
May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

1

EFFICIENT RECURSIVE LINKING ALGORITHM FOR COMPUTING THE LIKELIHOOD OF
AN ORDER OF A LARGE NUMBER OF GENETIC MARKERS

S. Tewari

Dept. of Statistics, University of Georgia,
Athens, GA 30605-1952, USA
∗Email: statsusant@yahoo.com

Dr. S. M. Bhandarkar ∗

Dept. of Computer Science,University of Georgia,
Athens, GA 30605-7404, USA
∗Email: suchi@cs.uga.edu

Dr. J. Arnold

Dept.of Genetics, University of Georgia,
Athens, GA 30605-7223, USA

∗Email: arnold@uga.edu

Assuming no interference, a multi-locus genetic likelihood is implemented based on a mathematical model of the
recombination process in meiosis that accounts for events up to double crossovers in the genetic interval for any specified
order of genetic markers. The mathematical model is realized with a straightforward algorithm that implements the
likelihood computation process. The time complexity of the straightforward algorithm is exponential without bound
in the number of genetic markers and implementation of the model for more than 7 genetic markers is not feasible,
motivating the need for a novel algorithm. A recursive linking algorithm is proposed that decomposes the pool of
genetic markers into segments and renders the model implementable for a large number of genetic markers. The
recursive algorithm is shown to reduce the order of time complexity from exponential to linear. The improvement in
time complexity is shown theoretically by a worst-case analysis of the algorithm and supported by run time results
using data on linkage group-I of the fungal genome Neurospora crassa.

1. INTRODUCTION

High density linkage maps are an essential tool for
characterizing genes in many systems, fundamental
genetic processes, such as genetic exchange between
chromosomes, as well as the analysis of traits con-
trolled by more than one gene (i.e.,complex traits)1.
Since genetic maps are most often the critical link
between phenotype (what a gene or its product does
) and the genetic material, genetic maps can be ex-
ploited to address how the genetic material controls
a particular trait 2 controlled by one or more genes.
Most model systems possess high density linkage
maps that can assist in the analysis of complex traits.
The bread mold, Neurospora crassa3, which gave us
the biochemical function of genes, is no exception4.
One approach to understanding the genetic basis of a

complex trait is to follow its segregation in offspring
along with an array of genetic markers. One class of
genetic markers frequently used are restriction frag-
ment length polymorphism (RFLP), markers in the
DNA itself. These markers in essence allow a trian-
gulation on loci in the DNA affecting the complex
trait. Part of this triangulation process involves the
construction of a genetic map with many markers.
This is a computationally challenging problem 5 and
at the heart of understanding complex traits, such as
human disease. In this paper we address the problem
of genetic map reconstruction from a large number
of RFLP markers. We focus on map construction for
a model system N.crassa6 where there is a wealth
of published information about how markers segre-
gate because the genetic makeup of gametes can be
identified. Previous attempts (7, 8) at genetic map

∗Corresponding author.

Keywords: Crossover, EM algorithm, recursive linking, time complexity, MLE.

191

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

2

construction of a large number of genetic markers are
mostly based on pair wise genotypic information, not
on likelihood computation. Here we focus on solving
the computational challenge posed by our probabilis-
tic modelling of the genetic map.

2. MULTILOCUS GENETIC
LIKELIHOOD FOR A SPECIFIED
ORDER OF GENETIC MARKERS.

Let S be the sample space of an exchange (crossover)
between any two non-sister strands (chromatids) of
the tetrad in a single meiosis. Let c denote the prob-
ability of exchange of genetic material between any
two non sister strands in the tetrad at meiosis.

S = {0, 1, 2, 3, 4}
P (i) =

c

4
; i = 1, · · · , 4; i ∈ S

P (0) = 1− c; 0 ∈ S (1)

The element 0 in S indicates the absence of a
crossover event. Elements 1, 2, 3 and 4 indicate that
non-sister chromatids (1, 3), (2, 3), (2, 4) and (4, 1)
took part in exchange respectively.

Let Si(= S × S) be the set whose elements de-
note crossover events covering events up to double
crossovers between locus Aiand A(i+1)(i = 1, ..., l −
1), where l=total number of loci being studied. Us-
ing equation (1), the probability distribution on Si

is given by:

P ({i, j}) =
c2
i

16
I{i6=0;j 6=0}

+
ci(1− ci)

4
{I{i=0;j 6=0} + I{i6=0;j=0}}

+(1− ci)2I{i=j=0}
(2)

where, {i, j} ∈ Si.
Let φk denote a unique crossover event on Sl as

described below:

φk = i1 × i2 × ...× il−1 (3)

where,

k = i1.i2.i3...il−1 ; ij ∈ Si ; φk ∈ Sl =
l−1∏

i=1

Si

Let fk denote a multi-locus genotype with l loci:

fk = i1 × i2 × ...× il−1 × il

where,

k = i1.i2.i3...il ; ij = 0, 1; ∀j = 1, · · · , l

The indices ij = 1 and ij = 0 indicate the pa-
ternal and maternal alleles respectively. The progeny
are obtained by crossover between homogeneous par-
ents. The observed data set can be represented as:

D =
{
nj ; ∀j = 1, · · · , 2l

}

where, nj is the observed frequency of fj .

2.1. Probability distribution on Sl

Let us define the following functions

f0(a) = (a1, a2, a3, a4)′

f1(a) = (a3, a2, a1, a4)′

f2(a) = (a1, a3, a2, a4)′ (4)

f3(a) = (a1, a4, a3, a2)′

f4(a) = (a4, a2, a3, a1)′

where,

a = (a1, a2, a3, a4)′

ai = 0, 1 ∀i
The function fij(a) = fj(fi(a)) corresponds to

the events in Si. For a particular crossover φk we can
generate a model tetrad at meiosis using the function
fij . The following matrix Rk of size 4× l defines the
simulated tetrad as follows:

Rk =
(
R0R1 · · ·R(l−1)

)
(5)

where,

R0 = (1100)′ ; Ri = fjk(Ri−1) ∀i = 1, · · · , l − 1

and the ith genetic interval Si observed the crossover
event {j, k}. The conditional distribution of fi for a
given φk is

P (fi|φk) =
1
4

4∑

j=1

Ifi∈Rk(j,.)
(6)

where, Rk(j, .)is the jth row of Rk.
The marginal density of a single spore fi is given

by

P (fi) =
∑

k

P (fi|φk)× Pk

= C × P (7)

192

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

3

where, C is the conditional probability matrix given
by :

C = ((cki))
cki = P (fi|φk) (from equation (6))

}
(8)

and P is given by,

P = (Pk; ∀k)′

Pk = P (φk)

=
l−1∏

j=1

P (Ij = ik,j) (9)

where, ik,j ∈ Sj and the probability distribution
P (Ij = ik,j) is as defined in equation(2).

Let Θ = (c1, c2, ..., cl−1)′ denote the unknown
parameter vector in the model. The log-likelihood of
f viewed as a function of Θ is given by:

ln(Θ|D) =
N∑

j=1

nj log
[∑

k

[1
4

4∑

j=1

I{fi∈Rk(j,.)}

×
l−1∏

j=1

Pj (Ik,j = ik,j)
]]

(10)

The following two theorems solve equation(10)
using a set of recurrence relations obtained via the
Expectation-Maximization (EM) algorithm 9. The
proofs are not given in the interest of brevity.

Theorem 1.
The EM-iterative equations are given below.

Θ(h+1) =
(
c(h+1)
m ∀m = 1, · · · , l − 1

)′

where c(h+1)
m =

(
2N2,m + N1,m

2Nm

)(h)

(11)

where

Nm =
∑

k

n
(h)
k = N0,m + N1,m + N2,m

N0,m =
∑

k
∣∣ik,m=(0,0)

n
(h)
k

N1,m =
∑

k
∣∣ik,m=(i1,i2)

i1=0 (Strict)OR i2=0

n
(h)
k

N2,m =
∑

k
∣∣ik,m=(i1,i2)

i1 6=0 AND i2 6=0

n
(h)
k

n
(h)
k =

∑

j

njπk|j(Θ(h))

πk|j = P (xkj = 1|fj) =
πj|k × πk

pj

pj =
∑

k

πj|k × πk

πj|k = cki in equation (8)

πk = Pk in equation (9)

Note that, ik,m denotes an event in Sm for the
crossover φk.

Theorem 2.
Let f = (f1, f2, f3, f4)′ be the observed frequency

vector corresponding to all possible meiotic products
for parental genes M and O for two markers. The
genotype vector for f is (MM MO OM OO)’. The
maximum likelihood estimator 10 of the exchange
probability c under the model represented by Equa-
tion(1) is unique and is given as follows:

(1) If f1 + f4 < f2 + f3 then cmle = 1
(2) If f1 + f4 ≥ f2 + f3 then cmle is given by the

unique solution (in the interval [0, 1]) of the fol-
lowing equation:

f(c) = c2 − 2c + D = 0 (12)

where,

D =
2(f2 + f3)

N
; N =

4∑

i=1

fi

This theorem is used to obtain the starting values
of cm for the EM-iterative equations in Theorem 1.

193

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

4

3. THE STRAIGHTFORWARD
ALGORITHM

In the pseudocode below, k denotes a particular
crossover φk as defined in equation(3). The function
getRMatrix implements equation(5) to create the
Rk matrix corresponding to the crossover φk. The
function kProb computes the marginal probability
Pk due to crossover φk as defined in equation(9).
The matrix Rk and the probability Pk in turn create
matrices C and P progressively during the course of
the recursive loop to calculate the marginal proba-
bility of each observed distinct genotype as defined
in equation(7). These marginal probabilities along
with the counts for the distinct genotypes are used to
compute the log-likelihood in equation(10). A par-
ticular crossover φk does not enter into the compu-
tation of the likelihood so long it does not have pos-
itive probability for at least one distinct genotype.
The elimination of such crossovers is achieved with
the function kIsWorthy, which implies that at least
some amount of computation cannot be avoided for
each crossover. In the recursive algorithm we propose
in the paper, this feature is handled more efficiently
where a large number of crossovers are eliminated by
performing checks on a few. In the pseudocode the
vector sum computes conditional probabilities across
all distinct genotypes. The conditional probability is
computed with the help of the function countMatch
that implements the equation(6), counting the num-
ber of strands (out of 4) in Rk that match with the
observed genotype. The vector freq has the observed
count corresponding to the distinct genotypes(dg)
and totalObs is the total sample size and probFOld

stores the marginal probability of each distinct geno-
type using equation(7).The array pCount imple-
ments the EM algorithm via equation(11) by re-
categorizing the vector sum based on the crossover
values along the chromosome. Note that the de-
nominator of πk|j , pj , the marginal probability due
to the jth distinct genotype, is left out from its
(πk|j) computation as that requires going through
all the crossovers and is currently being progressively
computed by probFOld. To compute n

(h)
k in equa-

tion(11) we need to add up the inverse probabili-
ties (πk|j) across the distinct genotypes but, as their
marginal probabilities are not computed yet it is not
possible to do so. We work around this problem by

adding another dimension along the number of dis-
tinct genotypes to the structure pCount. The first
dimension of pCount is of magnitude 3 to account
for N0,m,N1,m and N2,m in equation(11) and the
second dimension runs along m, accounting for the
(l − 1) genetic intervals. Once all the crossovers are
processed and the marginal probabilities computed,
the elements in the third dimension are divided by
their corresponding marginal probabilities and then
added up across the dimension. This gives us the
two dimensional structure postCount (not shown in
the pseudocode) containing values of N0,m,N1,m and
N2,m for all the genetic intervals. Then the new value
of ci for each genetic interval is computed using equa-
tion(11) and the process iterates until convergence.
Despite being a recursive algorithm (crossovers are
generated recursively) it suffers from the computa-
tional bottleneck to process a huge (25(l−1) for loci
l) number of crossovers. This problem is overcome
using the proposed recursive linking algorithm. For
brevity we show the pseudocode of only the most
important part of the straightforward algorithm.

{Pseudocode of the Straightforward Algo-

rithm}
loop
{ This is a recursive loop. This dynamically
generates l-1 FOR loops.}
r=getRMatrix(k)
if kIsWorthy()==1 then

prob=kProb(cProbOld,k);
for i = 0; i < dg; i + + do

sum[i] = countMatch() ∗ prob ∗ freq[i]/4.0 ∗
totalObs
probFOld[i]+ = countMatch()/4.0 ∗ prob

end for
for j = 0; j < loci− 1; j + + do

pCount[CellSpecial(k[j])][j]+ = sum
{ The function CellSpecial() maps
crossover values from 0 to 24 to the events
of the set Si and the addition is a compo-
nentwise vector addition.}

end for
end if

end loop

194

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

5

4. THE PROPOSED RECURSIVE
LINKING ALGORITHM

Let the entire order of genetic markers be broken
into equal segments of width (h), such that all the
intervals are covered. So, for l genetic markers the
number of segments s is given by the following equa-
tion :

s =
(l− 1)
h− 1

(13)

The first segment has an associated array called
kArrayF irst that has all the crossovers for the seg-
ment. The array linkInfoF irst stores the last row
generated by the R matrix for each crossover of the
segment. The array cArrayF irst checks for each
particular crossover and each observed genotype of
the first segment which strands of the simulated
(based on the model described in equation(1)) tetrad
obtained by R match with the genotype. The match-
ing status forms the last dimension of the array with
length 4 and consists of symbols 1 and 0 indicating a
match(1) and mismatch(0) respectively. For exam-
ple, a matching status 1 0 0 1 for the first distinct
genotype corresponding to crossover pattern 0 0 2
3 4 in the first segment level indicates that among
the 4 tetrads in meiosis generated by the crossover
pattern 0 0 2 3 4 in the first segment, the observed
genotype in question was found only on the first and
the fourth tetrad. When we use this information
over a combined segment formed with two segments,
only a match at the same tetrad position will en-
sure a match for the combined segment.Note that R

depends on crossover values on all intervals of the
segment and its columns are sequentially dependent
on each other with a lag one. Each crossover in
the first segment branches out to 25(h−1) crossovers
in the following segment and creates 252(h−1) com-
bined crossovers. This continues till the last segment
is accounted for. In order to move along the seg-
ments following the model described in equation(1),
we need to know the last row (a tetrad pattern at
the last locus of the segment) generated by the R

matrix of the linked crossover of the previous seg-
ment corresponding to each combined crossover of
the two segments. The following lemma states that
only certain patterns are possible at the end locus
of the adjoining segments and we create arrays sim-
ilar to kArray,linkInfo and cArray for all the fol-

lowing segments except the last one and call them
kArrayTemp[],linkInfoTemp[] and cArrayTemp[]
respectively, where the dimension denotes the seg-
ment numbers.

Lemma 4.1. Under the model described by equa-
tion(1) at any particular locus only one of the tetrad
patterns 1 1 0 0, 0 1 1 0, 1 0 1 0, 1 0 0 1, 0 1 0 1
and 0 0 1 1 could occur.

Consider a combined crossover for all the seg-
ments. To compute equation(6) i.e, to count the
matches for the entire crossover we have to examine
the matching status of all the segments and update
them. To be considered a match for the whole seg-
ment at a particular position (out of 4 possible po-
sitions) one must have a match for all the segments
at that position. Hence when the matching status
of two segments are updated the resulting matching
status is 1 if and only if both the segments have 1 at
that position and 0 otherwise. This updated match-
ing status is termed a spore in this paper. The dis-
tinction between a spore and matching status is that
while matching status is the original status of the
segment the spore is the matching status obtained
after updating the matching status of all the pre-
vious segments. The following lemma restricts the
number of possible spore patterns.

Lemma 4.2.
Under model described by equation(1), for any

crossover on any observed genotype the spore pat-
terns 0 1 1 1, 1 0 1 1, 1 1 0 1, 1 1 1 0 and 1 1 1 1
are not possible.

Analogous to the function kIsWorthy in the
straightforward algorithm we implement the concept
of counting active crossovers for each segment. We
call a crossover of a particular segment active if it has
positive probability for at least one distinct geno-
type. Note that active crossovers will be different
across segments as an active crossover depends both
on the observed genotypes(that varies across seg-
ments) and the tetrad pattern used in the generation
of the R matrix.

It is important to emphasize the huge computa-
tional gain achieved by elimination of the crossovers
on a segment wise basis in the proposed algorithm
compared to the straight forward algorithm which

195

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

6

eliminates crossovers one at a time. A single elimina-
tion of a crossover in the first segment has the effect
of 25l−2 eliminations of crossovers in the straight-
forward algorithm. The effect is 25l−3 for the 2nd
segment and so on.

For the last segment we create an array called
tempSumIndex. Corresponding to all possible
spores (the dimension is restricted by Lemma 4.2)
the matching status of the last segment is updated
and then it is summed (along its dimension) to com-
pute equation(8) for the last segment except that the
matching status is computed for all possible tetrad
patterns in Lemma 4.1. Note that Lemma 4.1 and
Lemma 4.2 restrict the array size and ensure storage
economy. Next we implement equation(7) for the
last segment for all possible spores denoted by the
array tempSum. To update θ using equation(11)
we use another array called tempPCount which com-
putes N0,m,N1,m and N2,m via index manipulation
as shown in the pseudocode.

{Pseudocode for the recursive structure}
tempSum[6][dg][11]
tempPCount[6][dg][11][3][loci-1]
loop
{i1, i2, i3, ; 0 <= i4 < activeKLast[i1]}
tempDouble=kProb(lastCProb,kArrayLast[i1][i4])
condProb=tempSumIndex[i1][i2][i3][i4]/4.0
tempSum[i1][i2][i3]+ = condProb×tempDouble
for j = loci− h; j < loci− 1; j + + do

tempPCount[i1][i2][i3][CellSpecial(kArrayLast[i1]
[i4][j−loci + h])][index]+ = condProb ×
tempDouble;

end for
end loop

The arrays tempSum and tempPCount taken
together are termed a recursive structure for the
last segment. This structure has the property that
25(h−1) crossovers have already been processed in a
form so that equation(11) can be implemented and
it can handle any spore generated from the previous
segment. Note that when a crossover from the pre-
vious (allowing for all possible spore patterns of its
previous segment) segment is processed the recursive
structure identifies and uses an appropriate spore
from the last segment and thus processes simultane-
ously 25(h−1) combined crossovers of these two seg-
ments. After all the crossovers from the previous seg-

ment are processed the proposed algorithm generates
a recursive structure that is exactly the same as that
of the last segment without adding to the storage re-
quirement. The recursive structure for the last but
one segment now has 252(h−1) crossovers processed
within it with provision for all possible spores from
the previous segment. This very feature shows how
we geometrically increase the information base (in
terms of crossovers) of the ”table look up ” procedure
and avoid traversing all the crossovers one at a time.
One of the reasons this procedure works is because if
we look into the combined crossovers of two segments
we see that crossover values for the left segment
change only for every 25(h−1) combined crossovers.
This lets us delay the probability value updates when
linking the segments. The process is best understood
by looking at the pseudocode below and noticing how
the arrays tempSum and tempPCount are updated
in the recursive linking process.

Recursive Linking :

temp1Sum=tempSum
temp1PCount=tempPCount
int startPos=0
int endPos=loci-h
for i = 0 ; i < segments-2 ; i + + do

startPos=endPos-h+2
firstCProb → from startPos to endPos in
cProbOld
spores[11][4] → generate spores
for j0 = 0 ; j0 < 6 ; j0 + + do

for j1 = 0 ; j1 < dG ; j1 + + do
for j2 = 0 ; j2 < 11 ; j2 + + do

for jk = 0 ; jk < activeKTemp[i][j0] ;
jk + + do

k = kArrayTemp[i][j0][jk]
prob=kProb(firstCProb,k);
int j01 =linkInfoTemp[i][j0][jk]
int spike=SporeMatch(UpdateScore(
cArrayTemp[i][j0][jk][j1],spores[j2]))
temp2Sum[j0][j1][j2]+ =temp1Sum[j01]
[j1][spike]×prob
for m =startPos-1 ; m < endPos ;
m + + do

temp2PCount [j0][j1][j2]
[CellSpecial(k[m− startPos + 1])][m]+
=tempSum[j01][j1][spike]×prob

end for

196

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

7

for n = 0 ; n < 3; n + + do
for index=endPos ; index < loci-1 ;
index++ do

temp2PCount[j0][j1][j2][n][index]+
=temp1PCount[j01][j1][spike][n]
[index]× prob

end for
end for

end for
end for

end for
end for
temp1Sum=temp2Sum
temp1PCount=temp2PCount
endPos=startPos-1

end for

Linking with the first segment is the last step
of the likelihood computation process. In this phase
we do not have any previous matching status vectors
and instead of tempPCount we have the structure
pCount as in the straightforward algorithm. Note
that the length of the first segment must be adjusted
to account for both even and odd number of genetic

have assumed all the segments to be of equal length
and hence both even and odd number of markers can
not be implemented without first changing the length
of at least one segment; preferably that of the first
one.

5. TIME COMPLEXITY
COMPARISON OF THE
ALGORITHMS

In the analysis of time complexity of the algorithms
11 the running variable is l, the number of genetic
markers. The core function of the algorithm is to
process a large number of crossovers in real time.
The algorithm would be required even if one wanted
to compute just the likelihood for the initial prob-
abilities and not use the subsequent EM iterations.
Hence in both the straightforward and the proposed
algorithm we provide run time complexity analy-
sis for the main computationally intensive phase,
namely processing all the crossovers for a single iter-
ation.

The loop in the straightforward algorithm runs
for 25(l−1) iterations. In each iteration the computa-
tion time of matrix R is O(l). This is so because R

has l columns and the computation time for each col-
umn is fixed. Since the observed genotypes are not
known in advance we do a worst-case analysis for the
computation of vector sum. The worst case occurs
when there is a match between an observed genotype
and any of the 4 columns of the matrix R resulting
in run time complexity of order O(l). The vector
sum has dg elements which does not vary with l and
hence the total execution time for computing vector
sum is O(l). The vector addition involved in com-
puting pCount entails dg elements and thus accounts
for run time complexity of O(l). Hence the total run
time complexity of the straightforward algorithm is

Rst = O
(
l25(l−1)

)
(14)

In the recursive linking algorithm the run time
for each of the s segments is O((h− 1)25(h−1))). So
the total run time for the recursive algorithm is

Rrl = sO
(
(h− 1)25(h−1)

)

which is minimized for h = 3 for any odd number of
loci l. Hence for h = 3 the run time complexity for
the recursive linking algorithm is of order O(l) using
equation(13).

6. RUN TIME RESULTS

We ran several jobs on a DELL PC (Model DM051
Pentinum(R) 4 CPU 3.40GHz and 4GB of RAM)
for different number of genetic markers in their nat-
ural order of precedence on a data set from the link-
age group-I of Neurospora crassa4 for both the al-
gorithms. It was verified that both the algorithms
provide the same likelihood for the same order of
markers as they essentially solve the same problem
but in different ways. The run time corresponds to
the average time it takes for a single EM iteration
before convergence on multiple starts. The resulting
speedup is clearly evident from the table below.

markers. That entails a trivial modification of the al-

gorithm, hence we do not mention the details. In the

interest of clarity of description of the algorithm we

197

May 24, 2006 2:42 WSPC/Trim Size: 11in x 8.5in for Proceedings ws-procs11x85

8

Table 1. Run time (in seconds) Comparison of Straightforward and
Recursive Algorithm

Loci(l) Straightforward Algorithm Recursive Linking Algorithm

5 2.49 0.073
7 1336.45 0.298
9 > 43200.0 0.66
21 ∞ 5.61
41 ∞ 8.93
61 ∞ 13.03

7. CONCLUSIONS

Assuming no interference, a multi-locus genetic like-
lihood was implemented based on a mathematical
model of the recombination process in meiosis that
accounted for events up to double crossovers in the
genetic interval for any specified order of genetic
markers. The mathematical model was realized with
a straight forward algorithm that implemented the
likelihood computation process. The time complex-
ity of the straightforward algorithm was exponential
without bound in the number of genetic markers and
implementation of the model for more than 7 genetic
markers turned out to be not feasible, motivating
the need for a novel algorithm. The proposed recur-
sive linking algorithm decomposed the pool of genetic
markers into segments and rendered the model im-
plementable for a large number of genetic markers.
The recursive algorithm has been shown to reduce
the order of time complexity from exponential to lin-
ear. The improvement in time complexity has been
shown theoretically by a worst-case analysis of the
algorithm and supported by run time results using
data on linkage group-I of the fungal genome Neu-
rospora crassa.

ACKNOWLEDGEMENTS

The research was supported in part by a
grant from the U.S. Dept. of Agriculture

under the NRI Competitive Grants Program
(Award No: GEO-2002-03590) to Drs. Bhandarkar
and Arnold. We thank the College of Agricultural
and Environmental Sciences, University of Georgia
for their support.

References

1. Lander ES, Schork NJ. Genetic dissection of complex
traits. Science 1994; 265: 2037–2048.

2. Doerge RW, Zeng ZB, Weir BS. Statistical issues in
the search for genes affecting quantitative traits in ex-
perimental populations. Statistical Science 1997; 12:
195–219.

3. Raju NB. Meiosis and ascospore genesis in Neu-
rospora. Eur.J.Cell.Biol. 1980; 23: 208–223.

4. Nelson MA, Crawford ME, Natvig DO. Restriction
polymorphism maps of Neurospora crassa: 1998 up-
date. http://www.fgsc.net/fgn45/45rflp.html 1998; :

5. Lander ES, Green P. Construc-
tion of multi-locus genetic linkage maps in humans.
Proc.Natl.Acad.Sci.USA 1987; 84: 2363–2367.

6. Barratt RW, Newmeyer D, Perkins DD, Garnjobst L.
Map construction in Neurospora crassa. Advances in
Genetics 1954; 6: 1–93.

7. Mester D, Romin Y, Minkov D, Nevo E, Korol A.
Constructing large-scale genetic maps using an evo-
lutionary strategy algorithm. Genetics 2003; 165:
2269–2282.

8. Cuticchia AJ, Arnold J, Timberlake WE. The use
of simulated annealing in chromosome reconstruction
experiments based on binary scoring. Genetics 1992;
132: 591–601.

9. Dempster A, Laird N, Rubin D. Maximum likelihood
from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society ,Series B 1977; 39:1:
1–38.

10. Rao CR.Linear Statistical Inference and Its Applica-
tion, 2nd ed. Wiley-Interscience. 2002.

11. Thomas HC, Charles EL, Ronald LR, Clifford
S.Introduction to Algorithms, 2nd ed. The MIT Press.
2001.

198

