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Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for
several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the
primary challenges for the system biology community. In this study, we attempt to understand better the topological
structure of PPI networks by comparing them against man-made communication networks, and more specifically, the
Internet.

Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting
dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world
properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueshness
of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that
both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability
and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet
topology is a decentralized optimization process geared towards efficient node communication.

1. INTRODUCTION

From an engineering perspective, cells are complex

systems that process information. The main mecha-

nism by which cells are able to process information

is through protein-protein interactions (PPI). Cellu-

lar proteins either aggregate in protein complexes or

act concertedly to assemble, store and transduce bi-

ological information in an efficient and reliable way.

Pathways of interactions between proteins can be

found in essentially every cellular process, e.g., signal

transduction cascades, metabolism, cell cycle con-

trol, apoptosis. Recently, a number of experimen-

tal, genome-wide, high-throughput studies have been

conducted to determine protein-protein interactions

and the consequent interaction networks in several

model organisms (see, e.g., Refs. 1 and 2). They

provide a unique opportunity to study the complex

dynamics of “message passing” in cellular networks

at the genome-scale.

The overarching goal of our study is to under-

stand better the topological properties and structure

of PPI networks. To do this, along the lines of com-

parative genomics, we propose to compare PPI net-

works against one of the largest and the most suc-

cessful communication networks, the Internet. The

main question we tackle in this paper is: how differ-

ent or similar are the two types of networks? This

comparison can constitute a valuable reference when

attempting to understand the design principles that

underlie PPI networks. Interestingly, PPI networks

could be thought of as a type of communication net-

works since the protein interactions implicitly con-

vey information on biological processes. Clearly, the

building process behind the two networks is very dif-

ferent. PPI networks resulted as a byproduct of pro-

cesses at the evolutionary scale and are constrained

by the laws of physics and chemistry. The Internet

was built to optimize the communication efficiency

through a decentralized process and under the con-

straints imposed by technological, geographical, so-

cial and economical factors.

In recent years, several research groups have

studied large complex systems and their topologies,

from social networks to the structure of the web. In

what follows, we provide a quick overview of the most

related previous work on PPI and Internet topolo-

gies. The rapid developing theoretical models for

complex networks, such as the ER random model 3,

and the small-world 4, scale-free 5 and hierarchical

network models 6, have greatly influenced the analy-

sis of the topology of complex biological networks

(see, e.g., Refs 7, 8 and, 9). PPI networks have
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been characterized as scale-free networks that follow

a power-law degree distribution with a sharp cutoff

for large degrees 7. Recently, it has been shown that

PPI networks show hierarchical organization 9. The

literature on the analysis of the Internet topologya

is even richer than the one for PPI networks. A re-

cent study provides a good overview of this body of

work 10. The study in this field was jump-started

in 1999, when Faloutsos et al. 5 used power-laws to

characterize the degree distribution of the AS-level

Internet topology. It has also been argued that the

Internet topology is organized with a natural seman-

tic proximity, such as geography or business inter-

ests 11, and exhibits a hierarchical structure 12.

The contribution of this work is an extensive

topological comparison of PPI and Internet net-

works. On the one hand, both network types exhibit

some similar properties, such as skewed degree distri-

bution. On the other hand, the networks have been

built by completely different processes, over a very

different time-scale, and to optimize different crite-

ria. Our study uses the most important and diverse

graph metrics that have been proposed and used in

a wide range of studies in multiple disciplines. To

our knowledge, this is the first such extensive study

of these two types of networks.

We classified the results of our study in six cate-

gories, namely, (1) connectivity, (2) small-world, (3)

modular/hierarchical organization, (4) entropy, (5)

communication efficiency, and (6) robustness. Some

of our findings are somewhat surprising, and are dis-

cussed in Section 4 and summarized in Section 5. We

speculate that the differences found by our study can

be attributed to the distinctive objectives and con-

straints that the two types of networks are supposed

to satisfy. We conjecture that the goals are robust-

ness and survivability for cellular networks and com-

munication efficiency in man-made networks.

2. NOTATIONS AND METRICS

First, we briefly review all the metrics used in this

study. Formally, a graph metric is a function M :

G → R
t, where G is the space of all possible graphs

and t is a positive integer.

2.1. Connectivity

In the domain of connectivity metrics, we selected av-

erage degree and the degree distribution to measure

the global connectivity, and the rich club connectiv-

ity 13 to measure the core connectivity.

Definition 2.1. The average degree of a graph G =

(V, E) is defined as k̄ = 2m/n, where n = |V | and

m = |E|.

Definition 2.2. The degree distribution of a graph

G = (V, E) is a function P : [0, . . . , kmax] → [0, 1],

where P (k) is the fraction of the vertices in G that

have degree k for 0 ≤ k ≤ kmax, and kmax is the

largest degree in G.

High degree vertices play an essential role in

communication networks. They carry most of the

communication flow and together form the backbone

of the network, which is also referred to as the core of

the network. We used rich club connectivity to mea-

sure how densely connected are high degree vertices

in the network 13.

Definition 2.3. The rich club connectivity of a

graph G = (V, E) is a function φ : 2V → R defined

as follows

φ(ρ) =
|{(u, v) ∈ E : u ∈ ρ, v ∈ ρ}|

|ρ|(|ρ| − 1)/2
, (1)

where ρ is the set containing the first |ρ| highest de-

gree vertices in the list of vertices ranked according

to their degree in non-increasing order.

2.2. Small-World metrics

The small-world hypothesis states that everyone in

the world can be reached through a short chain of

social acquaintances. According to Watts and Stro-

gatz 4, a small-world network is mainly characterized

by two structural properties, namely, (1) a shorter

aNote that we study the Internet topology at the AS-level, which is defined as follows. The Internet consists of a large number
of independently managed networks, which we call Autonomous Systems (AS). For example, an Internet Service Provider of a
large company network constitutes usually an AS. In the AS-level graph, the vertices are the Autonomous Systems and an edge
represents the fact that the two adjacent nodes are physically connected and exchange information in the form of packets. In this
work, we use the term Internet or Internet topology to refer to the AS-level Internet graph.
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characteristic path length and (2) a higher cluster-

ing coefficient when compared to random networks.

Definition 2.4. Given a graph G = (V, E), the

characteristic path length L of G is defined as L =

(
∑

u,v∈V L(u, v))/[n(n − 1)/2], where L(u, v) is the

shortest path length between vertex u and v.

Definition 2.5. The clustering coefficient C(v) of a

vertex v ∈ V is defined as

C(v) =
|{(s, t) ∈ E : (v, s) ∈ E, (v, t) ∈ E}|

d(v)(d(v) − 1)/2
, (2)

where d(v) > 1 is the degree of vertex v. The clus-

tering coefficient C of a graph G = (V, E) is defined

as C = (
∑

v∈V C(v))/n.

2.3. Modular and Hierarchical

Organization

The modular and hierarchical structures in networks

can be quantified by the scaling relation between the

clustering coefficient Ck and the vertex degree k,

where Ck = (
∑

d(v)=k C(v))/N(k) and N(k) is the

number of vertices having degree k. Several stud-

ies 6, 14 have shown that if a network has modular

and hierarchical structure, the distribution of Ck is

power-law-like, that is Ck ∼ k−α for some real posi-

tive α.

2.4. Entropy

We selected graph entropy 15 and target entropy 16

to evaluate the randomness of a graph. Let X and

Y be two discrete random variables associated with

the degree of the two vertices of a randomly chosen

edge.

Definition 2.6. The graph entropy E(G) of a graph

G = (V, E) is defined as follows

E(G) = H(X) + H(Y ) − H(X, Y ), (3)

where H(X) and H(Y ) are the entropy of random

variable X and Y , and H(X, Y ) is the joint entropy

of X and Y (as defined e.g., in Ref 17).

The graph entropy E(G) corresponds to the mu-

tual information between random variable X and

Y , which measures the amount of information that

one random variable contains about another random

variable. The mutual information quantifies the re-

duction in the uncertainty of one random variable

due to the knowledge of the other 17.

Our second metric of randomness is target en-

tropy, which measures the predictability of the

amount of traffic in the neighborhood of any given

vertex 16. More specifically, assume that every ver-

tex in the network sends one unit flow to vertex u

using shortest path. Let c(u, v) denote the fraction

of the flows with destination u that passes through

vertex v, where v is the immediate neighbor of u.

Definition 2.7. The target entropy T (u) of a vertex

u ∈ V is defined as follows

T (u) = −
∑

v neighbor of u

c(u, v) log2 c(u, v). (4)

The target entropy T of a graph G = (V, E) is defined

as T = (
∑

u∈V T (u))/n.

2.5. Performance Measures

We selected two metrics to evaluate the performance

of the network, namely eccentricity and edge conges-

tion. The former metric is related to the notion of

reachability of a graph 18, whereas the latter mea-

sures the congestion on the edges assuming a flow

model.

Definition 2.8. The eccentricity ε(u) of a vertex

u ∈ V is defined as ε(u) = maxv∈V L(u, v).

Edge congestion measures the amount of flows

traveling through the edges of a network assuming a

given traffic model and routing policy. In this study,

we assume that one unit of flow between every pair

of vertices is routed using the shortest-path routing

policy 19, 20.

Definition 2.9. The edge congestion ec(u, v) of an

edge (u, v) ∈ E is defined as ec(u, v) = f(u, v)/[n(n−

1)], where f(u, v) denotes the total number of flows

traveling through the edge (u, v).

2.6. Robustness

We selected two simple methods to measure the ro-

bustness of network topology under failures. In the

first, we remove vertices at random, which corre-

sponds to random failures. In the second, we remove
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vertices in the order of decreasing degree, which cor-

responds to “intelligent attacks” 21. In both cases,

the network eventually gets decomposed into a set of

connected components. To characterize this process,

we measured (a) Lc = |S|/n, where S is the largest

connected component, and (b) Nc, the number of

components in the network.

Table 1. Statistic summary: n is the number of
vertices, m is the number of edges, k is the average
degree, L is the characteristic path length, and C is
the clustering coefficient.

Yeast Fly AS990220 skitter

n 4687 6926 4686 9200
m 15138 20745 8772 28957

k 6.4596 5.9905 3.7439 6.2927
L 4.18519 4.45931 3.72621 3.118
C 0.126 0.0154 0.3786 0.6212

3. DATASETS

In our work, we used four networks whose global

statistics are summarized in Table 1. Yeast and

Fly are two PPI networks downloaded from the DIP

database 22, in which vertices represent proteins and

edges represent physical interactions between pairs

of proteins. AS990220 and Skitter are two AS-level

Internet instances obtained from two different meth-

odsb.

We also employed two models of random graphs,

namely, G(n, p) and degree-based random graphs. A

G(n, p) random graph is a graph composed of n ver-

tices where each pair of vertices is connected with

probability3 p . Given a degree distribution d and

an integer n, a degree-based random graph (DBRG)

is a graph with n vertices where vertices u, v are con-

nected with probability proportional to the product

of their degree26 d(u)d(v). In the following, G(n, p)

random graphs were generated based on the same

number of vertices and edges as in the real networks.

DBRG random graphs were produced based on the

same degree distribution of the real networks along

with the same number of vertices and edges as in real

networks.

4. RESULTS AND DISCUSSION

4.1. Connectivity

Average Degree. Table 1 summarizes the average

degree of the four networks. Yeast and Fly PPI net-

works have an average degree around 6. AS990220

has approximately the same number of vertices as

Yeast PPI network, but its average degree is much

lower (≈ 4). The other AS-level Internet Skitter

has an average degree of about 6, much closer to the

two PPI networks.

Skewed Degree Distribution. Figure 1 shows the

complementary cumulative density function (CCDF)

of degree distribution of the four networks. The two

Internet networks show a “perfect” power-law degree

distribution with γ ≈ 1.1. Observe that although the

degree distribution of the two PPI networks is highly

skewed, they do not follow closely a power-law dis-

tribution (γ ≈ 1.7).

The degree distribution of PPI networks has

been characterized as truncated scale-free, which has

a power-law regime followed by a sharp cutoff, like

an exponential or Gaussian decay of the tail 27. In

Ref 27, the authors showed that they could generate

networks with such degree distribution by imposing

constraints on the process that adds new links to

vertices. We speculate that such constraints could

potentially exist in the evolutionary process that

shaped the topology of PPI networks. For exam-

ple, one constraint is the physical and chemical limi-

tations on the number of interacting partners that a

protein could possibly have. Moreover, compartmen-

talization and inherent functional modular organiza-

tion of various components inside the cell would re-

strict spatially and functionally the number of links

added between two different compartments or two

different functional modules. Although it is not clear

what is the evolutionary advantage for PPI networks

to have scale-free topology, we argue that the physi-

cal, chemical and thermodynamic constraints in the

cell could account for the lack of a perfect scale-free

topology in PPI networks.

b
AS990220 is an AS-level topology collected by the Oregon routeviews project 23, which extracts the information from BGP

routing updates 24. Skitter was collected by CAIDA (Cooperative Association for Internet Data Analysis) using traceroute and
then carefully processed 10, 25.
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Fig. 1. Complementary cumulative density function (CCDF) of the degree distribution.

Rich club connectivity. Figure 4 shows that about

10% of the vertices with the highest degree in AS-

level Internet are more densely connected with each

other than those in PPI networks. In another words,

links between high degree vertices in PPI networks

are suppressed, which is consistent with previous ob-

servations 28. A comparison with G(n, p) and DBRG

random graphs further illustrates that the number of

links between high degree vertices in PPI networks

is significantly lower than expected. In contrast, the

number of links connecting high degree vertices in

AS-level Internet matches the expected number ob-

served in their corresponding random networks (data

not shown).

The core connectivity analysis shows that high

degree vertices in PPI networks do not connect with

each other as much as in the Internet or when com-

pared to random networks. This feature is consistent

with the theory of functional modular organization of

the cell. Functional modules can be insulated from or

connected to each other. Insulation allows the cell to

carry out many diverse reactions without the cross-

talks that would harm the cell, whereas connectivity

allows one function to influence another one. The

most notable effect of suppressing the connections

between high degree vertices is to prevent the dele-

terious perturbations from propagating rapidly over

the network through densely connected high degree

vertices. In contrast, such concern does not exist in

Internet, in which high degree vertices (i.e., large In-

ternet Service Providers) are expected to connect to

each other to promote communication between dif-

ferent cities, countries and continents.

4.2. Small-world metrics

Characteristic Path Length. Table 1 summarizes

the characteristic path length for the four networks.

The two AS-level Internet have an average shortest

path length almost one hop shorter than that of two

PPI networks. This indicates that on average it takes

fewer edges to reach one another using shortest path

in Internet than in PPI networks.
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Fig. 2. Clustering coefficient Ck as a function of the degree k.

Clustering Coefficient. The clustering coefficient C

is also shown in Table 1. The two AS-level Inter-

net have a much higher clustering coefficient than

that of two PPI networks, indicating that the neigh-

boring vertices in Internet are well connected when

compared to PPI networks. This may also imply

that prominent cluster structures exist in the Inter-

net 6, 9.

The fact that Internet networks have a shorter

characteristic path length and a higher clustering co-

efficient than PPI networks indicates that the for-

mer graphs are more small-world than PPI networks.

This results imply that the overall design of the Inter-

net promotes well-connected neighborhood and can

propagate messages through a short chain between

long distance vertices, which in turn implies more

efficient communication. This conclusion is rather

expected and not surprising. The primary goal of

the Internet is to deliver messages in a fast and re-

liable manner, thus the small-world properties are

more desirable in such type of networks. In contrast,

fast communication is perhaps not one of the primary

concerns in PPI networks.

4.3. Modular and Hierarchical

Organization

Figure 2 shows the clustering coefficient Ck versus

degree k. The two AS-level Internet show a power-

law-like distribution of Ck ∼ k−α, which is an indi-

cation of hierarchical organization. In PPI networks,

however, there is almost no indication of hierarchical

structures, except perhaps among high degree ver-

tices, where we detected weak signs of hierarchical

structure.

In addition to the analysis of the scaling relation

between Ck and k, we designed another experiment

to explicitly demonstrate that the combination of

high clustering coefficient and the presence of the re-

lation Ck ∼ k−α results in modular and hierarchical

structures in AS-level Internet. The experiment was

designed as follows. (1) Iteratively remove the most

critical edge (for example, we removed the edge with
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Fig. 3. The size Lc of the largest normalized component (represented on the y-axis) in real networks and the corresponding
G(n, p) and DBRG random networks after successive removal of critical edges. The x-axis represents the fraction of edges removed.

the highest betweenness 29) in the network, until the

network breaks into two components, (2) Measure

the size Lc of the largest normalized connected com-

ponent, (3) Repeat step (1) and (2) on the largest

component until its size reaches one node. The ra-

tionale behind this decomposition process is that if

the network is modular and hierarchically organized,

then one expects the decomposition to separate large

components from the network.

Figure 3 shows the comparison between the real

networks and their corresponding G(n, p) and DBRG

random networks. The graph illustrates that Lc de-

cays much faster in four real networks than that in

their two random counterparts, which in turn indi-

cates that the four real networks are more modu-

lar and hierarchically organized than random net-

works. Figure 5 shows a comparison of Lc between

the four real networks. Observe that the size of the

largest component in the AS-level Internet decays

faster than that in the PPI networks. Although the

decay rate of Lc in Skitter is comparable to that

of two PPI networks, in Skitter, larger size compo-

nents are separated from the network, indicating a

much stronger modularity.

The measurements on the scaling relation and

the decomposition experiment suggest that modu-

lar and hierarchical structures exist in all networks

examined. Moreover, the topology of the Internet

is significantly more modular and hierarchical than

that of PPI networks. In fact, hierarchical organi-

zation is inherent in the topology of the Internet,

which mirrors the hierarchical structure in business

relationships. It is a well known fact that on the

Internet there are a few tens of vertices that pro-

vide international world-wide connectivity and they

practically form a clique. Then, within each country

we have national, regional and local Internet Service

Providers (ISPs). Typically, the smaller ISPs are the

customers of the larger ISPs. This hierarchical struc-

ture which emerges as a reflection of business poli-

cies, is not a strict hierarchy but it definitely provides
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Fig. 7. Target entropy Tk as a function of the degree k.

a topological structure.

4.4. Entropy

Graph Entropy. Figure 6 illustrates the graph en-

tropy for real networks and their corresponding

G(n, p) and DBRG random networks. The figure

also shows the graph entropy for rewired networks,

in which 10, 20, 30, 40, 50% of all edges are rewiredc

(both in real and random networks). The data

points for random and rewired networks were av-

eraged over 10 corresponding networks. Observe

that the entropy of all real networks approaches the

corresponding DBRG random networks with more

and more rewiring. In contrast, the entropy of ran-

dom networks remains almost the same regardless of

how much rewiring was performed (data not shown).

Since the vertices in G(n, p) random networks are

connected uniformly at random, their graph entropy

is expected to be zero, as shown in Figure 6. These

observations show that graph entropy reflects the

randomness of a network in a quantitative way, since

the value of graph entropy varies accordingly with

the randomness of a network.

The figure also shows that the two AS-level In-

ternet have a much higher graph entropy than that

of the two PPI networks. This result implies that

on the Internet we can observe a regular connection

pattern between different classes of vertices, e.g., low

or high degree vertices. The analysis of the assorta-

tivity coefficient 30 confirms this result by showing

preferential connections between low and high degree

vertices in Internet networks (data not shown).

The analysis of graph entropy shows that the

connectivity between vertices with different degrees

cRewiring is a process that randomly switches the edges in the network in such a way that the degree distribution of the nodes
in the networks remains constant 4.
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Fig. 11. Nc as a function of the fraction of vertices removed.

in PPI networks is close to uniformly random, which

is analogous to the notion of diversification in evo-

lution. Diversification is a process in which mul-

tiple phenotypes and genotypes are simultaneously

present in a population, which increases the probabil-

ity that some individuals will survive and reproduce

in a heterogeneous and changing environment. The

same mechanism could possibly be adopted in the

building process of PPI networks too, since the het-

erogeneous connectivity pattern could potentially in-

crease the robustness of the network by redundancy

or/and degeneracy mechanism 31.

Target Entropy. Recall that the target entropy of

a vertex u is the entropy of the distribution of the

number of times a vertex in the neighborhood of u

is traversed to route messages. The closer is the dis-

tribution to a uniform distribution, the higher is its

entropy. Figure 7 shows Tk versus degree k, where

Tk = (
∑

d(u)=k T (u))/N(k) and N(k) is the number

of vertices having degree k. The figure shows that the

vertices in the Internet are less uniform at choosing

neighbors to route messages when compared to PPI

networks. This is due to the fact that all the routing

domains in the Internet have to visit some large ISPs

in order to exchange information with other admin-

istrative domains. Therefore, the choice of which

vertex to use for routing is highly selective in In-

ternet. Since such constraints do not exist in PPI

networks, the vertices have more freedom to choose

which vertex to pass the message to.

The results presented here on the target entropy

appear to somewhat contradict the ones obtained by

Sneppen et al. in Ref 16. In their work, the au-

thors show that the Internet has higher target en-

tropy than the PPI network of Yeast and Fly, and

that the PPI of Fly has higher target entropy than

the one of Yeast. Our results show that the Internet

has lower target entropy than the two PPI networks

and that the PPI of Fly has lower target entropy
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than that of Yeast. This discrepancy is likely to be

explained by the fact that they used much smaller

networks than the ones we used in our study. In

addition, the authors of Ref 16 do not report the av-

erage degree of the networks used in their dataset.

Comparing the target entropy of networks with very

different average degrees might not be very meaning-

ful.

4.5. Performance Measure

Our main measure of performance is the communi-

cation efficiency. Many factors influence the perfor-

mance of the Internet, such as routing policy, traf-

fic flow, etc. Since for PPI networks the notions of

routing and traffic might not be very meaningful, we

used the simplest model for both types of networks,

namely we modeled packets using one unit of flow be-

tween every pair of vertices where packets are routed

using shortest path policy. Under these assumption,

our goal was to determine whether PPI networks

have any advantages over the Internet as commu-

nication networks. We measured eccentricity, which

estimates how quickly one vertex can reach any ver-

tex in the network, and edge congestion, which is

related to the traffic flow in the network.

Eccentricity. Figure 8 shows the quantity εk versus

degree k, where εk = (
∑

d(u)=k ε(u))/N(k) is the av-

erage eccentricity for the vertices having the same

degree k. The figure shows that on average the ver-

tices in Internet reach the rest of the vertices in the

network with fewer hops than those in PPI networks.

Edge Congestion. The edge congestion for all edges

in the network was sorted into non-decreasing order

and the distribution of the congestion of each edge

was plotted in Figure 9. The figure shows that most

of the edges in Skitter have less flow traffic than

the other networks. Although the edge congestion

in AS990220 is comparable to that of the two PPI

networks, we need to recall that AS990220 has an

average degree of 3.74 in contrast to an average de-

gree of about 6 in PPI networks. In other words,

AS990220 achieves the same level of edge congestion

as the PPI networks with a significantly smaller num-

ber of edges. This indicates that the topology of the

Internet has inherent structural properties that tend

to reduce edge congestion.

The performance analysis suggests that the In-

ternet is highly optimized for communication effi-

ciency (under the assumptions we made on the rout-

ing and the traffic). In contrast, it appears that PPI

networks are not optimized to route messages and

minimize traffic.

4.6. Robustness

When vertices were randomly removed from the net-

work, along with all incident edges, all four networks

behave similarly in terms of the size of the largest

normalized component Lc and the number of com-

ponents Nc (data not shown). However, when we

targeted first vertices with the highest degrees, AS-

level Internet collapses much faster than PPI net-

works as shown by a smaller Lc and a larger Nc (see

Figure 10 and 11). The results indicate that high

degree vertices play a critical role in Internet. In

contrast, the fact that high degree vertices in PPI

networks tend not to be connected with each other

(as shown by the rich club connectivity analysis) pre-

vents the deleterious effects, such as gene knockout

or protein malfunction, from spreading throughout

the network too fast. Thus, suppressed cross-talking

between high degree vertices in PPI networks clearly

contributes to the robustness of the network by lo-

calizing the effects of deleterious perturbations. The

distinction between the robustness of these two types

of networks supports the idea that the underlying

driving force that shape the topology of these two

types of networks are distinct, namely, for PPI net-

works, the survivability of the cell favored by evolu-

tion, and for Internet, the optimized communication

requirements.

5. CONCLUSION

In this paper we showed that by comparing PPI net-

works to AS-level Internet, one can possibly gain

some insights on the topological properties and the

design principles underlying the two types of net-

works. Such cross-disciplinary comparison brings to-

gether tools, expertise, and ideas from different com-

munities, and benefits both research areas.

Our results suggest that although both types

of networks have been characterized as scale-free
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topologies, they also exhibit non-trivial topological

differences.

• Connectivity. The Internet has a highly-connected

“core”, which does not appear to exist in PPI net-

works.

• Small-world. The Internet topology exhibits

stronger small-world properties than PPI net-

works.

• Modular/Hierarchical organization. The Internet

topology shows a more prominent modular and hi-

erarchical organization than PPI networks.

• Entropy. Vertices with different degrees are more

uniformly connected in PPI networks than those

in the Internet.

• Communication efficiency. The Internet topology

is more efficient in routing messages and minimiz-

ing traffic than PPI networks with respect to the

metrics that capture the communication efficiency.

• Robustness. The Internet and PPI networks seem

equally robust against random failures. However,

PPI networks are more robust under “targeted”

(e.g., toward high degree nodes) attacks compared

to the Internet.

We speculate that the structural and functional

differences between PPI networks and AS-level In-

ternet are originated from different constraints and

objectives that govern and shape the building process

of these complex networks. Specifically, the building

process of PPI networks is driven by the evolutionary

constraints that favor the survivability and diversi-

fication. In contrast, the architecture of Internet is

built under the needs of fast and reliable communi-

cation.
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