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Determining the function of proteins is a problem with immense practical impact on the identification of inhibition
targets and the causes of side effects. Unfortunately, experimental determination of protein function is expensive and
time consuming. For this reason, algorithms for computational function prediction have been developed to focus and
accelerate this effort. These algorithms are comparison techniques which identify matches of geometric and chemical
similarity between motifs, representing known functional sites, and substructures of functionally uncharacterized
proteins (targets). Matches of statistically significant geometric and chemical similarity can identify targets with
active sites cognate to the matching motif. Unfortunately, statistically significant matches can include false positive
matches to functionally unrelated proteins. We target this problem by presenting Cavity Aware Match Augmentation
(CAMA), a technique which uses C–spheres to represent active clefts which must remain vacant for ligand binding.
CAMA rejects matches to targets without similar binding volumes. On 18 sample motifs, we observed that introducing
C–spheres eliminated 80% of false positive matches and maintained 87% of true positive matches found with identical
motifs lacking C–spheres. Analyzing a range of C–sphere positions and sizes, we observed that some high-impact C–
spheres eliminate more false positive matches than others. High-impact C–spheres can be detected with a geometric
analysis we call Cavity Scaling, permitting us to refine our initial cavity-aware motifs to contain only high-impact
C–spheres. In the absence of expert knowledge, Cavity Scaling can guide the design of cavity-aware motifs to eliminate
many false positive matches.

1. INTRODUCTION

Exhaustive knowledge of the biological function of

a large number of proteins would have a broad im-

pact on the identification of drug targets and the

reduction of potential side effects. Unfortunately,

the experimental determination of protein function

is an expensive and time consuming process. In an

effort to guide and accelerate the experimental pro-

cess, computational techniques have been developed

to predict protein function by identifying distinct

similarities to known proteins. Algorithms like Ge-

ometric Hashing34, JESS14, pvSOAR33 and Match

Augmentation (MA)5, search functionally uncharac-

terized protein structures (targets), for substructures

with geometric and chemical similarity (matches),

to known active sites (motifs). Finding a match

with statistically significant geometric and chemi-

cal similarity can imply that the target has an ac-

tive site similar to the motif, suggesting functional

homology1, 14, 33, 5.

One fundamental subproblem of protein func-

tion prediction is the design of effective motifs. Ide-

ally, effective motifs have geometric and chemical

characteristics which have matches to functionally

homologous targets (sensitive motifs), and do not

have matches to functionally unrelated targets (spe-

cific motifs). In practice, however, many matches

are identified within functionally unrelated targets.

For this reason, statistical models1, 14, 33, 5 can es-

tablish a threshold of similarity necessary to im-

ply functional homology. Predictions from any non-

trivial statistical model will inevitably contain some
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false positive matches which identify statistically sig-

nificant geometric similarity to functionally unre-

lated proteins. In the context of actual function

predictions, where expensive resources could be de-

ployed to verify computational predictions, false pos-

itive matches must be avoided to minimize wasted

resources, while preserving as many true positive

matches to functional homologs as possible. This

paper proposes a method that reduces false positive

matches while preserving most true positive matches,

by adding biological information that rejects matches

to functionally unrelated targets.

It is hypothesized that ligand binding proteins

often contain active clefts or cavities which create

chemical microenvironments essential for biological

function. In several instances, large surface concavi-

ties have been associated with protein function30, 13.

Inspired by seminal work in the modeling and search

for protein cavities30, 8, 33, we seek to use cavities

to eliminate false positive matches. If the match-

ing atoms of the target truly form a cognate active

site with similar function, the matching atoms of the

target should surround an empty cavity with similar

shape.

This paper presents Cavity-Aware Match Aug-

mentation (CAMA), an adaptation of Match

Augmentation5, which searches for motifs built from

motif points, while requiring specific geometric vol-

umes, represented with sets of C–spheres, to remain

empty. On 18 cavity-aware motifs derived from lig-

and binding proteins, we compared the number of

false positive matches found relative to identical mo-

tifs without C–spheres. Cavity-aware motifs elim-

inated a large proportion of false positive matches

that were identified with point-based motifs, while

preserving most true positive matches. We also com-

pared the relative effect of many C–sphere positions

and sizes to the number of false positive matches

eliminated. This led us to observe trends indicating

that certain high-impact C–spheres contribute more

to the elimination of false positive matches than oth-

ers. We exploited these trends to produce Cavity

Scaling, a technique for identifying high-impact C–

spheres a priori. Cavity Scaling allowed us to refine

our existing motifs to contain only high-impact C-

spheres, guiding the design of cavity-aware motifs

that eliminate many false positive matches.

2. RELATED WORK

Motif Types The search for effective motifs has

led to many different geometric representations of

protein active sites, including point-based motifs and

cavity-based motifs. Point-based motifs represent ac-

tive sites as sets of motif points in three dimensions,

labeled with varying chemical and biological defini-

tions. Depending on how motif points are defined,

they have different labels associated with them and

these labels need to be taken into account with vary-

ing comparison algorithms. Motif points have been

used to represent evolutionarily significant amino

acids5, “pseudo-centers” representing protein-ligand

interactions17, ?, atoms in catalytic sites2, 14, points

on the Connolly surface21 with labels representing

electrostatic potentials15, and even atoms in flexible

motifs18.

Clefts and cavities, on the surface or within pro-

tein structures, have many different volumetric rep-

resentations. These cavity-based representations in-

clude spheres12, 6, 26, 20, alpha-shapes9, 8, 33, 32, and

grid-based techniques28.

Geometric Comparison Algorithms Many algo-

rithms exist for identifying matches between mo-

tifs and targets. These methods differ fundamen-

tally in that they are optimized for comparing differ-

ent types of motifs. There are algorithms for com-

paring graph-based motifs27, algorithms for finding

catalytic sites14, and the seminal Geometric Hash-

ing framework10 which can search for many types of

motifs, including motifs based on atom position22,

points on Connolly face centers16, catalytic triads2,

and flexible protein models18. The comparison al-

gorithm we use in this work is based on Match

Augmentation5, because of its availability and com-

patibility with our selected motif type.

Statistical Models of Geometric Similarity Find-

ing a match with MA indicates only that substruc-

tural geometric and chemical similarity exists be-

tween the motif and a substructure of the target,

not that the motif and the target have function-

ally similar active sites. We measure geometric

similarity with LRMSD, root mean square distance

(RMSD) between matching points in 3D, aligned

with least RMSD. In order to use matches to im-

ply functional similarity, it is essential to under-

stand the degree of similarity, in LRMSD, sufficient

to imply functional similarity. However, a simple
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(a) (b)

Fig. 1. A frequency distribution of matches between a motif and all functionally unrelated proteins in the PDB (a). Comparing
the area under the curve to the left of some LRMSD r, relative to the entire area under the curve (b).

LRMSD threshold is insufficient to indicate func-

tional similarity between any motif and a match-

ing target. Some motifs match functional homologs

at lower values of LRMSD than other motif-target

pairs, and LRMSD itself is affected by the number

of matching points5. Fortunately, earlier work has

demonstrated that motif-specific LRMSD thresholds

can be produced with statistical models of func-

tional similarity5. Many important statistical mod-

els have been designed, including parametric1, 14,

empirical33, and nonparametric5 statistical models.

Geometric comparison algorithms operate on

the assumption that substructural and chemical sim-

ilarity implies functional similarity. Our statistical

model can be used to identify the degree of similarity

sufficient to follow this implication. Given a match

m with LRMSD r between motif S and target T ,

exactly one of two hypotheses must hold:

H0: S and T are structurally dissimilar

HA: S and T are structurally similar

Our statistical model tests these hypotheses by com-

puting a motif profile. Motif profiles are frequency

distributions (see Figure 1a) of match LRMSDs be-

tween S and the entire Protein Data Bank (PDB)11,

which is essentially a large set of functionally un-

related proteins. A motif profile is basically a his-

togram (see example plotted in Figure 1a), where

the vertical axis indicates the number of matches

at each specific LRMSD, indicated by the horizontal

axis. Motif profiles provide very complete informa-

tion about matches typical of H0. If we suspect that

a match m has LRMSD r indicative of functional

similarity, we can use the motif profile to determine

the probability p of observing another match m′ with

smaller LRMSD by computing the volume under the

curve to the left of r, relative to the entire volume

(see Figure 1b). The probability p, referred to as

the p-value, is the measure of statistical significance.

With a standard of statistical significance α, if p < α,

then we say that the probability of observing a match

m′ with LRMSD r′ < r is so low that we reject the

null hypothesis (H0) in favor of the alternative hy-

pothesis (HA). We call m statistically significant.

In the context of controlled experiments, where

we know when matches identify functional homologs

and when they do not, there are four possibilities:

True positives (TP), False positives (FP), True neg-

atives (TN ), and False negatives (FN ). A match is

a TP, if it identifies a functional homolog, and if the

match is statistically significant. A match is a FP,

if the match identifies a functionally unrelated pro-

tein, and is statistically significant. A match is a

TN if it is not statistically significant and matches a

functionally unrelated protein. A match is a FN if

it identifies a functional homolog, but is not statisti-

cally significant.

In practice, our statistical model occasionally

identifies false positive matches. Designing motifs

which generate fewer FP matches is an essential as-

pect of motif design, especially when we consider

the possibility that expensive experimental resources

could be wasted in an attempt to verify predicted

functions. In the next section, we discuss a method

for designing motifs which strongly reduces false pos-

itives.
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Fig. 2. A diagram of a cavity-aware motif. Beginning with functionally relevant amino acids and bound ligand coordinates (a),
cavity-aware motif points are positioned at alpha carbon coordinates (black dots, (b)), and C–spheres are positioned at ligand
atom coordinates (transparent spheres, (b)).

3. METHODS

Cavity-Aware Motifs The cavity-aware motifs used

in this work are an integration of a point-based mo-

tif and a cavity-based motif. Cavity-aware motifs

contain motif points taken from atom coordinates

labeled with evolutionary data23, 24, 5, 7. A motif

S contains a set of |S| motif points {s1, . . . , s|S|}

in three dimensions, whose coordinates are taken

from backbone and side-chain atoms. Each motif

point si in the motif has an associated rank, a mea-

sure of the functional significance of the motif point.

Each si also has a set of alternate amino acid labels

l(si) ⊂ {GLY, ALA, ...}, which represent residues to

which this amino acid has mutated during evolution.

Labels permit our motifs to simultaneously represent

many homologous active sites with slight mutations,

not just a single active site. In this paper, we obtain

labels and ranks using the Evolutionary Trace23, 24.

Cavity-aware motifs also contain a set

of C–spheres C = {c1, c2, . . . ck} with radii

r(c1), r(c2), . . . r(ck), which are rigidly associated

with the motif points. ∀ci, 1 < i < k, a maximum

radius, rmax(ci), is defined to be the largest radius

(rounded to the nearest integer) such that ci con-

tains no atoms from the protein which gave rise to

the motif. C–spheres are a loose approximation of

solvent exposed volumes essential for ligand binding.

C–spheres can have arbitrary radii, and can be cen-

tered at arbitrary positions. While this work targets

the functional prediction of active sites that bind

small ligands, this representation could be used to

represent protein-protein interfaces and other gener-

alized interaction zones.

C–sphere positions in this work were selected

based on the coordinates of atoms in bound ligands.

For example, in Figure 2, we modeled the heme-

dependent enzyme nitric oxide synthase, which cat-

alyzes the synthesis of nitric oxide (NO) from an L-

arginine substrate. This multi-step reaction takes

place in a deep cleft and involves zinc, tetrahydro-

biopterin, and hydride-donating (NADPH or H2O2)

cofactors4, 31. Using PDB structure 1dww, we cen-

tered C–spheres at several atom coordinates on

the heme, in order to fill the heme-binding cavity,

and placed one C–sphere to represent tetrahydro-

biopterin, which was further outside from the main

cavity, as shown in Figure 2.

In our experimentation, a small number (usually

10) of C–spheres were manually placed for each mo-

tif. In some cases, not all atoms of the ligand were

used, such as in heme in Figure 2, but selections

were made to approximate the shape of the ligand

binding cavity based on the atom coordinates avail-

able. C–spheres could have been made to fit better

by moving the C–sphere centers, but we used atom

coordinates to standardize our experimentation. Fu-

ture work will explore the generalized positioning of

C–spheres.

Matching Criteria Cavity Aware Match Augmen-

tation compares a cavity-aware motif S to a target
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Fig. 3. Two cases of cavity-aware matching. Every time a match is generated by CAMA, an alignment of the motif points
is generated to the matching points of the target. This specifies the precise positions of the C–spheres in the motif relative to
the target. CAMA accepts matches to targets where no C–spheres contain any target atoms (a), and rejects matches where any
target atom is within one or more C–spheres (b).

T , a protein structure encoded as |T | target points

referred to as T = {t1, . . . t|T |}, where each ti is

taken from atom coordinates, and labeled l(ti) for

the amino acid ti belongs to. A match m is a bijec-

tion correlating all motif points in S to a subset of T

of the form m = {(sa1
, tb1), (sa2

, tb2) . . . (sa|S|
, tb|S|

)}.

Referring to Euclidean distance between points a and

b as ||a − b||, an acceptable match requires:

Criterion 1 ∀i, sai
and tbi

are label compatible:

l(tbi
) ∈ l(sai

).

Criterion 2 ∀i, ||A(sai
) − tbi

|| < ε, our

threshold for geometric similarity.

Criterion 3 ∀ti∀cj ||ti − A(cj)|| > r(cj)

where motif S is in LRMSD alignment with a sub-

set of target T , via rigid transformation A. Crite-

rion 1 assures that we have motif and target amino

acids that are identical or vary with respect to im-

portant evolutionary divergences. Criterion 2 assures

that when in LRMSD alignment, all motif points are

within ε of correlated target points. Finally Crite-

rion 3 assures that no target point falls within a

C–sphere, when the motif is in LRMSD alignment

with the matching target points. CAMA outputs

the match with smallest LRMSD among all matches

that fulfill these criteria. Partial matches correlating

subsets of S to T are rejected.

Matching Algorithm CAMA is a three staged hi-

erarchical matching algorithm which identifies corre-

lations for motif points in order of rank. The first

stage, Seed Matching is a hashing technique which

exploits pairwise distances between motif points to

rapidly identify correlations between the three high-

est ranking motif points, and triplets of target points.

These triplets are passed to the second stage, Aug-

mentation, which expands seed matches to full cor-

relations of all motif points. The final stage, Cavity

Filtering, identifies the aligned position of the C–

spheres in each full correlation, and checks to see if

any target points fall within a C–sphere. The cor-

relation with the smallest LRMSD that has no tar-

get points within any C–sphere is returned as the

resulting match. Seed Matching and Augmentation

are documented in earlier work5, but we summarize

them below for completeness.

Seed Matching Seed Matching identifies all sets

of 3 target points T ′ = {tA, tB, tC} which fulfill our

matching criteria with the highest ranked 3 motif

points, S′ = {s1, s2, s3}. In this stage, we represent

the target as a geometric graph with colored edges.

There are exactly three unordered pairs of points in

S′, and we name them red, blue and green. In the

target, if any pair of target points ti,tj fulfills our

first two criteria with either red, blue or green, we

draw a corresponding red blue or green edge between

ti,tj in the target. Once we have processed all pairs

of target points, we find all three-colored triangles in

T . These are the Seed Matches, a set of three-point

correlations to S′ that we sort by LRMSD and pass

to Augmentation.

Augmentation Augmentation is an application of

depth first search that begins with the list of seed

matches. Assuming that there are more than four

motif points, we must find correspondences for the

unmatched motif points within the target. Interpret

the list of seed matches as a stack of partially com-

plete matches. Pop off the first match, and consider-

ing the LRMSD alignment of this match, plot the po-

sition P of the next unmatched motif point si relative

to the aligned orientation of the motif. In the spher-

ical region V around P , identify all target points

ti, compatible with si, inside V . Now compute the

LRMSD alignment of all correlated points, include

the new correlation (si, ti). If the new alignment
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satisfies our first two criteria and there are no more

unmatched motif points, put this match into a heap

which maintains the match with smallest LRMSD.

If there are more unmatched motif points, put this

partial match back onto the stack. Continue to test

correlations in this manner, until V contains no more

target points that satisfy our criteria. Then, return

to the stack, and begin again by popping off the first

match on the stack, repeating this process until the

stack is empty.

Cavity Filtering Augmentation results in a heap

of completed matches. Beginning from the match

with lowest LRMSD, for each match, retrieve the

alignment of the motif onto the target. Using this

alignment, we plot the positions of the C–spheres in

rigid alignment with the motif. Then, for each C–

sphere, we check if a target point exists within the

C–sphere. If any target point is found within any

C–sphere, the match is discarded, and we continue

to the match with next-lowest LRMSD. This is dia-

grammed in Figure 3b. If we identify a match with

no target points in any C–spheres, as in Figure 3a,

we return this match as the output.

Discussion Standard MA would accept the match

with lowest LRMSD, regardless of the C–spheres.

Cavity Filtering rejects matches in order of ascend-

ing LRMSD, starting with the match with lowest

LRMSD, causing CAMA to potentially increase the

LRMSD of matches found, in comparison to MA.

When C–sphere radii are all zero, CAMA and MA

are therefore identical.

Cavity-Aware Statistical Significance We evaluate

p-values for matches to a cavity-aware motif S in

the same manner as for point-based motifs. We first

generate a point-based version S′ of S, and use S′ to

compute a motif profile. Then, given a match m of S

with LRMSD r, we compute the p-value of r relative

to this motif profile. p-values for cavity-aware mo-

tifs are computed relative to point-based motif pro-

files because the purpose of a cavity-aware motif is

to eliminate matches which would have been statis-

tically significant relative to the point-based motif.

Since matches with cavity-aware motifs have equal or

greater LRMSDs than matches with identical point-

based motifs, matches found with cavity-aware mo-

tifs have equal or higher p-values.

Cavity-aware motifs are not perfect; due to vari-

ations in active site structure, some functional ho-

mologs have atoms which occupy C–spheres. In our

experimentation, we measured both the number of

FP matches eliminated, as well as the number of TP

matches lost by adding C–spheres, and demonstrate

that the number of TP matches lost is small in com-

parison to the number of FP matches eliminated.

High-Impact C–spheres In our experimentation, we

observed that some high-impact C–spheres elimi-

nated more FP matches than other C–spheres. Iden-

tifying high-impact C–spheres is essential, because a

cavity-aware motif without high-impact C–spheres

would not eliminate many more FP matches than

an identical point-based motif. More importantly, a

computational technique for identifying high-impact

C–spheres could simplify the design of cavity-aware

motifs by ensuring that only high-impact C–spheres

are used.

We have observed that motif profiles derived

from cavity-aware motifs that include high-impact

C–spheres have a tendency of shifting towards higher

LRMSDs as C–sphere radius increases. In Figure 4a,

we demonstrate motif profiles computed with a mo-

tif that has exactly one C–sphere. Each motif profile

corresponds to identical motif points with a C–sphere

at an identical position, where the only difference is

that radius changes evenly between zero and the C–

sphere’s maximum size. As size increases, the motif

profile changes very little. This is a low-impact C–

sphere. In comparison, in Figure 4b, for the same

motif points and a C–sphere in a different position,

as radius changes uniformly between zero and the

C–sphere’s maximum size, many more matches shift

towards higher LRMSDs, as mentioned in Section 3.

This is a high-impact C–sphere.

We have designed a technique which uses this ef-

fect to identify high-impact C–spheres, called Cavity

Scaling. Cavity Scaling takes as input a single C–

sphere, and a set of motif points. Using this cavity-

aware motif, we generate a spectrum of cavity-aware

test motifs which differ only in the radius of the sin-

gle C–sphere. The C–sphere radius in each test motif

ranges from zero to the maximum size of the input

C–sphere. We then compute a motif profile for each

test motif, and compare the motif profile medians.

If the motif profile medians change significantly as

C–sphere radius increases, then we consider the in-

put C–sphere a high-impact C–sphere. The process

of Cavity Scaling is then repeated for each C–sphere
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(a) (b)

Fig. 4. 20 motif profiles for a low-impact C–sphere (a), and a high-impact C–sphere (b), as radius increases.

that has been defined, individually.

Cavity Scaling permitted us to refine C–sphere

selections in cavity-aware motifs. As we will show

later, refined cavity-aware motifs eliminate most FP

matches and maintain TP matches in comparison to

manually defined cavity-aware motifs. More impor-

tantly, even though this work tests C–spheres cen-

tered on ligand atom coordinates, Cavity Scaling is

independent of C–sphere centers, making it a general

test for high-impact C–spheres. In the future, this

could be applied at a larger scale to explore more

general representations of cavity-aware motifs, and

provide feedback about C–sphere placements in mo-

tif design.

4. EXPERIMENTAL RESULTS

Motifs The motifs used in this work begin

as 18 point-based motifs designed to represent a

range of unrelated active sites in unmutated pro-

tein structures with biologically occurring bound lig-

ands. These are documented in Figure 5. Earlier

work has produced examples of motifs designed with

evolutionarily significant amino acids5, 7 and amino

acids with documented function29, so these princi-

ples were followed in the design of our point-based

motifs. Amino acids for use in 10 of the motifs were

selected by evolutionary significance, and are taken

directly from earlier work7, and the remaining 8 mo-

tifs were identified by functionally active amino acids

documented in the literature (marked ? in Figure 5).

For example, in the case of nitric oxide syn-

thase, we selected active site residues which bind

NHA and heme. Cys-194 is axially coordinated to

heme. Glu-371 and Trp-366 form hydrogen bonds

with the guanidinium group of NHA while Tyr-367

and a protonated Asp-376 form hydrogen bonds to

the carboxylate group of NHA3. We also selected

Val-346 and Phe-363, which create a small hydropho-

bic cavity within the larger heme-binding cavity, al-

lowing dioxide (O2) to bind end-on to heme with-

out steric interference4. C-sphere positions and sizes

were defined in Section 3.

The selection of motif points strongly influences

motif sensitivity and specificity. However, in this

work, we seek to demonstrate that adding C–spheres

can improve point-based motifs. For this reason, we

take the selection of motif points and the number

of TP and FP matches found, for each point-based

motif, as given.

Functional Homologs In order to count TP and

FN matches, it is essential to fix a benchmark set

of functional homologs. We use the functional clas-

sification of the Enzyme Commission25 (EC), which

identifies distinct families of functional homologs for

each motif used. Proteins with PDB structures in

these families form the set of functional homologs

we search for. Structure fragments and mutants were

removed to ensure accuracy.

Unrelated Proteins In order to measure FP and

TN matches, it is essential to fix the set of func-

tionally unrelated protein structures. The set we

use is, initially, a snapshot of the PDB from Sept

1, 2005. For each motif, the set of functional ho-

mologs is removed, producing a homolog-free vari-

ation of the PDB specific for each motif. Further-

more, the PDB was processed to reduce sequential

and structure redundancy. In structures with mul-

tiple chains describing the same protein, only one
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Motifs Used in Experimentation
PDB id Amino Acids Used Ligands Used #C Range

16pk? R39,P45,G376,G399,K202 C15H22N5O12F4P3 10 4-6
1ady? E81,T83,R112,E130,Y264,R311 C16H21N8O8P 10 4-6

1ani? D51,D101,S102,R166,H331,H412 Zn2+, O4P 3− 10 2-6

1ayl L249,S250,G251,G253,K254,T255 ATP, C2O2−
4

10 4-8

1b7y? W149,H178,S180,E206,Q218,F258,F260 C19H25N6O7P , Mg2+ 10 4-8

1czf D180,D201,D202,A205,G228,S229,R256,K258,Y291 C8H15NO6, Zn2+ 10 2-8

1did? F25,H53,D56,F93,W136,K182, Mn2+, C6H13NO4 10 2-6

1dww? C194, V346, F363, W366, Y367, E371, D376, Heme, NHA 10 4-10
1ggm? E188,R311,E239,E341,E359,S361 C12H17N6O8P 10 4-10

1ja7 S36,C76,W108,Q57,I58,W63, C8H15NO6 10 4-8
1jg1 E97,G99,G101,D160,L179,G183, C14H20N6O5S 10 6-8

1kp3 R106,F139,E202,L286,R288,Y331 ATP 10 6-8
1kpg D17,G72,G74,W75,G76,F200 C5H11NO2Se 10 6-6
1lbf E51,S56,P57,F89,G91,F112,E159,N180,S211,G233 C12H18NO9P 10 4-6

1ucn K12,P13,G92,R105,N115,H118 O4P 3−, Ca2+, ADP 8 4-8

2ahj P53,L120,Y127,V190,D193,I196 Fe3+, NO, C4H8O2, Zn2+ 10 4-10
7mht P80,C81,S85,E119,R163,R165 C14H20N6O5S 10 4-8

8tln? M120,E143,L144,Y157,H231 C2H6OS, Ca2+, Zn2+ 9 2-8

Fig. 5. Motifs used, with example diagrams below. Starred (?) motifs use functionally documented amino acids. The column
marked “#C” denotes the number of C–spheres in each motif. “Range” denotes the range of C–sphere maximum diameters (in
Å) for the motif. Experimental details can be found at: http://www.cs.rice.edu/∼brianyc/papers/CSB2006

copy of each redundant chain was used, and all mu-

tants and protein fragments were removed. This pro-

duced 13599 protein structures. The set of structures

used was not strictly filtered for sequential nonredun-

dancy because eliminating one member of any pair

with too much sequence identity involves making ar-

bitrary choices. Eliminating fragments and mutated

structures, which seem to be the largest source of se-

quential redundancy, was the most reproducible and

well defined policy.

Implementation Specifics CAMA was imple-

mented in C/C++. Large scale comparison of many

potential C–sphere radii was accomplished with a

distributed version of CAMA, which used the Mes-

sage Passing Interface19 (MPI) protocol for interpro-

cess communication. Code was prototyped on a 16-

node Athlon 1900MP cluster and the Rice TeraClus-

ter, a cluster of 272 800Mhz Intel Itanium2 proces-

sors. Final production runs ran on Ada, a 28 chassis

Cray XD1 with 672 2.2Ghz AMD Opteron cores.

4.1. C-Spheres Eliminate False

Positives, Preserve True Positives

We first demonstrate that C–spheres affect the elim-

ination of FP matches and the retention of TP

matches. We compared the number of TP and FP

matches found with 18 point-based motifs to cavity-

aware versions of the same motifs. For completeness,

we show how 20 increments of varying C–sphere radii

affect the number of TP and FP matches found.

Our data begins as 18 motifs {S1, S2, ...S18}.

For each motif Si, we generated 20 C–sphere size

variations called {Si0 , Si1 , . . . , Si19}. If Si has C–

spheres {c1, c2, . . . ck}, with individual maximum

sizes rmax(c1), rmax(c2), . . . rmax(ck), then the vari-

ation Sij
∈ {Si0 , Si1 , . . . , Si19} Sij

has C–spheres

of radii ( j
19

rmax(c1)), (
j
19

rmax(c2)), . . . (
j
19

rmax(ck)).

For example, Si19 has C–spheres of radii

rmax(c1), rmax(c2), . . . rmax(ci), and Si0 would have

only C–spheres of radii 0, making Si0 equivalent to

a point-based motif.

Since matches to Si1 , Si2 , . . . , Si19 have p-values
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Matches to Homologs by Point-based Motifs Average Percentage of TP and FP Matches
Motif # Homologs # TPs # FPs

16pk 20 14 216
1ady 22 20 200

1ani 75 75 205
1ayl 8 8 170

1b7y 9 0 170
1czf 14 14 117
1did 149 149 80

1dww 192 181 76
1ggm 7 5 195

1ja7 1008 448 57
1jg1 13 13 196

1kp3 35 35 162
1kpg 13 11 151
1lbf 11 11 50

1ucn 153 133 162
2ahj 23 6 186

7mht 10 9 160
8tln 59 56 187

Fig. 6. Average effect of cavity-aware motifs on TP and FP matches, over all motifs. The horizontal axis charts C–sphere
radius, where the radius of all C–spheres scales simultaneously from zero to individual maximum size (see Section 4.1). The
vertical axis charts the average percentage, per motif, of TP and FP matches remaining, relative to their respective point-based
motifs. The number of TP and FP matches for each point-based motif is shown at left. FP matches are dramatically reduced
while most TP matches are preserved. Before TP matches begin to fall off, cavity-aware motifs eliminate 80% of FP matches
while maintaining 87% of TP matches.

greater than or equal to Si0 , because they have C–

spheres with non-zero radii, the number of FP and

TP matches identified among Si1 , Si2 , . . . , Si19 is less

than or equal to that of Si0 . The number of ho-

mologs matched by each point-based motif, Si0 , is

listed in the left of Figure 6. The number of TP

and FP matches eliminated is calculated relative to

the number matched by the point-based motif, and

thus all Si0 have 100% of TP and FP matches, as in

the leftmost point of the graph in Figure 6. Second

from the left, we plot the percentage of TP and FP

matches retained among Si1 , relative to Si0 , for all

i, and then average these percentages over all Si1 .

Continuing from left to right, we compute the aver-

age percentage of TP and FP matches, over all Si2 ,

then all Si3 , etc., again relative to Si0 .

Observations Demonstrated in Figure 6, as C–

sphere radius increases, the number of FP matches

are reduced dramatically, while the number of TP

matches falls slightly. Also, large percentages of

TP matches were maintained as C–sphere radius in-

creased, with few losses, until approximately 80% of

maximum size, when the number of true positives

began to fall off, for most motifs. This was expected

since maximum size was computed only on the pri-

mary motif structure, and not on homologs.

One motif, Phenylalanyl-TRNA Synthetase

(1b7y), exhibited 0 sensitivity. The point-based ver-

sion of 1b7y matched no functional homologs, so no

cavity-aware motifs based on 1b7y matched any func-

tional homologs either. For this reason, the percent-

age of TP matches eliminated by cavity-aware varia-

tions of 1b7y is undefined, and therefore no TP and

FP data (for consistency) is included in the averages

plotted in Figure 6. Cavity-aware variations on 1b7y

still rejected more FPs as C–sphere radius increased.

Point-based motifs from 1ja7 and 2ahj exhibited low

sensitivity, identifying less than 20% of the total

number of true positives. Having a very flexible ac-

tive site, cavity-aware variations of 16pk were sig-

nificantly less sensitive than its point-based counter-

parts. Overall, cavity-aware motifs eliminate many

FP matches, while preserving most TP matches.

4.2. Analysis of Individual C–spheres

Some C–spheres may have a greater impact on FP

match elimination than other C–spheres. We per-

formed Cavity Scaling on each C–sphere in each

of our 18 motifs, identifying which C–spheres were

high–impact. 1ayl, used in Figure 7 is an excel-

lent example, having several high- and low-impact

C–spheres. All motifs had related behavior: Some

motifs had many high-impact C–spheres, and others

(1czf, 16pk, 8tln) had none, but significant increases

in motif profile medians remained correlated to the

elimination of FP matches in all examples.

Observations Motif profiles of some single-C-

sphere motifs, computed over increasing radii, shift

significantly in the median towards higher LRMSDs.
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Fig. 7. Effect of Individual C–spheres on Motif Specificity. As C–sphere size uniformly increases, as described in Section 4.1
(horizontal axis), some high-impact C–spheres, such as 4 and 6, eliminate more FP matches (vertical axis) than others, such as
10 and 9. Line plots show the number of remaining FP matches for a specific single-C-sphere motif, and for a motif containing
all C-spheres. C-sphere positions relative to cavity shape are illustrated in the inset graphic. High-impact C–spheres, such as

C–sphere 6, generate motif profiles whose medians shift towards higher LRMSDs as C–sphere radius increases. Other C–spheres,
which do not eliminate as many FP matches, such as C–sphere 10, do not affect motif profiles as much. Cavity Scaling identifies
C–spheres which eliminate more FP matches.

These single-C-sphere motifs eliminate more FP

matches as radii increase. Alternatively, motif profile

medians of other single-C-sphere motifs that do not

eliminate many FP matches also do not shift towards

higher LRMSDs as radii increase. This is apparent

in Figure 7, where we detail this effect for single C-

sphere motifs based on 1ayl. In the inset graphs,

identical copies of the 1ayl motif that contain only

C-spheres 4 or 6 undergo significant changes in mo-

tif profile medians, towards higher LRMSDs, as ra-
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Impact of High-Impact C–Spheres in Cavity-Aware Motifs

Fig. 8. TP/FP matches preserved when using automatically refined cavity-aware motifs. Axes here are identical those of Figure
6. Automatically refined motifs (gray) reject a large majority of FP matches, retaining slightly more than manually designed
(black) motifs. Automatically refined motifs also preserve slightly more TP matches than manually designed motifs.

dius increases. Simultaneously, as seen in the main

graph, these single-C-sphere motifs, containing only

C-sphere 4 or 6, rapidly eliminate FP matches. 1ayl

motif copies with only C-spheres 9 or 10 experience

insignificant changes in motif profile medians, and

also eliminate FP matches more slowly, as radius in-

creases. C-sphere positions relative to active site ge-

ometry are provided in the inset graphic in Figure

7. No correlation between high-impact C–spheres

and cavity topography was apparent, emphasizing

the difficulty of designing motifs with high-impact

cavities.

Motifs with only one C–sphere eliminate very

few TP matches, but careful inspection indicates

that individual cavities cause different TP matches

to be rejected. This effect accumulates into the slow

loss of TP matches observed in section 4.1.

4.3. Automatically Refined Cavity-aware

Motifs

In an experimental function prediction setting, rules

and automated techniques for defining sensitive and

specific motifs are important for high throughput

function predictions. Having shown in the previous

section that Cavity Scaling can identify high-impact

C-spheres, we use Cavity Scaling to generate motifs

containing only high-impact C–spheres, and demon-

strate that they are reasonably effective.

Experiment: We applied Cavity Scaling on ev-

ery C–sphere in every motif, which identified a set

of high-impact C–spheres for all motifs except 1czf,

16pk and 8tln. We repeated the experiment de-

scribed in Section 4.1 for the remaining motifs, us-

ing only high-impact C–spheres. We refer to these

as automatically refined motifs. We compared our

results to manually designed motifs used in Section

4.1, which contained all C–spheres.

Observations: Like the axes of Figure 4.1, Fig-

ure 8 plots percent of maximum size (horizontal

axis) versus the average percent of remaining TP

and FP matches (vertical axis). Automatically re-

fined cavity-aware motifs reject a large majority of

FP matches, retaining a few more than manually de-

signed motifs. This is expected, because low-impact

cavities still eliminate some FP matches, which are

not eliminated in automatically refined motifs. Au-

tomatically refined motifs retained more TP matches

on average than manually designed motifs, for the

same reasons.

5. CONCLUSIONS

In order to design more sensitive and specific motifs,

we have integrated atom geometry and active cavity

volumes into cavity-aware motifs. On 18 nonhomol-

ogous motifs, cavity-aware motifs eliminated most

false positive matches while preserving most true

positive matches. We also observed that some high-

impact C–spheres have a greater influence on the

number of true positive and false positive matches

eliminated, and that high-impact C–spheres can be

identified with Cavity Scaling. Cavity Scaling refines

the selection of C–spheres in cavity-aware motifs, en-
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suring that motifs used in practice will contain high-

impact C–spheres.

Cavity Scaling is particularly relevant for cavity-

aware motif design because it operates independently

of C–sphere centers. C–spheres centered on general

spatial locations could be filtered with Cavity Scaling

for high-impact C–spheres, providing a general ap-

proach to C–sphere placement, independent of bound

ligands. Cavity Scaling does not entirely answer the

problem of designing cavity-aware motifs, because it

does not provide quantitative reasons for selecting

specific sphere sizes, but from our experience with

this data set, C–spheres at approximately 80-85% of

maximum size seem best.
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