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Recent studies of gene expression in cancerous tumors have revealed that cancers presenting indistinguishable symp-
toms in the clinic can represent substantially different entities at the molecular level. The ability to distinguish between
these different cancers makes possible more accurate prognoses and more finely targeted therapeutics. Making full use
of this knowledge, however, requires characterizing commonly occurring cancer sub-types and the specific molecular
abnormalities that produce them. Computational approaches to this problem to date have been hindered by the fact
that tumors are highly heterogeneous masses typically containing cells at multiple stages of progression from healthy
to aggressively malignant. We present a computational approach for taking advantage of tumor heterogeneity when
characterizing tumor progression pathways by inferring those pathways from single-cell assays. Our approach uses
phylogenetic algorithms to infer likely evolutionary sequences producing cell populations in single tumors, which are
in turn used to create a profile of commonly used pathways across the patient population. This approach is combined
with expectation maximization to infer unknown parameters used in the phylogeny construction. We demonstrate the
approach on a set of fluorescent in situ hybridization (FISH) data measuring cell-by-cell gene and chromosome copy
numbers in a large sample of breast cancers. The results validate the proposed computational methods by showing
consistency with several previous findings on these cancers. They also provide novel insights into the mechanisms of
tumor progression in these patients.

1. INTRODUCTION

Computational studies have led to substantial re-

visions in thinking about how to treat and diag-

nose cancers. Although all cancers are character-

ized by a general pattern of uncontrolled cell growth,

it has long been recognized that they represent

many different diseases at the molecular level. Nu-

merous different combinations of genetic abnormal-

ities could potentially disrupt the controls on cell

growth and produce essentially the same gross phe-

notypes. Classic chemotherapies for treating can-

cers thus typically target the phenotype of frequent

cell division rather than any specific genetic state

distinguishing cancerous from healthy cells, lead-

ing to treatments that are broadly but not consis-

tently effective and that carry serious side-effects.

The application of computational clustering methods

to gene expression microarrays5 has recently shown

that most tumors can be grouped into one of a

few common “cancer sub-types,”6, 11, 14 each char-

acterized by similar molecular abnormalities and po-

tentially treatable by common “targeted therapeu-

tics” addressing those specific abnormalities. Sub-

type identification has proven useful in predicting

patient outcomes22, 26, 25, 23 and in selecting appro-

priate treatment regimens.3, 1 The most notable suc-

cess of this new approach to targeted therapeutics is

the drug trastuzumab (Herceptin), an antibody to

the Her-2/neu gene that is specifically effective in a

subset of breast cancers characterized by amplifica-

tion of the Her-2/neu gene.10

The recognition of cancer sub-types was a signifi-
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cant advance, but it is also a simplification. A cancer

sub-type characterizes a general progression pathway

or set of related pathways by which successively ac-

cumulating mutations transform once healthy cells

into increasingly aggressive tumor cells. However,

any given patient may have advanced to a greater

or lesser degree along this pathway,9, 19 and the de-

gree of progression is itself a significant predictor of

prognosis.13 It is thus valuable to understand not

just what changes distinguish advanced cancer cells

on a particular pathway from those on a different

pathway, but also the particular sequence of events

by which those changes accumulate on any given

pathway. Desper et al.4 showed that it is possible

to identify relationships among different tumors by

constructing phylogenies, or evolutionary trees, us-

ing microarray gene expression data and a distance

metric similar to those used in the prior clustering

approaches. However, this approach oversimplifies

in some ways because tumors are not homogeneous

masses. As cells in a tissue progress along a given

pathway through the accumulation of successive mu-

tations, the earlier states do not die out, but rather

leave remnant populations in the tumor. Figure 1 il-

lustrates this process. The existence of multiple pro-

gression states within a single tumor can be expected

to confound microarray-based approaches, which can

only measure tissue-wide average expression levels.

Cancer prognosis has indeed been shown to be af-

fected by changes apparent in single cells, but not

from such tissue-wide measurements.20

Our contributions: We present a new method

that treats tumor heterogeneity as an asset rather

than an obstacle to the inference of progression

pathways by using single-cell measurements to infer

progression pathways within and between patients.

We develop an algorithm for inferring likely evolu-

tionary trees across cells by combining phylogenetic

methods with an expectation-maximization frame-

work for learning model parameters. We then use

trees inferred patient-by-patient to identify specific

sequences of molecular changes that commonly un-

derlie a particular tumor type. We apply our tech-

nique to a large set of single-cell fluorescent in situ

hybridization (FISH) measurements from breast can-

cers in which copy numbers are assessed for the Her-

2/neu oncogene, the p53 tumor suppressor gene, and

chromosome 17, on which both genes are found.7 The

results validate our approach by recapitulating sev-

eral previously observed features of the roles of these

genes in breast cancers. They further provide new in-

sights into nature of common progression pathways

in these cancers with implications for the optimal

diagnosis and treatment of cancer patients.

Fig. 1. Illustration of cancer progression resulting in tumor
heterogeneity. (a): A healthy mass of cells labeled H. (b): A
cell mutates into a diseased state D1, which encourages pro-

liferation and further progression. (c): The proliferating cell
expands, leaving a heterogeneous population. (d): A D1 cell
reaches a further progression state D2, increasing potential
for proliferation. (e): Both populations continue to expand
(f): The D2 population becomes dominant, and an additional
mutation results in a new disease state, D3.

2. METHODS

Our method uses expectation maximization (EM)

to learn several unknown parameters in a model of

cell progression, applies an algorithm for the min-

imum cost arborescence problem to construct per-

patient phylogenies consistent with the model, and

then identifies commonly used pathways across pa-

tients. The remainder of this section defines the in-

put data and phylogeny model and explains each step

of the overall inference process. All algorithms de-

scribed below were implemented using the functional

programming language Objective Caml.

2.1. Input Data

Although our high-level approach is intended to ap-

ply to any form of cell-by-cell assay, we assume be-

low an input format based on the FISH copy num-

ber data used in our validation experiments. These

data count copy numbers of a single gene and a sin-
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gle chromosome in individual cells. Each patient can

thus be represented as an N by N two-dimensional

array M , where N is some maximum observed count.

For the present work, N is 10 and any counts above

10 are collectively grouped into a single row or col-

umn of M representing the count “greater than 10.”

Element mij of M is then the fraction of cells of a

given sample that have i copies of the chromosome

and j copies of the gene, which we call state (i, j).

The FISH data is produced by manually counting

fluorescent probes on labeled cell microscopy images,

which can produce false counts if two probes are too

close together or a single indistinct probe signal is

incorrectly viewed as two distinct probes. We apply

a preprocessing step to the input prior to our algo-

rithm to reduce this noise. We assume that up to ten

percent of cells from an observed state may have been

misclassified and thus screen out from each patient’s

data any states for which the observed frequency is

less than 10% of the sum of the frequencies of its

neighbors.

2.2. Probability Model

We select phylogenies using a likelihood model that

assumes cell states evolve from one another through

four possible known molecular mechanisms for tu-

morigenesis: gene gain, gene loss, chromosome du-

plication, and chromosome loss. In gene gain, a cell

gives rise to a new state with one extra copy of the

gene. Gene loss produces a new state with one fewer

gene copies. Chromosome duplication, modeling in-

complete mitosis, doubles the complement of genes

and chromosomes in a cell. Chromosome loss results

in the loss of a single chromosome; as it is not clear

how many gene copies might lie on the lost chromo-

some, we allow any number of gene copies to be lost

simultaneously with the chromosome. Each of these

operations is assumed to have some prior probability:

pg+ for gene gain, pg− for gene loss, pc+ for chromo-

some duplication, and pc− for chromosome loss. We

call the vector of these four prior probabilities θ. The

prior probability of a full tree, Pr{T |θ} is then de-

fined to be the product of the prior probabilities of

its edges.

Our model further defines the probability of the

data given a tree, Pr{M |T}, to be the product over

all non-root nodes u of the frequency of u’s parent

node, where the root is always defined to be the (2,2)

state. This model is meant to capture the intuition

that a node is more likely to have descended from

a well-populated state than from a sparsely popu-

lated state. Thus, we can define the full probabil-

ity we seek to maximize, Pr{M |T}Pr{T |θ}, to be
∏

e=(u,v)∈T fupe, where fu is the frequency of node

u and pe is the prior probability of the edge type

of edge e given by θ. Figure 2 illustrates the defi-

nition, showing two possible trees for a given set of

nodes and describing how the probability is derived

for each tree. The goal of our computational meth-

ods is to find the θ maximizing Pr{M |θ} over the

full distribution of trees that might have produced

M and, given this θ, find the tree T maximizing

Pr{M, T |θ} = Pr{M |T}Pr{T |θ}.

g−c− g−

c−

(2,2)
f2,2

(2,2)
f2,2

(2,1)
f2,1

(1,1)
f1,1

(2,1)
f2,1

(1,1)
f1,1 p

pp p

(a) (b)

Fig. 2. Example illustrating the probability model for trees.
Three cell states — (2,2), (2,1), and (1,1) with frequencies
f2,2, f2,1, and f1,1 — can be joined by two possible trees. (a)
States (1,1) and (2,1) each descend directly from (2,2) by a
chromosome loss and a gene loss respectively. The probabil-
ity Pr{M |T}Pr{T |θ} has a contribution of f2,2pc− from the
chromosome loss and f2,2pg− for the gene loss. (b) State (1,1)
is descended from (2,1) by a chromosome loss and (2,1) from
(2,2) by a gene loss. Pr{M |T}Pr{T |θ} has a contribution of
f2,2pg− from the gene loss as in (a) and a contribution of
f2,1pc− from the chromosome loss.

2.3. Optimal Tree Inference

Given the input M and a current set of parameters

θ, we construct a directed graph G = (V, E), where

V is the set of observed states, and E is the set of

all possible single mutation events that connect two

states in V . If there exist states in G that are not

reachable from the root, we add Steiner nodes to G

using a heuristic method presented as Algorithm 2.1.

Once we have ensured that every node of G

is reachable, we add a weight function w(v, u) =

fvp(u,v) to G and compute an optimal phylogenetic

tree for the given patient using a classic algorithm

for finding minimum weight arborescences (directed
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minimum spanning trees) due to Chu and Liu.2 Chu

and Liu’s algorithm is similar to Prim’s greedy algo-

rithm for undirected spanning trees12 but with some

additional complications to handle directed cycles.

We specifically define the (2, 2) state to be the root

of the tree, which is part of the input to the ar-

borescence algorithm. This algorithm is used after

parameter inference to find the best-fit trees and is

also used as a subroutine of the parameter inference

method to initialize the Markov chain sampling for

each patient on each EM round. A summary of our

method for single-patient phylogeny inference is pro-

vided as Algorithm 2.2.

Algorithm 2.1 Heuristic algorithm for Steiner node

inference
1: Given G = (V, E). Let G′ = (V ′, E′) be a di-

rected graph containing all possible states and

edges, and let R ⊆ V be the set of vertices of G

reachable from the root.

2: while R 6= V do

3: Perform a breadth-first traversal of G′ start-

ing from R and stopping when we encounter a

vertex v ∈ V − R. Let k be the distance from

R to v (the length of the path found by BFS).

4: Consider all nodes in V −R at distance k from

R, and let v∗ be the one from which we can

reach the most nodes in V − R (the largest

island).

5: Solve the multiple source shortest path prob-

lem from R to v∗ in G′, where the weight of

an edge e ∈ E′ is equal to − log pe (minus the

log of its probability).

6: Add the nodes and edges on the shortest path

from V to v∗ in G.

7: end while

2.4. Parameter Inference

We estimate the parameter set θ by EM. We treat

the tree topology T as a set of latent variables

corresponding to the presence or absence of each

tree edge. In the expectation phase, we find the

expectation of each of these latent variables by

enumerating over possible trees T consistent with

the output, weighted by the conditional probability

Pr{M |T}Pr{T |θ} = Pr{M, T |θ}. This expectation

is evaluated by a Markov chain Monte Carlo method,

in which states correspond to the possible trees and

their stationary distributions are set to be propor-

tional to Pr{M |T}Pr{T |θ}. The frequency of occur-

rence of each possible tree edge in the Markov chain

thus gives the expected value of the latent variable

corresponding to that edge.

Algorithm 2.2 Procedure for tree inference from a

matrix of cell counts S
1: Convert the FISH matrix for an individual pa-

tient into a graph G.

2: Add all edges to G allowed by the connectivity

model of section 2.2, each weighted as minus the

log of its probability.

3: Apply Algorithm 2.1 to add Steiner nodes until

G is connected.

4: Find a minimum-cost arborescence on G by the

method of Chu and Liu.2

In the maximization phase, these edge expecta-

tions are used to determine maximum-likelihood es-

timates of the parameters for the next EM round.

This estimation is accomplished by counting the ex-

pected occurrences of each of the four edge types,

summed over all potential tree edges of that type.

We initialize the method by assuming each of the

four parameters is 0.25. We then construct an ini-

tial tree for each patient by running Algorithm 2.2

to provide a starting state for the Monte Carlo itera-

tion. We then perform successive Monte Carlo steps

as follows:

(1) Pick a node u from the tree uniformly at random

from all nodes other than the root.

(2) For each possible parent v of u excluding cur-

rent descendants of u, compute an edge weight

w(v, u) = fvp(v,u), where fv is v’s node frequency

and p(v,u) is the prior probability of the edge type

from v to u. Note that v might be u’s current

parent.

(3) Pick some v among all possible parents with

probability pv = w(v, u)/
∑

x w(x, u).

(4) Delete the edge from u’s current parent to u and

replace it with an edge from v to u.

Repeatedly applying this move creates a Markov

model we call H .

Note that this move set cannot produce a cycle
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in the graph because, when selecting a new parent v

of u, the move set specifically prohibits the selection

of any v that is a current descendant of u. This guar-

antees v is not reachable by any directed path from

u. The newly added edge (v, u) thus cannot create

any directed cycle.

We can further show that H samples among all

possible trees according to their relative probabili-

ties as defined in our probability model. This result

is established by the following theorem:

Theorem 2.1. For any two trees S and T and any

input data set M , the ratio of the stationary proba-

bilities πS

πT
in M will be equal to

Pr{M |S}Pr{S|θ}
Pr{M |T}Pr{T |θ} .

Proof. Each non-root node has exactly one parent,

so a tree T is completely defined by its list of parent

assignments pT : V → V , where pT (v) is the parent

of V in T . H is ergodic, since we can reach any tree

T from any tree S by reassigning parents in S to

match those in T in breadth-first order of the nodes

in T . Any cycle from tree T returning to itself will

contain some (possible empty) sequence of changes

to the parent of V : pT (u), u1, u2, . . . , uk, pT (u).

These changes will contribute a factor of

w(u1, v)w(u2, v) · · ·w(uk, v)w(pT (v), v)/W k+1

for some W to the probability of travers-

ing the cycle. The probability of travers-

ing the cycle in the opposite direction is

w(uk, v)w(uk−1, v) · · ·w(u1, v)w(pT (v), v)/W k+1,

i.e. the same value. Counting contributions for all

v ∈ V , this establishes by the Kolmogorov criterion

that H converges on a unique stationary distribution

obeying detailed balance. It then suffices to show

that for any two neighboring trees T1 and T2 that

the ratio of their transition probabilities
pT1→T2

pT2→T1

is

equal to Pr{M |T2}Pr{T2|θ}
Pr{M |T1}Pr{T1|θ}

. The fact that they are

neighbors means that they differ by a single parent

assignment, u1 versus u2, of a node v.

pT1→T2

pT2→T1

=
w(u2, v)/W

w(u1, v)/W

=
w(u2, v)

w(u1, v)

=
Pr{M |T2}Pr{T2|θ}

Pr{M |T1}Pr{T1|θ}

In order to establish that the Markov chain is

adequately sampling states, we also need to show

it is rapidly mixing. If we define PS(t, T ) to be

the probability of encountering tree T at step t

from starting tree S then we can do this by show-

ing there is some t0 polynomial in n for which we

have a small variation distance between PS(t0, T )

and the stationary distribution Π, where we follow

Jerrum and Sinclair8 in defining variation distance

as ∆t = 1
2

∑
T |PS(t0, T )−πT |. We establish this by

the following theorem:

Theorem 2.2. The Markov chain H initialized with

some state S reaches variation distance ε from Π in

time O(nφ(ln ε−1 + ln π−1
S )) where n is the number

of distinct cell states and φ is the maximum ratio of

any two probabilities from θ = {pc−, pc+, pg−, pg+}.

Proof. We can prove rapid mixing using the canon-

ical path method,21 in which we define a path γU,V

between any two states U and V . Space does not

permit a detailed tutorial on the method, so we pro-

vide only the details specific to our problem here and

refer the interested reader to Jerrum and Sinclair8

for an excellent tutorial on the method. We estab-

lish a canonical path between any tree S and tree T

in which we convert parents of nodes in S to their

parents in T according to the breadth-first order of

those nodes in T . Suppose we examine a step on the

canonical path from S to T transitioning from some

S∗ to T ∗, in which we change the parent of some

node v from uS to uT . Then the other canonical

paths using that transition will be those between

any S′ and T ′ for which S′ and T ′ have the same

parents as T for nodes before v in breadth-first or-

der and the same parents as S for nodes after v,

pS′(v) = pS(v), and pT ′(v) = pT (v). The canonical

path method depends on bounding a quantity called

the edge loading, defined for a transition e = (S∗, T ∗)

as (πT∗pT∗,S∗)−1
∑

S′,T ′s.t.e3γS∗,T∗
πS′πT ′ |γS′,T ′ |.

∑
S′,T ′ πS′πT ′ ≤ πT pS∗,T∗ and |γS′,T ′ | ≤

n, so edge loading for H is bounded by

(πT∗pT∗,S∗)−1(nπT∗pS∗,T∗), which is itself bounded

by nφ. This establishes the mixing time bound of

nφ(ln ε−1 + ln π−1
S ).

To ensure adequate mixing, we apply the Monte

Carlo move 100n3 times per patient counting edge

types every 10n2 moves. The fraction of edges as-

signed to each type provides a maximum likelihood
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estimate of that edge type’s probability for the next

EM round. We repeat the above steps until all pa-

rameters converge with an error of less than one per-

cent. We perform two versions of this inference: a

global inference, in which we establish the four edge

type probabilities for the whole population by pool-

ing edge counts across all patients on each EM round,

and a per-patient inference, in which we establish dis-

tinct parameters for each patient by performing the

complete EM algorithm on each patient individually.

2.5. Identifying a Global Consensus

Network

A final stage of analysis is performed with the EM-

inferred parameters to find a best-fit tree for each

patient and a global consensus network for the entire

population. We first fit a phylogeny to each patient

using Algorithm 2.1. We then find a global consensus

network by identifying all pathways used in at least

some fraction t of all patients. Given the per-patient

trees T1, . . . , Tn, we can identify consensus pathways

by searching depth-first through each tree individ-

ually and then, for each node, counting how many

other trees have the same node and exhibit the same

pathway from that node to the root. Those path-

ways occurring in a t fraction of trees are added to

the global consensus network. For the present study,

t=5%. Note that this consensus network need not

itself be a tree, since a node may be reachable by

more than one common pathway in different individ-

ual trees.

3. RESULTS AND ANALYSIS

3.1. Data

We applied our phylogeny inference methods to two

data sets collected for a previous study on hu-

man breast cancer progression7 using a protocol for

FISH-based analysis of gene and chromosome copy

numbers.17 One data set consists of Her-2/neu gene

copy numbers and chromosome 17 copy numbers as-

sayed in cells from 118 individuals, with an average

of 63 cell assays per patient. The second consists of

p53 and chromosome 17 copy numbers assayed in 113

individuals with an average of 68 assays per patient.

These two data sets were chosen for the present study

in part because of the importance of both genes in

breast cancer progression. Her-2/neu amplification

promotes cell proliferation and is associated with a

class of breast cancers15, 24. p53 is a crucial tumor

suppressor gene whose loss or inactivation is impli-

cated in approximately half of all human cancers.18

Furthermore, the fact that both genes occupy chro-

mosome 17 provides some means for validation of the

method, as inferred patterns of chromosome gain and

loss should be the same in both datasets.

3.2. Global Consensus Trees

We first performed a single consensus inference, fit-

ting one set of prior probabilities to each of the

full data sets. Table 1 shows the inferred probabili-

ties from the two data sets. Both show similar fre-

quencies of chromosome duplication and loss, with

slightly higher rates of loss than duplication. p53

and Her-2 show very different patterns of gene gain

and loss, though. Her-2 shows a notable preference

for gene gain over loss, consistent with the fact that

Her-2 amplification characterizes a subset of breast

cancers.15, 24 p53, on the other hand, shows a slight

excess of gene loss over gain, consistent with the fact

that p53 is implicated in cancers through loss of func-

tion, rather than amplification.

Table 1. Global consensus probabilities in-
ferred for chromosome duplication (pc+), chro-
mosome loss (pc−), gene gain (pg+), and gene
loss (pg−).

pc+ pc− pg+ pg−

Her-2/neu 0.268 0.282 0.319 0.131
p53 0.274 0.290 0.198 0.238

Figure 3(a) shows a consensus phylogenetic net-

work for Her-2/neu and chromosome 17. Two dom-

inant edges project from the root, one correspond-

ing to chromosome duplication and the other to gene

gain, with lesser amounts of chromosome and gene

loss. The two dominant edges lead to two prominent

pathways in the graph. One pathway exhibits succes-

sive gene gains without changes in chromosome copy

number while the other shows a pattern of alternat-

ing chromosome duplication and loss. There is sup-

port in the literature for both of these pathways. A

large fraction of breast cancers exhibit diploidy with

substantial amplification of Her-2/neu,10, 24 consis-
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tent with the pure gene gain pathway. The alternat-

ing pattern of chromosome duplication and loss has

also previously been predicted based on mathemati-

cal models and is supported by evidence from several

classes of solid tumors.16 We further note, however,

that these two pathways are not rigidly separated,

but rather exhibit some ability to interconvert. Gene

gain or loss events occasionally branch off of the chro-

mosome gain/loss pathway and chromosome abnor-

malities occasionally appear off of the gene amplifica-

tion pathway. This observation is, to our knowledge,

novel. Examination of individual phylogenies (data

not shown) suggests that individual patients may fol-

low one or the other of these two dominant pathways

exclusively or may combine the two.

Figure 3(b) shows the consensus phylogenetic

network inferred for p53. Like the Her-2/neu net-

work, the p53 one shows one prominent pathway

exhibiting alternating chromosome duplication and

loss. It is to be expected that the same chromosome

patterns would be observed, as p53 and Her-2/neu

are found on the same chromosome, and this finding

thus validates the data and the analysis methods.

Gene gain and loss is much less prominent for p53

than it was for Her-2/neu, however. Some gene gain

and loss does occur, but it is comparatively rare and

does not produce any long chains of successive am-

plifications, as is seen with Her-2/neu. Patterns of

p53 gain and loss are likely to be difficult to inter-

pret directly from copy number data, as they may

involve partial inactivation of the gene rather than

total loss.18 p53 is, however, a tumor suppressor, so

we would not expect to see a prominent p53 ampli-

fication pathway in cancers.
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Fig. 3. Consensus networks inferred from pathways found
in at least 5% of patients. Nodes represent cell states with
chromosome and gene counts in parentheses and frequency of
the state as a percentage of observed cells. Black dashed edges
denote gene events and gray solid edges chromosome events.
Edge label and thickness indicates the number of patients ex-
hibiting the given edge. (a) Her-2/neu and chromosome 17
network. (b) p53 and chromosome 17 network.
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3.3. Heterogeneity Between Patients
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Fig. 4. Visual representation of the space of inferred prior
probability parameters from per-patient data. Each image
shows data points for the four inferred probability parameters
on individual patients. pc− (chromosome loss) and pc+ (chro-
mosome duplication) determine as the x and y positions of the
points. pg− (gene loss) determines point size, with point size
proportional to 1 + 10pg−. pg+ determines the color of the
point, ranging from black for pg+ = 0 to white for pg+ = 1.
Point positions are perturbed by a random factor up to 0.025
in x and y dimensions in order to make points with the same
positions visible as distinct entities. (a) Parameters for Her-
2/neu. (b) Parameters for p53.

While the global analysis gives us a reasonable

best estimate of the overall frequencies of each of the

possible genetic abnormalities, it is also useful to as-

sess differences between patients. Figure 4 provides

a graphical display of edge-type distributions derived

by performing the EM inference one patient at a time

instead of globally.

Figure 4(a) shows parameters for Her-2/neu and

chromosome 17. A substantial fraction of points clus-

ter on the axes and especially at the origin, corre-

sponding to tumors that exhibit no chromosome loss,

no chromosome duplication, or no loss and no dupli-

cation; these tumors cover a spectrum of gene gain

and gene loss probabilities. Many points exhibit no

gene loss (appearing as small squares in the figure)

and these are scattered throughout the graph. A

relatively small number of points exhibit almost ex-

clusively chromosome events. A substantial fraction

of all points lie in the middle of the plot, exhibit-

ing some balance of all four event types. These ob-

servations are consistent with what was seen in the

consensus phylogenies, suggesting that a large frac-

tion of patients use both the gene and chromosome

amplifying pathways, with other groups exhibiting

exclusively one pattern or the other.

Figure 4(b) shows parameters for p53 and chro-

mosome 17. The plot is superficially similar to

that of Her-2/neu but with some notable differences.

First, pure gene gain or gene loss in the absence of

the other is comparatively rare for p53. Of those

points on the axes or origin, though, a comparatively

greater portion of them show up as having high gene

loss and low gene gain (large black squares) as op-

posed to high gene gain and low gene loss (small

white squares). This again appears consistent with

the fact that p53 amplification is not associated with

breast cancer, while Her-2/neu amplification is.

4. DISCUSSION

We have developed a novel computational method

using phylogeny reconstruction algorithms to infer

tumor progression pathways from cell-by-cell assays.

The method allows us to produce likely progression

trees for individual patients and to identify com-

mon progression pathways across distinct patients.

Application to a set of FISH data on two known

cancer-related genes gathered from breast cancer tu-

mors validates the method by recapitulating several

previously identified properties of these genes and

their role in breast cancer. It further provides novel

insights into the progression mechanisms acting in

these tumors.

This work may have several important conse-
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quences for cancer biology in general and in the

specific types studied here. Her-2/neu amplifying

tumors show two dominant pathways, chromosome

amplifying and gene amplifying, which is consis-

tent with prior knowledge. Our study also reveals,

though, that these pathways can work in concert in

individual patients. Approaches to cancer sub-type

identification based on clustering of tissue-averaged

measurements would not generally be able to rec-

ognize that these hybrid tumors are in fact using

combinations of two fundamental pathways and may

require therapeutics directed at both. This prob-

lem may be particularly significant for the classi-

fication of Her-2/neu tumors because current clini-

cal standards for detecting Her-2/neu amplification

and prescribing anti-Her-2/neu therapy use a proto-

col tuned for diploid cells and normalized by chro-

mosome counts;27 the protocol would be expected to

be less sensitive to Her-2/neu amplification in aneu-

ploid cells and thus potentially to fail to recommend

anti-Her-2/neu therapy to patients whose tumors are

genuinely Her-2/neu amplifying but are also aneu-

ploid. We can anticipate that similar issues will arise

with other tumor types as more targeted therapies

become available. Accurate inference of progression

pathways within tumors is thus likely to be a key

step in developing a more rational approach to the

targeted treatment of cancers.

There are several future directions to be explored

in this work. One current limitation is that it looks

at only a small number of measurements per cell si-

multaneously (one gene and one chromosome in the

present work). The nature of the assay precludes

much improvement in the experimental data, but

computational inferences could in principle correlate

states across different sets of copy data. For ex-

ample, one might infer which Her-2/chromosome 17

states and which p53/chromosome 17 states overlap

to produce likely Her-2/p53/chromosome 17 phylo-

genies. There are also other kinds of single-cell cy-

tometry data to which this method could be applied,

such as single-cell protein expression data. Finally,

there are many avenues for advancement in develop-

ing more realistic models of the tumorigenesis pro-

cess and more sophisticated phylogeny algorithms for

the core inference and sampling steps, for example

to deal more robustly with the inference of Steiner

nodes.
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