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Oligo-based expression microarrays from Affymetrix typically contain thousands of redundant probe sets that match different regions of
the same gene. We used linear regression and correlation to survey redundant probe set behavior across nearly 500 quality-screened
experiments from the Arabidopsis ATH1 array manufactured by Affymetrix. We found that expression values from redundant probe set
pairs were often poorly correlated. Pre-filtering expression results using MAS5.0 “present-absent” calls increased the overall percentage
of well-correlated probe sets. However, poor correlation was still observed for a substantial number of probe set pairs. Visual inspection
of non-correlated probe sets’ target genes suggests that some may be inappropriately merged gene models and represent independently
expressed, but neighboring loci. Others may reflect differential regulation of alternative 3-prime end processing. Results are on-line at
http://www.transvar.org/exp_cor/analysis.

1.   INTRODUCTION

Affymetrix microarrays contain thousands of probes
which are grouped into probe sets, collections of probes
that (typically) hybridize to 300-500 bp sequence
segments near the three prime ends of target transcripts.
Due to the high frequency of alternative mRNA
processing (splicing and polyadenylation) in many
eukaryotic genomes, Affymetrix arrays typically include
multiple probe sets that match predicted or known
mRNA variants produced by the same gene. Because
these probe sets measure different regions (or
transcripts) of the same gene, we designate these as
“redundant probe sets.”

Thanks to new public resources that archive and
distribute expression data from hundreds, sometimes
thousands, of microarray experiments, it is now possible
to survey the behavior of individual probe sets across
many different experimental conditions and laboratory
settings. The Nottingham Arabidopsis Stock Centre’s
NASCArrays is perhaps the acme of such services1. For
a nominal fee, users can subscribe to the NASC
AffyWatch service, which delivers quarterly DVDs
bearing expression data in the form of array ‘CEL’ files,
which contain numeric, probe intensity data from

microarray scans. These CEL files, the majority of
which are from the ATH1 microarray2, are contributed
by users who enjoy discounted array processing service
from NASC in exchange for donating their data for
public use.

Because the ATH1 array is based on a solved
genome, data from NASC provide an unprecedented
opportunity to investigate the long-range behavior of
redundant probe sets. Toward this end, we analyzed co-
expression patterns among redundant probe sets using a
database that contained data from nearly 500 quality-
screened ATH1 array hybridizations.

2.   METHODS

We obtained probe set to gene mappings and gene
structure annotations (version 6) from the Arabidopsis
Information Resource (TAIR)3. To simplify the
analysis, we purged all probe sets that mapped to
multiple genes. Using methods described previously4,
we created an expression database containing quality-
screened data from 486 array hybridizations compiled
from AffyWatch Release 1.0. Array data were
processed using RMA5, followed by quantile-quantile
normalization. We also processed the CEL files using
MAS5.06 and generated Present, Absent, and Marginal
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“calls” for each probe set. All array processing was
done using the BioConductor software under default
settings7.

We used R to perform linear regression and
compute Pearson’s correlation coefficient for each pair
of redundant probe sets that measure the same gene.
Results from these analyses, including scatter plots
showing regression results, are posted as Supplementary
F i l e s  a t  o u r  W e b  s i t e
http://www.transvar.org/exp_cor/analysis.

We manually inspected gene models using the
I n t e g r a t e d  G e n o m e  B r o w s e r
(http://genoviz.sourceforge.net) and IGB Quickload site
http://www.transvar.org/data/quickload, which serves
probe set-to-genome alignments generated by
Affymetrix and Arabidopsis gene annotations (versions
5 and 6). To assess cDNA evidence, we used the
Sequence Viewer tool at the TAIR Web site.

3.   RESULTS

The ATH1 array contains 21,148 probe sets that
uniquely map to 20,987 protein-coding genes in the
Arabidopsis genome as determined by extensive
sequence analysis performed at TAIR. Of these 21,148
probe sets, 309 are redundant probe sets measuring 148
genes (Table 1.) To simplify the analysis, we focused on
the 142 genes interrogated by two probe sets each.

We hypothesized that if redundant probe sets
measure related molecular entities, i.e., transcripts
whose synthesis is driven by the same promoter, they
should exhibit a high degree of correlation across a
broad range of conditions. To test this, we computed
Pearson’s correlation coefficient  (r) and performed
linear regression between each pair of redundant probe
sets. Interestingly, we found that many redundant probe
sets are not well-correlated (Figure 1A).

Table 1. Breakdown of redundant probe sets per gene on the ATH1
expression microarray

Probe sets
per gene

Genes

1 20,839
2 142
3 4

>3 2

It is commonly believed that less than half of the
genes in a genome are simultaneously expressed8,9. If
true, the low degree of correlation between some

redundant probe sets may be the result of including low
expression readings whose target gene was not actually
expressed. The readings from these probe sets might
represent random noise and, therefore, exhibit low
correlation. To reduce the influence of the probe set
readings not derived from bona fide expression of their
respective target genes, we ran the “present-absent” call
procedure in MAS5.0 for each probe set on each array
and eliminated probe set readings called as “Absent”
from the analysis. We then re-computed linear
regression and Pearson’s correlation coefficient for the
redundant probe set pairs in which both partner was
called as “present” in at least 20 chips. This filtering
step removed 55 genes, leaving 87 for further
correlation analysis.

This PA filtering followed by correlation analysis
generated two notable results. First, we found
surprisingly small correspondence in P versus A calls
between redundant probe sets (Supplementary File 4).
Second, we found that eliminating probe set readings
called as “Absent” by MAS5.0 removed many of the
genes that were found to be poorly-correlated according
in the first (no PA filtering) analysis (Figure 1B).

Figure 1. Correlation (r) computed using RMA expression values
before (A) and after (B) PA filtering.

We next explored the possibility that for some of
the poorly correlated probe sets, the annotated structure
of the target gene may have inappropriately merged
adjacent or overlapping genes into a single gene model.
If this were true, then we might observe a negative
correlation between putative transcript size and
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expression correspondence between redundant probe
sets since inappropriately merged gene models would
likely be unusually large.

To test this, we computed Pearson’s correlation
coefficient comparing average transcript size per gene
(log scale) and R-squared from the linear regression,
which is the percentage of variation in one probe set that
can be explained by variation in the other. (Note that
transcript sizes are approximately log-normally
distributed; see Supplemental File 2.) We found that
there was indeed a weak negative correlation (r = -0.28)
between average transcript size per gene and R-squared,
suggesting that some fraction of the genes with non-
correlated, redundant probe sets might represent gene
models that should be split.

Many genes currently included in the Arabidopsis
version 6 annotations are based originally on the results
of computational analysis and manual curation. For
many of these gene models, some additional evidence is
needed before they can be accepted as accurate.
Currently, the gold standard for assessing the
correctness of a gene model is the existence of one or

more full-length or partial cDNA sequences that cover
the gene region in question.   Using the Integrated
Genome Browser to visualize probe sets and the TAIR
Web site Sequence Viewer to visualize gene structures
and cDNA alignments, we investigated cDNA support
for genes whose redundant probe sets generated non-
correlated expression values.

Of nine genes with non-correlated redundant probe
sets (r < 0.3), only one was supported by cDNA
evidence covering the entire gene model. However,
visualization with the Integrated Genome Browser
revealed that the probe sets associated with this gene
(AT5G04440) appear to interrogate opposite strands of
the chromosome, which explains why expression
readings from these two probe sets were uncorrelated.
No similarly trivial explanation could explain lack of
correspondence (r = 0.09) between the two redundant
probe sets interrogating AT4G12640, however. This
lack of correspondence suggests that gene model
AT4G12640 represents two independent transcriptional
units.

Figure 2. A. Alignment of ATH1 redundant probe sets to Arabidopsis chromosome 4, alongside gene model
AT5G04440. Probes appear as vertical bars above rectangles representing the genomic alignment of probe set
design sequences, from which the probe sequences were selected. B. Scatter diagram showing expression readings
from the probe sets in A. C. TAIR Sequence Viewer showing lack of full cDNA support for this gene model.
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4.   DISCUSSION & CONCLUSIONS

We found that large-scale analysis of redundant probe
sets reveals a surprising lack of correspondence of
expression values between probe sets annotated as
interrogating the same gene. Some discordance between
redundant probe sets may arise from differential
regulation of alternative splicing or polyadenylation. In
many cases, however, it is more likely to result from
incorrect gene models. We suggest that this lack of
correspondence can be used to improve annotation, first
as a means of checking probe set to gene mappings (as
with AT5G04440) and second as a way to flag gene
models that require further validation through cDNA
sequencing or other means.
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