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MHC (Major Histocompatibility Complex) proteins are categorized under the heterodimeric integral membrane
proteins. The MHC molecules are divided into 2 subclasses, class I and class II. Two classes differ from each other
in size of their binding pockets. Predicting the affinity of these peptides is important for vaccine design. It is also
vital for understanding the roles of immune system in various diseases. Due to the variability of the locations of
the class II peptide binding cores, predicting the affinity of these peptides is difficult. In this paper, we proposed a
new method for predicting the affinity of the MHC Class II binding peptides based on their sequences. Our method
classifies peptides as binding and non-binding. Our prediction method is based on a 3-step algorithm. In the first step
we identify the informative n-grams based on their frequencies for both classes. In the next step, the alphabet size is
reduced. At the last step, by utilizing the informative n-grams, the class of a given sequence is predicted. We have
tested our method on the MHC Bench IV-b data set [13], and compared with various other methods in the literature.

1. INTRODUCTION

MHC (Major Histocompatibility Complex) proteins
are categorized under the heterodimeric integral
membrane proteins. The primary function of MHC
proteins is presentation of antigenic peptides, which
are degraded from foreign proteins, to T lympho-
cytes so that an immune response in the system can
start [4]. The MHC molecules are divided into two
subclasses, class I and class II. Members of both
classes bind to peptides by recognizing a core se-
quence having 9 residues. Two classes differ from
each other in size of their binding pockets. MHC
class I molecules usually bind peptides around 9
residues, whereas class II molecules bind peptides
of length 10-30 [4, 11]. It has been indicated that
specific positions in this binding core, called anchor
residues, are important for binding specificity and
affinity. In the 9 residue binding core, the positions
1, 4, 6, 7 and 9 are the important ones [6]. There
is a study showing that not only binding cores but
also flanking residues towards the N and C-terminal
of the peptide affect the binding stability and affin-
ity [7]. Predicting the affinity of these peptides is
important for vaccine design. It is also vital for
understanding the roles of immune system in vari-
ous diseases. Due to the variability of the locations
of the class II peptide binding cores, predicting the
affinity of these peptides is difficult. The task of the
prediction algorithms has been learning the binding
motif and using it for prediction. Various methods

have been employed for this task. HMM, neural net-
works, Gibbs sampling, SVM and popular matrix
based methods [1–3, 12, 15] are some of them. In
this paper, we proposed a new method for predict-
ing the affinity of the MHC Class II binding peptides
based on their sequences. Our method classifies pep-
tides as binding and non-binding. It is shown that
some type of amino acids are preferred in some lo-
cations of binding peptides [6, 7], so we expect that
some motifs are important for binding and they oc-
cur more frequently in binding peptide set and not
in non-binding set. In order to find those frequent
motifs we utilize n-grams and the information con-
tent of them. N-grams are subsequences of peptides
composed of n consecutive amino-acids. They have
recently been utilize for classification. Ganapathi-
raju and colleagues [5] investigated the n-grams in
different organisms and observed that some n-grams
are specific to some of the organisms. In addition,
Vries et al. [9] utilize them to predict protein fami-
lies. They have found most representative n-grams
for each family and used that information for clas-
sifying proteins in a Bayesian probabilistic model.
There are also reports that n-grams are successfully
incorporated in GCPR ligand determination [16].

Our prediction method is based on a 3-step al-
gorithm. In the first step we identify the informative
n-grams, where n ∈ [1, 5]. We declare an n-gram as
informative according to the frequency of the n-gram
in the distributions of the both classes. In the next
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step, the alphabet size is reduced such that each re-
sulting amino-acid grouping to capture informative
sub-groups. At the last step, by utilizing the infor-
mative n-grams, we aim to predict the class of a given
sequence. In order to do this we employ two different
prediction schemes. We have tested our methods on
the MHC Bench IV-b data set [13]. Various other
methods have been applied to this data set, and our
methods perform better than most of these methods.

2. DECIDING INFORMATION
CONTENT OF AN N -GRAM

Information content of an n-gram is decided after
two steps: determination of classes, and, for each
class finding the distribution of the n-grams. In the
first step, the sequences having affinity less than or
equal to 0 is assigned to the first class, unbinding
peptides, and the rest of the proteins are assigned to
the second class, binding peptides. In the second step
for the given n, we find the distribution of n-grams
for both classes.

We declare an n-gram as informative according
to the cumulative distribution of the frequency of
the n- gram lies into in the distributions of the both
classes. The cumulative distribution function(cdf) of
a real valued random variable X is defined as:

F (x) = P (X <= x)

For a specific n-gram, whose information content is
explored, cdf is calculated for distributions of both
classes. The cdf refers to the ratio of number of
n-grams having frequency less than the explored
n-gram. As an example, for n = 4, assume the 4-
grams {AGIR, AGLH, KWVF, NCPA, and, DETY}
show up in the sample with the following frequencies.

AGIR AGLH KWVF NCPA DETY

Class-I 10 30 20 40 50
Class-II 10 40 50 30 20

So, the corresponding cdf of these 5 4-
grams for both classes are as following.

AGIR AGLH KWVF NCPA DETY

Class-I 0.2 0.6 0.4 0.8 1
Class-II 0.2 0.8 1 0.6 0.4

Then, the target space of the cdf ,([0,1]), is divided
into 3 subspaces according to the minimum and
maximum thresholds as shown in Figure 1. The n-
grams have a cdf less than the minimum threshold is

in region 1 and the ones having a cdf between mini-
mum and maximum thresholds are in the 2nd region
and the rest are in the 3rd region. If the given n-gram
is in the same region for both distributions then it
is accepted as uninformative, otherwise informative.
Assume that the minimum threshold is 0.25 and the
maximum one is 0.75. For the above example, the
4-grams AGIR and AGLH are uninformative. For
the informative n-grams, the absolute value of the
cdfs from both classes is assigned as the information
content of the n-gram. The 4-grams KWVF and
DETY have the same information content whereas
NCPA has a smaller value.

0.0 1.0Minimum
Threshold

Maximum
Threshold

0.5

Region 1 Region 2 Region 3

Fig. 1. Dividing the frequency space into 3 subspace accord-
ing to the minimum and the maximum quartiles

3. CLUSTERING INFREQUENT
AMINOACIDS: DECREASING THE
ALPHABET SIZE

Since there is some preference on some positions of
the binding peptides, it is expected that there will
be a bias towards some types of amino acids in bind-
ing peptides. In a set of binding peptides this bias
may not be apparent if we just look at the single
aminoacid frequencies. However, if amino acids can
be grouped based on their chemical and physical
properties, reducing the size of the alphabet, it is
possible to see that some of these abstract group-
ings become more frequent for a class. In order to
find the sub-groups of amino acids, uninformative
1-grams are extracted, and among those uninforma-
tive 1-grams, the ones that are infrequent in bind-
ing and non-binding sets, are extracted. Extracted
aminoacids grouped together if they are in the same
group for Table 1. After grouping we recalculate fre-
quencies with reduced alphabet, and repeat the pro-
cedure until there is no infrequent 1-gram.

Hence, the resulting groupings depend on the
dataset and the ones given in Table 1. Assume
that the aminoacids R and H are infrequent for both
classes in the sample set, but, K has a cdf more than
minimum threshold. Then, R & H are grouped in
together where as, K will not join this group and be
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analyzed separately.

Table 1. Possible Group-
ings

Group 1 D E
Group 2 R H K
Group 3 N Q S T
Group 4 F W Y
Group 5 C A P G V
Group 6 I L M

4. ALGORITHM

In the previous sections we described how to find the
information content of an n-gram using the distribu-
tion of both classes and how to reduce the size of the
alphabet. In this section, we describe the algorithms
that utilize the informative subsequences to find the
affinity class of a given aminoacid sequence. After
identifying the employed n-grams, the cdf of these
n-grams are summed up for each class and the one
with the maximum sum is assigned as the predicted
class for the given sequence.

4.1. N -gram Algorithm

Any subsequence of length n is taken into account.
The information held by the informative length n

subsequences is combined and the majority class is
assigned as the class for the query sequence. For
example, for n = 3, and the query sequence ACDE-
FVWYZ of length 9, there are 7 3-grams. The infor-
mation content of these 3-grams are combined and
assigned as the class of the query sequence, ACDE-
FVWYZ.

This approach can be utilize in two different
ways. The first style is using only the n-grams for a
fixed n, as shown in the above example. The other
one is employing all the n-grams for which informa-
tion content has been explored, for n ∈ [1, 5]. We
named the second one as UAL(Utilize All n-grams).

4.2. Dynamic Approach

The algorithm shown in Table 2 is proposed for a
problem which is a variant of the matrix multipli-
cation problem(MMP ). The MMP problem can
be summarized as finding the order of multiplication
such that the total cost of the multiplication opera-
tion between the matrices will be minimized and each

matrix will be multiplied only once. The given algo-
rithm utilizes the information content of all n-grams
where n ∈ [1, 5]. For a given sequence the algorithm
aims to find the division with the greatest informa-
tion content. Hence, the objective is maximizing the
sum of the information contents while dividing the
given sequence into subsequences. For a sequence of
ACD the algorithm considers the following subsets
{ACD, A-CD,AC-D,A-C-D}. Clearly, as inherited
from the matrix multiplication problem, this algo-
rithm considers each aminoacid once. The only dif-
ference is that this solution also considers the size
of the n-gram. The length multiplier, LM , is added
to the algorithm for this purpose. The LM function
takes the size of the n-gram as input and returns
1 + n/10. Due to the space restrictions, we do not
mention the elements of the dynamic programming.

Table 2. Dynamic Algorithm Using each Aminoacid Once

for i := 1 to n do
Infi,i := LM(1)*Information Content(IC) of aminoacidi

length = length of the given sequence
for n := 2 to 5 do

for i := 1 to length-n do
j := i + n
Inf Alli,j= LM(n)*IC of the n-grami,j

Inf Dividei,j = Maxi=<k<j{Infi,k + Infk+1,j}
Infi,j = Max{Inf All,Inf Divide}

5. RESULTS

There are 10 datasets available at [13]. An ideal
test set should contain equal number of binders and
non-binders. In absence of this, the evaluation pa-
rameters will show bias. Hence, we test our meth-
ods on the dataset 4-b, which is categorized under
the label of balanced binders and non-binders by the
owners. Raghava and Singh [13] evaluate 12 differ-
ent approaches under 3 categories, motif, matrix and
ann, on this dataset. We will give the rankings of our
results among the given ones. Elimination process of
the infrequent 1-grams has two iterations. At the
end of the first iteration, the size of the alphabet is
decreased from 20 to 18 and at the end of the last
iteration it is reduced to 14. Experiments were done
for each alphabet. The ordinary n-gram algorithm
is run for n <= 3. The data set is divided into 5
equal partitions. Each partition is used as the test
set, whereas the remaining are used as the training
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set.

Table 3. Results for 4-b dataset

Alphabet Size → 20 18 14
Methods↓
1-gram 0.546 0.6284 0.61

2-gram 0.5788 0.584 0.6045

3-gram 0.6627 0.6746 0.6954

UAL 0.6507 0.6832 0.6695

Dynamic 0.6421 0.673 0.6575

As shown in Table 3, each method performs
better with the reduced size alphabets than the
original alphabet. As the size of the alphabet de-
creases, the accuracy level for 2-gram and 3-gram
algorithms increases. This is not the case for the
others. They perform better with the alphabet
of size 18. We pick the best 4 results from [13]
and compare our results with the top performing
methods. The selected results and the authors
of the corresponding papers are depicted below.

Authors Rammennsee Marshal Struniolo Hammer

et al. [14] et al. [10] et al. [17] et al. [8]

Accuracy 0.7003 0.6849 0.6764 0.6627

The highest level of accuracy achieved by our meth-
ods is 0.6954. Only one of the shown results, Ram-
mennsee et al. [14], in [13] is greater than this. The
highest accuracy achieved by Dynamic approach is
0.673 and this is slightly less than the third one,
Struniolo et al. [17]. That of UAL method is 0.6832
and this is close to the second one, Marshal et
al. [10].

6. CONCLUSION & DISCUSSION

Our methods have surpassed many other methods
whose results are shown in [13]. We have shown that
our genuine and simple approach is as accurate as
those complicated methods.

We are currently investigating new algorithms
and trying our existing algorithm on the other data
sets. One possible modification to our dynamic algo-
rithm might be the usage of every amino acid more
than once. Another one to the same algorithm might
be changing the LM function according to the per-
formance of n-gram algorithm on various n. For the
used dataset, 4-b, 3-gram performs the best, so the
LM function can be designed such that the 3-grams
are favored.
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