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Motif discovery is a crucial part of regulatory network identification, and therefore widely studied in the literature.
Motif discovery programs search for statistically significant, well-conserved and over-represented patterns in given
promoter sequences. When gene expression data is available, there are mainly three paradigms for motif discovery;
cluster-first, regression, and joint probabilistic. The success of motif discovery depends highly on the homogeneity
of input sequences, regardless of paradigm employed. In this work, we propose a methodology for getting homoge-
neous subsets from input sequences for increased motif discovery performance. It is a unification of cluster-first and
regression paradigms based on iterative cluster re-assignment. The experimental results show the effectiveness of the

257

methodology.

1. INTRODUCTION

Transcription Factors (TF) are proteins that selec-
tively bind to short pieces (5-25nt long) of DNA, so
called Transcription Factor Binding Sites (TFBS).
Although TFs bind in a selective way they allow
some degeneracy in their binding sites, forming Tran-
scription Factor Binding Motifs (TFBMs) or just
motifs. This property creates the TFBS represen-
tation problem, i.e. the choice of language in which
motifs are expressed. The most common represen-
tations are motif consensus over IUPAC codes, mis-
match strings and position specific weight matrices
(PSWMs), as well as their variants and specializa-
tions.

Finding TFBMs is an important step in elucida-
tion of genetic regulatory networks®. There are ba-
sically two methods for finding TFBMs, experimen-
tal and computational, although they usually benefit

*Corresponding author.

from each other. ChIP-chip experiments can analyze
the genome-wide binding of a specific TF. For in-
stance, Lee et al. 1 have conducted experiments for
over 100 TF's for experimental identification of reg-
ulatory networks of Saccharomyces cerevisiae. Un-
fortunately their resolution (~ 1K-nt) is not enough
Other prob-
lems include condition specific binding, measurement

to exactly identify binding locations.

noise, and difficulty in finding an optimal consen-
sus motif. TFBMs are functional elements of genes
and preserved throughout the evolution. This prop-
erty, together with available completed genetic maps
of many species, has made possible computational
identification based solely on sequence data. That is,
since these regions have accumulated very few muta-
tions compared to non-functional parts, it is possible
to find them computationally by just exploiting the

statistical over-representation. Computational ap-

TThis work was carried out during the tenure of an ERCIM fellowship.
a2Regulatory network identification methods are also studied without explicitly focusing on wuse and discovery of

TFBMs33: 27, 36, 28, 24 ip this paper we do not cover these approaches.
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proaches built around this fact include MEME 2 1,
BioProspector 2°, AlignACE 12, Consensus '°, and
MDScan ?', among many others.

TF's bind to respective TFBSs in promoter re-
gions of their target genes. Each gene can have a
number of TFBSs for several different TF's in its pro-
moter sequence. In Eukaryotes, TFBSs are organized
in modules; sets of TFBSs for a number of TFs. Each
TF can function as inducer or repressor and this pro-
cess is combinatorial, i.e. depends on the qualita-
tively and quantitatively binding of other TFs. This
combinatorial behavior can cause non-additive ex-
pression behavior for their common targets. In gen-
eral, intra-module couplings are much stronger than
inter-module couplings. Expression behavior also de-
pends on the genome-wide global conditions.

To understand the governing rules for gene ex-
pression, we need to know 1) all TFs, 2) abundance
and activity of them under varying conditions, 3)
their binding sites, and 4) their combinatorial joint
regulation of target expression 3% 9. From this, it
is clear that to induce regulatory networks com-
putationally we need both sequence and functional
data. Typically, the sequence data employed is the
inter-genic promoter regions upstream of transcrip-
tion start sites while the functional data is obtained
from microarray experiments under various condi-
tions. Other useful sources of data for motif (and
module) discovery include ChIP-chip experiments
(e.g. ?), TFBM databases (e.g. 2¢), and phyloge-
netic relations (e.g. 14).

The success of motif discovery programs depends
on the quality of input data. That is, they typically
give high false-positives/negatives if input genes are
heterogenous with respect to regulation. To make
the input genes homogeneous, genes are clustered be-
fore they are presented to motif discovery programs;
hence this is called the cluster-first approach. This
is because gene expression depends on combinatorial
binding of TFs on TFBMs. The co-expressed genes
are assumed to be co-regulated, therefore genes are
clustered based on their expression profile similarity
over a course of microarray experiments. Each clus-
ter (in which sequences are highly probable to con-
tain homogeneous TFBMs) is given as input to motif
finding programs (MEME, BioProspector, MDScan
etc.).

An alternative to the cluster-first approach is to
start from a large set of putative motifs and filter
them by regressing on expression data. The idea
behind this approach is to remove non-relevant mo-
tifs and thereby reduce the number of false positives.
Examples of this approach include Reduce *, Motif

Regressor 8 21

, a boosting approach also employing
ChIP-chip data (Hong et al. ') and a logic regres-
sion approach by Keles et al. 7.

Although a number of algorithms and programs
have been developed for motif discovery, little has
been done on designing a methodology for optimal
usage. In particular, little attention is paid to the
selection of homogeneous subsets from heterogeneous
gene sets of interest. In practice, what an exper-
imenter does is 1) cluster the gene sets of interest
(using a clustering program like k-means, hierarchi-
cal clustering, Self-organizing maps, etc), then 2) in-
put them to one or a few motif finding programs, and
finally 3) decide on the true motifs among all the can-
didates, either by further analysis (like regression) or
manually. Though clustering before motif discovery
improves homogeneity compared to random subsets,
it might fail in finding true clusters. Motivated by
this, we here study the generation of homogeneous
clusters using both sequence and expression data,
and we address the issue of methodology for motif
discovery.

We define an iterative procedure (a methodol-
ogy) for the motif discovery process. Briefly, we start
with an initial clustering of gene sets from gene ex-
pression data and find motifs in these clusters. We
then (optionally) refine these motifs by filtering out
irrelevant ones. In this step, simple filtering or filter-
ing employing regression analysis is applied. After
that, we screen all the genes by motif profiles of each
cluster and refine clusters by re-assignment based on
screening score. Following this, we restart motif dis-
covery on the new gene clusters and iterate this pro-
cedure until convergence. Finally, we output the set
of motifs found in the last iteration.

2. POWERING MOTIF DISCOVERY
USING GENE EXPRESSION DATA

The three main paradigms for incorporating
gene expression data into motif discovery are cluster-



first, regression and joint probabilistic.

Brazma et al. S presented one of the earliest
methods within the cluster-first paradigm. They
look for over-represented oligos with limited degen-
eracy, both genome-wide and for clusters generated
from gene expression clustering based on the time se-
ries data. The approach taken by Beer et al. ° also
use a cluster-first approach. The genes are clustered
using expression data with k-means clustering and
AlignACE '2 is used for motif discovery. A very sim-
ilar approach using a custom clustering algorithm is
presented in 23.

A variant of the cluster-first approach is TFCC
(Transcription Factor Centric Clustering) of Zhu et
al. 37. The idea is to find a set of genes showing sim-
ilar expression profiles to the expression profile of a
particular TF over a set of expression experiments,
and then look for motifs in that cluster using Alig-
nACE 2. Similarly, Hvidsten et al. '3 find similar
genes to a selected gene using the expression data,
and construct logical rules (in the form of if-then
rules) in terms of the absence/presence of a priori
given motifs. The objective in this approach is not
to find novel motifs but motif modules. An indi-
rect cluster-first approach is presented in Tamada et
al. 3* where the objective is finding regulatory net-
works. Motif discovery is an intermediate step used
to refine the network. Briefly, they construct a regu-
latory network from gene expression data, and from
the induced network they identify TFs and search for
motifs in the sequence data of subtrees of TFs.

One of the earliest work using regression on gene
expression data for motif discovery is the Reduce
method of Bussemaker et al. 7. The objective is to
find the best minimal set of motifs (K-mers) capable
of explaining the gene expression data. The method
uses single gene expression experiments over which
oligo scores are linearly regressed. The model is fit in
an iterative manner, i.e. starting with an empty set
and adding the most significant motif to the model
in each iteration until there is no statistical improve-
ment. Similarly, Conlon et al. 8 introduced a linear
regression method called Motif Regressor. They em-
ploy MDScan ?! to extract features, sets of candidate
motifs, from sequence data. From the resulting large
number of putative motifs the insignificant ones are
eliminated through regression. The LogicMotif ap-
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17 uses two-step logistic re-

proach of Keles et al.
gression on a single gene expression experiment. In
the first step, the set of all over-represented oligos
(allowing limited degeneracy) in the input sequences
are identified as candidate motifs. In the second step,
for each sequence a binary score vector (serving as a
covariate vector) is constructed in which each entry
corresponds to existence of a motif type (or a logical
function of a subset of all motif types, a so called
logic tree) and this vector is regressed on expression
data. The Rim-Finder system of Zilberstein et al.
38 is another method using the regression approach.
Identification of synergistic effects of pairs of motifs
using co-expression has also been studied 26.
Methods for binary regression (classification)
have also been developed. A large-margin classifi-
cation approach, called Medusa, using boosting to-
gether with alternating decision trees is given in 22.
Likewise, the recent study by Hong et al. ' presents
a boosting approach for motif discovery. They for-
mulate the problem of motif discovery as a classifica-

tion of ChIP-chip data, and find motifs accordingly.

The idea of using a joint probabilistic paradigm
was first proposed by Holmes and Bruno !'. The
idea is to model probabilistic interactions between
sequence features (motifs) and expression data. The
approach has been extensively studied by Segal et al.
30, 29, 32, 31, 4 op) g few model variants all employing
Bayesian reasoning. The basic variant assumes that
transcriptional modules are dependent on sequence
information and that they in turn determine gene ex-
pression. The approach learns transcriptional mod-
ule motif profiles using the Expectation-maximization
(EM) algorithm. Another similar probabilistic clus-
tering algorithm jointly using sequence and time se-
ries expression data is presented in '®, where each
cluster represent transcriptional modules and in turn
determine motif profile and gene expression of genes
in the modules. However, they assume an initial
set of motifs given a priori and assign motif pro-
files to modules after clustering finishes, i.e. as a
post-processing step.

3. A MOTIF DISCOVERY

METHODOLOGY

In the cluster-first approaches, clustering based on
gene expression data is assumed to represent true
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functional clusters. Due to the noise in data, un-
certainty of the number of clusters and lack of true
knowledge of optimal distance measures, the results
only partially represent true clusters. It is also the
case that genes with TFBSs for the same TF are not
necessarily co-expressed during a specific time-course
as gene expression is combinatorial and therefore de-
pends on several factors.

To explore the claims above we have conducted
experiments on some subsets of S.cerevisiae gene

9

clusters reported by Harbison et al. and on

genome-wide gene expression data by Gasch et al.
25 More information is provided for these datasets
in the Experiments section. In Figure 1 we show
the Silhouette index of true clusterings and cluster-
ing induced by k-means clustering for two subsets.
Silhouette index, ranging -1 to 1, measures how sim-
ilar a point is to points in its cluster compared to
points in other clusters. Larger index values indi-
cate good cluster separation. The results agree with
our claims that genes having similar motifs need not
be co-expressed, and that co-expression clustering
therefore can be deceptive for motif discovery.

On the other hand, as shown in Figure 2, clus-
tering (using gene expression) before motif discovery
improves the quality of discovered motifs. In the
analysis, we have used MDScan for motif discovery
and we have selected random subsets with 500 genes
from over 6000 genes of the Gasch et al. dataset.
The number of clusters is 5. Note also that, Figure
2:b scores are higher than Figure 2:a scores. This
makes sense as selection of homogeneous clusters in-
stead of random clusters gives better candidates for
motif discovery, as already discussed.

To get the advantages of gene expression clus-
tering, while at the same time avoiding its potential
deceptiveness, we propose a methodology for discov-
ering regulatory motifs using both gene expression
and upstream sequence data.

The methodology is illustrated in Figure 3. It
starts with the initial clustering from gene expression
data. Following this, a motif discovery algorithm is
used to find candidate motifs for each cluster. Then,
these motifs are optionally regressed over the gene
expression values for motif filtering; only the signif-
icant motifs are retained. Since motif discovery is
applied to each cluster, the discovered motifs can be

regarded as motif profiles of their respective clus-
ters. Motifs from the motif discovery algorithm are
assumed to be putative and further refined by filter-
ing. In this way, only significant and relevant motifs
are kept. After that, the motif profiles are used to
screen all the genes; i.e. a score for each gene for
each motif profile is computed. Based on the motif
scores, genes are re-assigned to clusters. The idea
here is that if a gene is closer to the motif profile of a
different cluster rather than its current one, then its
cluster membership should be changed based on this
new evidence. These steps (motif discovery, filtering,
screening and cluster re-assignment) are iterated un-
til the clusters converge and a final set of motifs are
output as motif profiles for each cluster. Note that,
we do not force the use of any particular clustering,
motif discovery, filtering or screening algorithm.

We will now define a basic vocabulary to be used
in the remaining parts of this section. Let G =
{Gg}gilf;l be the set of genes and E = {E,}=/"! be
the set of gene expression experiments (either time
series or various treatment conditions). Our input
data is DNA sequence data extracted from regions
upstream of transcription start site and gene expres-
sion data. Define S = {S, : g € G} as the sequence
data such that Sy = {Sq : I = 1,...,[S,|} where
Sq € {A,C,G, T} is the nucleotide in the I'th po-
sition and [S,| is the length of the sequence for g,
respectively. Finally, define the gene expression ma-
trix as YV = {Y; : g = 1,...,[Glse = 1,...,|E]}
where Y7 is the pre-processed gene expression value
for gene g under experiment e. For convenience, we
also define Y, as the expression vector for g over all
experiments and Y¢ as the expression vector for e
over all genes.

3.1. Clustering

The input to the clustering step is Y. The task is to
partition G into a given number of partitions based
on similarity computed from Y. In the literature
a number of clustering algorithms for gene expres-
sion data have been designed and employed. A cru-
cial point in clustering is to decide on the clustering
method (k-means, self-organizing maps and hierar-
chical clustering are more common) and similarity
measure (e.g. Fuclidean distance, Mahalanobis dis-

37

tance, Pearson correlation). For instance, in °” and

5 modified k-means algorithms with Pearson corre-
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lation coefficient are used. It is also important to
decide on the number of clusters. Some methods
estimate the number of clusters by applying model
selection (e.g. using cross-validation '8, adaptive-
quality based clustering 2%). Since the hierarchical
clusters are exploratory and flexible they are usually
the preferred choice.

Since the clustering step is done once in our ap-
proach, and serves only as a source of good initial
clusters, we leave the selection of clustering algo-
rithm to the user, as different clustering algorithms
may be optimal depending on the specific dataset.

c=|C?

We denote initial clustering results as {C1}i_|" ',

where |C!] is the number of clusters.

3.2. Motif Discovery

The motif discovery methods basically differ in their
motif representation (e.g. IUPAC codes, regular ex-
pressions, PSWMSs) search algorithm (e.g. Gibbs
sampling, Expectation-maximization, word count-

ing), and exploitation of biological knowledge (e.g.
fixed /flexible gaps, bi-modality, palindromic motifs,
motifs in modules, inter-dependence of motif loca-
tions).

For our purpose, any PSWM based motif finding
method like AlignACE, MEME, MDScan and Bio-
Prospector can be used in this step. We apply the
motif discovery algorithm for each cluster separately
and independently. Let us denote the clusters at the
7'th step by C* and the motif set output from cluster
C! by M.

3.3. Motif Filtering

Given the resulting motifs M! of the motif discovery
step, the filtering step outputs a subset of the motifs
denoted by M.

The reason we introduce a filtering step is be-
cause statistical over-representation does not neces-
sarily imply biological significance. In other words,
some statistically over-represented motifs may be ei-
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ther artifacts of the motif discovery program or sim-
ple tandem repeats. As those artifact motifs are
not generally consistent with expression, this filtering
step has the potential of eliminating most of them.
Since in regression based approaches the success de-
pends highly on the initial putative motifs, feeding
these programs with the output of statistically over-
represented motifs usually give better results. Note
that it is also possible to have a simple filter that
does not employ expression data, e.g. filtering noth-
ing or filtering putative motifs based only on their
motif scores.

3.4. Screening and Cluster

Re-assignment

Given the motif profile M? of each cluster, we score
all the genes, including the genes in other clusters,
measuring the conformance of them to the motif pro-
file. This creates a vector of cluster motif profile
conformance measures for each gene. We use the
matrix similarity score metric reported in Kel et al.
16 The metric basically uses the information content

of PSWM and scales each k-mer within maximum
possible and minimum possible match.

The genes are assigned to the cluster to which
they have highest conformance, thus creating a clus-
ter re-assignment. If the cluster re-assignment is the
same or very similar to previous clustering, the set
of motifs for each cluster is output, otherwise the
iteration continues with the gene clusters C**1.

4. EXPERIMENTS

To assess the merit and relevance of the methodol-
ogy presented we conduct several experiments on real
datasets for S.cerevisiae.

We use the gene expression dataset by Gasch

25, The dataset contains over 150 gene ex-

et al.
pression arrays (measured under several conditions
with repetitions) for 6371 ORF's of S.cerevisiae. We
pre-process the dataset by log transforming the back-
ground corrected intensities. Since the dataset con-
tains missing values, we eliminate arrays and genes
with considerable number of missing entries. This

gives 149 arrays and 6107 ORFs, which can be con-



sidered as a 6107 x 149 matrix. There are still miss-
ing values in this matrix and we impute these miss-
ing values with k — nn imputation method. The
method, for each missing-valued gene, identifies clos-
est k genes over non-missing entries and then imputes
the missing value by the average of column values for
the k genes. After this we get a complete expression
matrix. As for the sequence data, we use at most 500
(-500 to -1) base sequences from upstream of tran-
scription start site for all of the 6107 genes.

There are many alternative methods and tools
that can be used in different steps of our methodol-
ogy. Since our objective here is to show the effective-
ness of it, we do not experiment with an extensive
set of methods and tools, but rather a few practical
ones. In all of the experiments conducted we have
selected k-means as clustering and MDScan as motif
discovery algorithms, and use either a trivial identity
or linear regression based filters. k-means and MD-
Scan algorithms have been chosen mainly because
they are fast. This is particularly important for the
choice of motif discovery algorithm, as it is run for
each cluster in every iteration. Although MDScan
is originally designed for ChIP-chip experiments, it
also works well without ChIP-chip data.

As performance measures we use MDScan scores,
Convergence, Jaccard indexr and Silhouette index.
MDScan score is used to quantify the strength of
motifs within clusters. In cases where experimentally
determined binding sites for motifs are available, the
correspondence between predicted and known sites
could have been used as performance measure. We
rather preferred MDScan score as it is more objec-
tive and more general. Convergence is defined as the
number of re-assigned genes so it is a natural met-
ric for our methodology. We use Silhouette index
and Jaccard indez as cluster separation and similar-
ity metrics, respectively.

4.1. Random Clusters

In this experiment, we randomly select 500 genes
among 6107 genes and cluster them into 5 clusters
by k-means clustering. For each cluster we use the
same parameter setting for MDScan as follows (and
default values for other parameters);

e motif width==8

e number of motifs to report=2

e number of top sequences to seed=20
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e number of motifs to be kept for refinement
= 4x number of motifs to report

The order of genes presented to MDScan is relevant.
In our experiments we have used random orders to
avoid any bias (this is because we do not use ChIP-
chip data). On the other hand we conjecture that
the genes could have been sorted based on distance
to their cluster centroids, thereby possibly improving
motif discovery.

Figure 4 gives the results for 20 runs (Tteration
1 is the result for the initial k-means clustering). In
all of these runs we employ k-means as the initial
clustering algorithm and use trivial identity filters.
In all of the runs we start from converged k-means
results at iteration number 1. From the figure we see
that the number of re-assigned genes decreases along
iterations, suggesting a convergence. MDScan scores
of clusters also increases with the iterations. It is
clear from both figures that our approach is able to
correct some deceptiveness of the initial clustering.

We have tested how sensitive our methodology
is to initial clustering by running with random ini-
tial clusterings. We have also tested the approach by
changing the random gene numbers, number of clus-
ters and MDScan parameters. In all of these cases,
similar results are observed to those reported in Fig-
ure 4. This means that improvement of the method-
ology is not dependent on particular settings of initial
clusters or motif discovery tools.

4.2. Harbison et al. Clusters

Harbison et al. ? identified S.cerevisiae target genes
for a number of TFs by collecting results from the
following resources, ChIP-chip data, published data
from literature and phylogenetic conservation. As a
result, they defined several dozens of (overlapping)
gene clusters for each binding motif. They also con-
firmed the results by applying several motif discovery
programs (MEME, MDScan, AlignACE, etc.). We
therefore assume these clusters as true clusters for
our purpose.

We conduct experiments with the following three
gene subsets drawn from Table 1;

e Subset 1: {CBF1,FHL1,BAS1,INO4,MBP1}
(5 clusters),
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e Subset 2: {CBF1,BAS1,MBP1,MSN2 REB1}
(5 clusters)
o Subset 3: {CBF1, REB1} (2 clusters)

As a pre-processing, we remove genes not contained
within the 6107 genes of the Gasch et al. dataset.
We also remove genes found in more than one cluster.
This way we ensure that each gene belongs exactly
one cluster. As a result, subsets 1, 2, and 3 contain
399, 403, and 253 genes, respectively.

Table 1. Clusters used in experiments
Regulator | # of genes in the cluster
CBF1 195
FHL1 131
BAS1 17
INO4 32
MBP1 92
MSN2 74
REB1 99

We show general utility of the methodology on
the subsets 1 and 2. Number of clusters parameter
for the k-means is set to 5. MDScan parameters used
are same as given in Section 4.1 and trivial identity
filter are employed.

In Figure 5:a-d , the average MDScan scores and
convergence performances are shown for subset 1 and
2 over 20 runs. The results clearly indicate the im-
proved MDScan scores and convergence over itera-
tions. With the same parameters, the true clustering
for subset 1 (2) has MDScan score of 4.00 (4.14) and
number of re-assigned genes is 230 (248). This addi-
tionally shows that even though their performance is
better than k-means clustering, there is a potential

to increase performance by cluster re-assignment.

Figure 5:e-f shows the Silhouette index of clus-
terings for subset 1 and 2 through iterations and
also for the true clustering. We reason from the fig-
ure that our method achieves the similar Silhouette
index as true clusters while k-means clustering (it-
eration number 1) destroys the original clustering.
To measure the cluster similarity between the true
clustering and clusterings over iterations we measure
the Jaccard index. This index, ranging from 0 to
1, is an external cluster validation method measur-
ing how similar a clustering is to another. A high
index value indicates high cluster similarity. The re-
sults which are shown on Figure 5:g-h are inconclu-
sive. This might be due to the similarity in sequences
(like TATA boz) in different clusters of the true clus-
tering, and failure of MDScan to find specific motifs
for the considered clusters. For instance, it finds spe-
cific binding sites for true clusters of CBF1, FHLI,
INO4, MBP1 and REBI1 while it fails to find specific
binding sites for true BAS1 and MSN2 clusters.

We test the effect of using different filters on
subset 3. Filter 1 is a trivial identity filter, while
Filter 2 and 3 are stepwise multiple linear regression
filters. The only difference between Filter 2 and 3
is the scoring function for computing the covariate

6 and

vector; Filter 2 uses the function defined in !
Filter 3 uses the the one employed in Motif Regres-
sor. For the case of Filter 1 the number of motifs
reported by MDScan is set to 2, while for Filter 2
and 3 it is set to 15 and the other parameters are
the same as in Section 4.1. The number of clusters

parameter for k-means is set to 2 for all filters. Since
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we have 149 expression experiments, we regress once
for each experiment and count the motifs selected in
the stepwise regression. Finally, we use the 2 most
frequently selected motifs out of 15 (i.e. 13 motifs
are filtered out) as a cluster motif signature and use
them for cluster conformance computation in the re-
assignment step.

Figure 6 gives the averaged results over 20 runs.
It is clear that all the performance parameters show
increased performance over the k-means clustering
for all filters used. Note that in Figure 6:a, there
is full convergence, and from Figure 6:c, the Jaccard
index increases suggesting recovery of true clustering
for all filters.
clusive from subsets 1 and 2. We conclude from the

Recall that the last issue was incon-

results that the methodology works well for all of
these filters.
based on the performance parameters. For the av-
erage MDScan scores, Filter 1 scores best while in
terms of Jaccard index Filter 2 scores slightly better.
This clearly shows the tradeoff of selecting the filter

It is also possible to compare filters

045l .4 Filter #3 o~

Jaccard Index

0.25
1

Iteration Number

¢) Jaccard index

Performance results for subset 3

Note that, this is why we
have introduced a filtering step in our methodology.

among multiple filters.

5. CONCLUSION

In this work, we have addressed the problem of de-
It is
organized around the idea of getting highly homoge-

veloping a methodology for motif discovery.

neous gene clusters using both sequence and expres-
sion data. We do this by screening all genes and
re-assigning clusters in several iterations.

The analysis and experimental results show that
clustering based on gene expression is a better ba-
sis for motif discovery than random clustering, but
not perfect. It is also shown that it might mislead.
Our method is developed to compensate these two
issues and thereby improve the quality of motif dis-
covery. The conducted experiments clearly suggest
the utility of our approach.

The methodology is quite flexible, e.g. not de-
veloped around a particular motif discovery, filtering,
screening or clustering algorithm. In other words, a



broad range of algorithms developed in the field can
be used in our methodology.

The methodology presented here can also be con-
sidered as a unification of the cluster-first and re-
gression based motif discovery paradigms into a sin-
gle framework. Our approach is similar to the joint
probabilistic approaches, especially to Tamada et al.
34 where their main motivation is finding regulatory
networks rather than discovering motifs. However, it
is in general different from these approaches, in that
our approach does not establish any probabilistic re-
lationships between gene expression and sequence in-
formation.

We have also shown the importance of the fil-
tering step. It has been shown that regardless of the
actual filtering method used, the methodology works
well, i.e. improves over the initial clustering.

Future work will focus on assessment of general
utility and performance of our methodology as com-
pared to joint probabilistic modeling.
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