be located on both strands of the DNA. Each

sequence contains one or two HammerheadIII genes.

A 60 nucleotides long window was slid from 5’ to 3’

with a successive offset of 2. For the sequence (and

for its reverse complement), of each window ZGHH

was computed. Overall, this resulted in ∼ 19500

scores. An HammerheadIII sequence was counted as

positive hit if a Z-score in the range of 3 nucleotides

to the left or right of the starting position of an Ham-

merheadIII gene has a Z-score equal or lower than the

current threshold. In this region, no negative hits

are counted. The sensitivity and specificity depend-

ing on the Z-score threshold is shown in Figure 10.

The sensitivity is improved significantly compared

to TDM GGF
. However, the specificity is lower for Z-

scores thresholds smaller than −3, which is the rele-

vant region. It turned out that many false positives

with Z-values of smaller −4 maybe true positives,

which are not part of the Rfam seed, but are pre-

dicted as new RNAI candidate genes in Rfam. Fig-

ure 11 shows sensitivity and specificity if false nega-

long. The stem lengths are not explicitly restricted.
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tives, that are candidate genes in Rfam, are counted

as true positives. All RNA candidate genes that are

provided in Rfam achieve low Z-scores as shown in

Figure 12. Unlike Infernal16, which is used for the

prediction of candidate family members in Rfam, we

use pure thermodynamics rather than a covariance

based optimization. This gives further and indepen-

dent evidence for the correctness of both predictions.

 0

 20

 40

 60

 80

 100

-8 -7 -6 -5 -4 -3 -2 -1  0

pe
rc

en
ta

ge
 [%

]

Z-score

Sensitivity (GGF)
Specificity (GGF)
Sensitivity (GHH)
Specificity (GHH)

Fig. 10. Selectivity and specificity versus the Z-value thresh-
old. TDMGHH

improves sensitivity and specificity compared
to TDMGGF
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Fig. 11. Selectivity and specificity versus the Z-value thresh-
old. TDMGHH

improves sensitivity and specificity compared
to TDMGGF

. Candidates predicted by Rfam are treated as
positive hits.
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Fig. 12. Distribution of Z-scores for all 274 HammerheadIII
gene and gene candidate sequences taken from the Rfam
database.

4. DISCUSSION

The current debate about the quality of thermo-

dynamic prediction of RNA secondary structures is

extended by our observations regarding specialized

folding spaces. It is well known that the MFE struc-

ture from predictions in most cases only shares a

small number of base-pairs that can be detected by

more reliable sources than MFE such as compensa-

tional base mutations. This is a consequence of the

combinatorics of the RNA folding space, which pro-

vides many ”good” foldings. Thus, MFE on its own

can not be used to discriminate non-coding RNAs.

We demonstrated that, given a consensus structure

for a family of non-coding RNA, a restriction of the

folding space to this family prunes low energy fold-

ings for non-coding RNA that do not belong to this

family. The overlap of Z-score distributions for MFE

values for family members and non-family members

can be reduced by our technique resulting in a search

technique with high sensitivity and specificity, called

thermodynamic matching.

In our experiments for RNA I and the hammer-

head type III riboyzme, we did not include other re-

strictions than size restrictions for parts of the struc-

ture. These matchers can be fine tuned and can also

include sequence restrictions, which could further in-

crease their sensitivity and specificity. It is also possi-

ble to include H-type pseudoknots in the motif using

techniques presented in Ref. 18.
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We demonstrated that a TDM can detect mem-

bers of RNA families by scanning single sequences.

It seems promising to extend the TDM approach to

scan aligned sequences using a combined energy and

covariance scoring in spirit of RNAalifold12. This

should further increase selectivity, or, if this is not

necessary, allow “looser” motif definitions.

A question that arises from our observations is:

Can our TDM approach be incorporated in a gene

prediction strategy? If we would guess a certain

motif and find stable structures with significant Z-

scores, they might be somehow biologically relevant.

In a current research project, we focus on a sys-

tematic generation of TDMs for known RNA families

from the Rfam database. We are also working on a

graphical user interface to facilitate biologists to cre-

ate their own TDMs, without requiring the knowl-

edge of the underlying algebraic dynamic program-

ming technique.

Beside the two RNA families shown here we have

implemented TDMs for 7 other non-coding RNA

families, including transfer RNA, micro RNA per-

cursor and the Nanos 3’ UTR translation control

element. The results were consistent with our ob-

servations for RNAI and the hammerhead ribozyme

given here, and will be used to analyze further the

predictive power of thermodynamic matchers.
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