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The molecular networks regulating basic physiological processes in a cell are generally converted into rate equations

assuming the number of biochemical molecules as deterministic variables. At steady state these rate equations gives
a set of differential equations that are solved using numerical methods. However, the stochastic cellular environment
motivates us to propose a mathematical framework for analyzing such biochemical molecular networks. The stochastic
simulators that solve a system of differential equations includes this stochasticity in the model, but suffer from
simulation stiffness and require huge computational overheads. This paper describes a new markov chain based model
to simulate such complex biological systems with reduced computation and memory overheads. The central idea is to
transform the continuous domain chemical master equation (CME) based method into a discrete domain of molecular
states with corresponding state transition probabilities and times. Our methodology allows the basic optimization
schemes devised for the CME and can also be extended to reduce the computational and memory overheads appreciably
at the cost of accuracy. The simulation results for the standard Enzyme-Kinetics and Transcriptional Regulatory
systems show promising correspondence with the CME based methods and point to the efficacy of our scheme.

1. INTRODUCTION

The research challenge of today is to develop a com-

prehensive modeling framework integrating molecu-

lar, genetic and pathway data for a quantitative un-

derstanding of physiology and behavior of biological

processes at multiple scales. The complexity of the

biological process at molecular level is enormous due

to the vast number of molecular state spaces pos-

sible in a cell and the large number of state tran-

sitions. Computational cell biology currently mod-

els the biological system as an aggregate functional

state where the underlying molecular transitions are

not captured. Hence, these models can only provide

understanding for some specific problems at a func-

tional level but not at the molecular dynamics level.

Spatio-temporal models capturing the temporal

and spatial dynamics of biological processes 1, 2 at a

molecular level can be classified as follows:

(1) mesoscale dynamics,

(2) cellular/organ-level stochastic simulation

(3) rule based model

Existing quantum mechanics and molecular dy-

namics based models are limited in scope, as they

cannot handle the complexity of an entire cell or

a complex pathway. The former captures the ran-

dom environment of the cell at electron level and is

very useful to understand the structure of the macro-

molecules but can only handle about 1000 atoms.

The molecular mechanics model uses force field

methods to understand the function of the macro-

molecules. This model is used to study the bind-

ing site configurations for protein-protein or protein-

DNA interactions and protein folding. Currently it

can handle about 1 million atoms and hence is not

sufficient to model a cell or complex pathways.

The models for mesoscale dynamics, and

cellular/organ-level stochastic simulation focus on

a narrow range of biological components such as

the wave model 1 for ventricular fibrillation in hu-

man heart, neural network signaling model 2 to

control the onset of sleep in humans, and simula-

tion frameworks like E-Cell 4 and Virtual Cell 3.

Mesoscale dynamics deal with rate equation based

kinetic models and uses continuous time determinis-

tic techniques. This model solves a complex set of

differential equations corresponding to chemical re-

actions of the pathways. Since a biological system

involves a large number of such equations, the model

can only solve a system of at most 1000 reactions.

To address the observed stochasticity in a biolog-

ical system 11, 12 Gillespie 5 extended the rate based

model to a stochastic simulation framework. This

led to a few other variations such as Kitano’s Cell

Designer 10, DARPA’s BioSpice 9, Cell Illustrator 8

etc. The computational overhead of this simulation
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forced the use of approximation techniques to solve

the rate equations by sacrificing accuracy e.g. the

Tau Leap algorithm 6, 7. Gillespie’s technique con-

siders the biochemical system as a discrete Markov

process but suffers from the following limitation:

• It assumes that a biological system only con-

sists of different biochemical reactions. Hence,

each reaction event is abstracted by the exper-

imentally determined rate constant and cannot

incorporate the pertinent details of that biologi-

cal event. For example, ideally a protein-ligand

docking event should incorporate some details of

the protein/ligand docking site location which is

considered by our protein-ligand docking model

presented in 24. Because our models presented

in 25, 23, 24 are parametric, we can easily esti-

mate the kinetic parameters even in cases where

such experimental data are not available.

Due to the large number of protein complexes in

a cell, these stochastic simulation models lead to

a combinatorial explosion in the number of reac-

tions, thus making them unmanageable for complex

metabolic and signaling pathway problems. The sim-

ulation model we propose here builds on the Gille-

spie technique and allows for many novel approxima-

tion techniques which cannot be implemented in the

Gillespie simulation. Moreover, the flexibility of us-

ing different mathematical abstractions for different

biological events make our technique more attractive

than the π-calculus 31, 32 modeling technique.

Finally, the rule based simulation 13 models

the multi cell interactions at a molecular level and

addresses the more complex host-pathogen interac-

tions. It ignores the stochastic nature of biological

functions and considers a set of rules derived from

pathways. In this paper, we convert the biological

process into a stochastic network and solve it as a

stochastic network analysis problem. Stochastic dis-

crete event simulation is another way of addressing

this problem as we have described in 22.

2. STOCHASTIC BIOCHEMICAL

SYSTEM ANALYSIS

In a stochastic biochemical system, the state of the

system at any time is defined by the number of

molecules of each type. The transition from one state

to another is derived from the probability of the reac-

tions at the current state and the resulting next state

is the new molecular state. As the molecular reac-

tions in a biological process occur due to the random

collision of the molecules, the state transition param-

eters are random and the state space is discrete. Let

us assume in a stochastic biochemical system there

are M elementary (monomolecular or bimolecular) ir-

reversible reaction channels, which react at random

times. A monomolecular reaction converts a reactant

molecule into one or more product molecules. A bi-

molecular reaction converts two reactant molecules

into one or more product molecules. We can decom-

pose a reaction channel that involves more than two

reactant molecules into a cascade of elementary reac-

tion channels and model a reversible reaction channel

by two irreversible reaction channels. The state of a

stochastic biochemical system at time t is character-

ized by the M -dimensional random vector

Z(t) = [Z1(t)Z2(t)...ZM (t)]T

where Zm(t) = z, if the mth reaction has occurred

z times during the time interval [0, t) and T denotes

vector or matrix transposition. The random variable

Zm(t) is referred to as the degree of advancement

(DA) of the mth reaction 14. Also Xn(t) denotes the

number of molecules of the nth reactant or product

species present in the system at time t. By assuming

N distinct species, we have

X(t) = [X1(t)X2(t)...XN (t)]T

Given that the biochemical system is at state X(t) =

x at time t, let qm(x) be the number of all possi-

ble distinct combinations of the reactant molecules

associated with the mth reaction channel when the

system is at state x. Note that

qm(x) =




xi, for monomolecular reactions
xi(xi − 1)/2, for bimolecular reactions

with identical reactants
xixj , for bimolecular reactions

with different reactants




for some 1 ≤ i, j ≤ N, i �= j. Moreover, let cm > 0 be

the probability per unit time that a randomly chosen

combination of reactant molecules will react through

the mth reaction channel. This probability is known

as the specific probability rate constant of the mth

reaction. Then, the probability that one mth reac-

tion will occur during a time interval [t, t + dt) will

approximately be equal to πm(x)dt, for a sufficiently

small dt, where

πm(x) = cmqm(x), m ∈ M = {1, 2, ..., M},
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is known as the propensity function of the mth re-

action channel 15, 16. Note that, given the state z(t)

of the biochemical system at time t, we can uniquely

determine the state x(t) of the system at time t as

Xn(t) = gn(Z(t)) = x0,n +
∑

m∈M

snmZm(t), t ≥ 0,

(1)

where x0,n is the initial number of molecules of the

nth species present in the cell at time t = 0 and

snm is the stoichiometric coefficient. This coefficient

quantifies the change in the number of molecules of

the nth molecular species caused by one occurrence

of the mth reaction. The state z(t) cannot be de-

termined from x(t) in general since there might be

several states z(t) that lead to the same state x(t).

To distinguish Z(t) from X(t), all existing works on

stochastic simulation refer to Z(t) as the hidden state

and to X(t) as the observable state and use a hidden

markov model to analyze the system.

The discrete-valued random process

Z = {Z(t), t ≥ 0}

characterizes the dynamic evolution of the hidden

state of a biochemical system. This process is speci-

fied by the probability mass function (PMF)

Pz(z; t) = Pr[Z(t) = z|Z(0) = 0],

for every t ≥ 0. Simple probabilistic arguments show
that Pz(z; t) satisfies the following first-order differ-
ential equation 17:

∂Pz(z; t)

∂t
=

∑
m∈M

αm(z − em)Pz(z − em; t) − αm(z)Pz(z; t),

for t > 0, with initial condition Pz(0; 0) = 1, where

em is the mth column of the M ×M identity matrix

and

αm(z) = πm(g(z)) = cmqm(g(z)),

g(z) = [g1(z)g2(z)...gN (z)]T

This is the well-known forward Kolmogorov differ-

ential equation 18–20 governing the stochastic evo-

lution of a continuous-time Markov chain. In com-

putational biochemistry, Eqn. 1 is referred to as the

chemical master equation (CME) 14. It turns out

that Z is a multivariate birth process 18, 20 and X is

a multivariate birth-death process.

3. OUR MARKOV CHAIN FORMULATION

We replace the hidden markov model by a Markov

Chain based approach to model a composite bio-

chemical system. Note that the system only repre-

sents biochemical reactions or protein-ligand docking

events in the cell. Thus in the Markov Chain, each

state transition occurs due to one reaction/docking

event. If multiple reaction/docking events are possi-

ble, then the state transitions can occur due to any

one of these events and hence we can have multiple

transition paths to the next state. The states in the

Markov Chain are defined as the number of molecules

of the different components in the biological system,

i.e., X(t) = [X1(t), X2(t), ..., XN (t)]. For example,

consider the following biochemical system:

R1 : X1 + X2 −→ X3; R2 : X2 + X4 −→ X5

where, X1, X2, X4 are proteins and X3, X5 denote

the docked complexes. Then each state in the

Markov Chain will have 5 tuples corresponding to

the number of molecules of these 5 components.

The corresponding Markov Chain with the possible

state transitions is shown in Fig 1. Note that each

transition signifies either an R1 or an R2 type of

event. Thus, the total number of edges coming out

of each node is given by the possible number of re-

action/docking events (and equivalently the number

of differential equations) considered in the system.

3.1. The MFPT concept

Assuming first order kinetics, the probability that a

particle has reached the final state at some time t

is given by Pf (t) = 1 − e−kt, where k is the rate,

and Pf (t) is the probability of reaching a final state

by time t. By running many independent simula-

tions shorter than 1/k, we can estimate the cumula-

tive distribution Pf (t), and fit the value for the rate,

k. The mean first passage time is the average time

when a particle reaches the final state for the first

time, given that it is in an initial state at t = 0,

MFPT =

∫
∞

t=0

(
d

dt
Pf (t))t dt =

∫
∞

t=0

kte−ktdt =
1

k

3.2. Computing the state transition

probabilities and times

Note that computing the MFPT requires an esti-

mate of each state transition probability along with

the time taken for the transition. Because, each
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Fig. 1. Markov Chain formulation with 3 molecules each of
X1, X2, X4 and no X3, X5 molecules initially.
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Fig. 2. A simple birth-death model for reversible reac-
tions.

state transition signifies either a reaction or dock-

ing, we can find the state transition probabilities and

times from the batch models of the reaction 23, 25

and docking 24 events using concepts from collision

theory. The batch model incorporates the number of

molecules of each reactant present before the start of

the reaction/docking events. This makes each state

transition depend upon the current state that the

system is in. Note that the batch model estimates

the time of reaction/docking as a random variable

following a Gamma distribution when few reactant

molecules are present in the system. However, as the

number of reactant molecules increase, the mean-to-

standard deviation ratio for time becomes close to

1 signifying an exponential distribution. Also, note

that 24 reports that the docking time is primarily

affected by the collision theory component. Hence

the batch models of 23, 25 are also applicable to the

docking events.

3.2.1. Monomolecular reactions

The time taken for monomolecular reactions can

be simply computed from the experimentally deter-

mined reaction rate constant for the reaction. Denot-

ing the reaction rate constant by kR3
, the probability

of reactions of type R3 (denoted by PR3
) is given by:

R3 : X6 → X7 + X8; PR3
= [X6]kR3

τ

where [X6] denotes the concentration of X6 type of

molecules and τ denotes a infinitely small time step

(generally in the order of ∼ 10−8 secs). Note that

this definition of the monomolecular reaction prob-

ability is exactly the same as that used for solving

the CME and can be defined as the probability of a

reaction of type R3 occurring in time τ .

Time taken for completing R3 (denoted by TR3
)

can be estimated from the rate constant as follows:

TR3
=

1

[X6]kR3

In 23, 25 we have shown that the reaction time is

a random variable following an exponential distribu-

tion when there are sufficient number of molecules in

the system. Hence, we assume that the monomolec-

ular reaction completion time also follows an expo-

nential distribution with mean TR3
.

3.2.2. Bimolecular reactions

We use the batch model developed in 25 for comput-

ing the probability of reaction and first and second

moments of the reaction completion times. Consid-

ering reaction R1, the probability and time can be

estimated as:

PR1
=

n1n2r
2
12τ

V

√
8πkBT

m12
e

−EA12
kBT ; TR1

=
τ

pR1

where, n1, n2 are the numbers of X1 and X2 type

molecules present in the cell, r12 is the collision ra-

dius computed as the sum of the radii of X1 and

X2 molecules (which are assumed to be spherical),

m12 is the reduced mass computed as m12 = m1m2

m1+m2

(where m1, m2 are the masses in gm of X1 and X2

type molecules), V is the cell volume, T is the tem-

perature (in Kelvin), kB is the Boltzmann’s constant

= 1.381 × 10−23kg m2/s2/K/molecule and EA12 is

the activation energy required for reaction R1. TR1

denotes the mean of the reaction completion time

which is assumed to follow an exponential distribu-

tion. Note that the Gillespie simulator also considers

the reaction time to be a random variable following

the exponential distribution.
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In 23, we have shown that the mean of the reac-

tion time (TR1
) is actually equal to the time reported

by the rate equation based model. Hence, denoting

the rate of reaction R1 by kR1
, we have:

TR1
=

1

n1n2kR1

Hence the probability of reaction can also be com-

puted if one does not know the activation energy for

any specific reaction but the rate constant is known.

As before, reactions involving multiple copies of

any molecule type can be represented by a cascade

of elementary reactions of the above types.

3.2.3. Reversible Reactions

The Gillespie simulator considers reversible reactions

as two separate reactions. This increases the com-

plexity of the system as more number of reactions

need to be handled. Also, in our Markov Chain based

model, a reversible reaction will involve a double edge

between any two nodes making the MFPT computa-

tions difficult. Hence we can approximately charac-

terize reversible reactions using a simple birth-death

model as shown in Fig 2.

Let us denote the forward and backward tran-

sition probabilities between any two states Si and

Sj by a and b respectively. We need to compute

the effective probability that the reaction proceeds

in the forward direction denoted by Peff such that

the double edge can be replaced by a single edge

driving the reaction in the forward direction with

probability Peff . However, the time for the forward

reaction still remains the same and can be computed

as above. The computation of Peff will be different

for the monomolecular and bimolecular reaction sce-

narios. In general, Peff can be expressed by:

Peff = P (Si) × a − P (Sj) × b

where, P (Si) and P (Sj) are the probabilities of being

in states Si and Sj respectively. However, P (Si) and

P (Sj) does not simply depend on a and b, but also

on the transition probabilities of edges into and out

of nodes Si and Sj making the Peff estimation quite

complicated. In the following, we show two approxi-

mate schemes of computing Peff for monomolecular

and bimolecular reactions.

Monomolecular reactions: Consider reversible

reactions of type R1, i.e., X1 + X2 ↔ X3. In this

case, the probabilities of forward and backward re-

actions (a and b) can be computed as discussed be-

fore. We approximate Peff as Peff = a − b in such

cases. Note that this approximation assumes that

P (Si) ≈ P (Sj) for all the reversible reactions in the

system. While this indeed is a gross simplification of

the reversible reaction kinetics, the results obtained

show that it is not overly restrictive. Moreover, when

a ≈ b, we assume that the reversible reaction attains

equilibrium and make node Si a sink i.e., no further

state transitions can originate from this node.

Bimolecular reactions: Consider reversible reac-

tions of type R4 as follows:

R4 : X9 + X10 ↔ X11 + X12

Here also we can use the above approximation of

P (Si) ≈ P (Sj) and compute Peff = a − b.

3.3. Pruning the Markov Chain

As mentioned before, we will estimate the time taken

to reach any node in the markov chain by using the

MFPT. Hence, we consider each node in the chain

as a sink to compute its MFPT. Also, it has to be

ensured that every node in the Markov Chain is able

to reach the sink. Otherwise, since these nodes will

have an infinite mean first passage time, calculations

done on the Markov Chain will fail. We identify the

nodes that can reach the sink by performing a depth

first search from the sink over the incoming edges,

and marking all nodes that are reachable. The nodes

that were not marked can be simply deleted, thus en-

suring that all nodes in the Markov Chain can reach

a node in the final state. Next, we normalize the

probabilities on all the edges so that on each node,

the sum of the probabilities for all outgoing edges is

one as follows:

Pnew
ij =

Pij∑
edgek

Pik

The probability on each edge equals the number of

times that transition was made divided by the total

number of transitions from that node.

3.4. Computing the total probability of

reaching a final state

The Markov Chain consists of a set of nodes and a

set of transitions or edges between these nodes. Each

edge has a probability associated with it as well as
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the time taken to traverse this edge. We define the

Psink of a node as the probability that the system

starting in the initial state would reach the sink state

before reaching the initial state again. Following 21

we will use the Markov Chain to calculate the Psink

values. The Psink can be defined conditionally based

on the first transition made from the node as follows:

Psink(nodei) =
∑

transition(i,j)

P (transition(i, j))

×Psink(nodei|transition(i, j))

where the sum is over all possible transitions (that

are mutually exclusive) from nodei. The possi-

ble transitions from nodei are simply all of the

edges leading from nodei, and the probability of

each of these transitions is the Pij values de-

fined previously. This satisfies the above condition.

Psink(nodei|transition(i, j)) is simply the Psink of

nodej which results in the following equations:

Psink(nodei) =
∑

edgeij

PijPsink(nodej),

Psink(nodei) = 1, nodei ∈ sink,

Psink(nodei) = 0, nodei ∈ source

Thus the probability of reaching any node in the

chain can be estimated by a simple recursive pro-

cedure that traverses the chain. Note that in the

worst case, the chain becomes a tree, where each

node can traverse to M different new nodes (M be-

ing the number of reactions considered). Hence the

worst case time complexity of traversing the chain is

O(V + E) ≈ O(E), where V, E are the number of

vertices and edges of the chain. This is because the

number of edges is generally greater than the num-

ber of vertices in the chain. In the worst case we

might have a tree where E = V − 1. Also, as the

probability has to be computed for each node in the

chain, we have an overall complexity of O(V E).

3.5. Computing the MFPT for reaching the

final state

We define the mean first passage time (MFPT) of any

node in the chain as the average time taken to reach

that node (considered the sink) from the first node in

the chain. The MFPT is defined conditionally based

on the first transition made from any node:

MFPT (nodei) =
∑

transitionij

P (transition(i, j))

×MFPT (nodei|transition(i, j))

where the sum is over all possible transitions from

nodei. The MFPT of nodei given that a transition

to nodej was made, is the time taken to go from

nodei to nodej added to the MFPT from nodej :

MFPT (nodei) =
∑

edgeij

Pij(timeij + MFPT (nodej))

(2)

where the sum is over all edges leading from nodei.

Also, we can define the initial conditions as follows:

MFPT (nodei) = ∞, nodei /∈ sink

MFPT (nodei) = 0, nodei ∈ sink

Note that time is a random variable, and hence can-

not be added as shown in the equations above. Hence

we need to compute the convolution of exponential

distributions that has to replace a simple addition

of this random variable. Equivalently, it should be

understood that the MFPT is no longer fixed, but is

also a random variable.

We need general expressions for the following

two types of convolutions of exponential distribu-

tions:

(1) General expression for n + 1-fold convolution of

exponential variables from an n-fold convolution

for the (timeij + MFPT (nodei)) component of

Eqn 2:

fn = an
1 e−

x
T1 + an

2 e−
x

T2 + ... + an
ne−

x
Tn

fn+1 =
T1

T1 − Tn+1
an
1 e

−
x

T1 +
T2

T2 − Tn+1
an
2 e

−
x

T2

+... +
Tn

Tn − Tn+1
an

ne−
x

Tn − [
T1

T1 − Tn+1
an
1

+
T2

T2 − Tn+1
an
2 + ... +

Tn

Tn − Tn+1
]e

−
x

Tn+1

⇒ fn+1 = an+1
1 e−

x
T1 + an+1

2 e−
x

T2 + ...

+ an+1
n+1e

−
x

Tn+1

where, T1, T2, ..., Tn denote the means of the re-

action times of each edge of the n-fold convolu-

tion (convolution of the times for n edges gives

an n-fold convolution), and Tn+1 = timeij in the

(timeij + MFPT (nodei)) component of Eqn 2.

While the above expression gives the general dis-

tribution for the n + 1-fold convolution, the first

and second moments can also be generically ex-

pressed as follows:

First Moment = Fn+1 = an+1
1 (T1)

2 + an+1
2 (T2)

2

+ ... + an+1
n+1(Tn+1)

2
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Second Moment = Sn+1 = an+1
1 (T1)

3

+an+1
2 (T2)

3 + ... + an+1
n+1(Tn+1)

3

After a few manipulations it can be shown that

the first and second moments of this general dis-

tribution reduces to:

Fn+1 = T1 + T2 + ... + Tn+1;

Sn+1 = Sn + Tn+1(

n+1∑
i=1

Ti);

S1 = (T1)
2

(2) General expression for a convolution between an

n-fold convolution (fn) and an m-fold convolu-

tion (gm) for the (
∑

edgeij
) component of Eqn 2:

fn ⊗ gm =

m∑
j=1

n∑
i=1

an
i am

j (
e
−

x
Tn

i − e
−

x
T m

j

1
T m

j

− 1
T n

i

)

Note that the above expression contains m + n

terms in total and the first and second moments

of this general distribution can also be computed

in a similar manner as before.

Moreover, because of the simplified expression for

the first moment of the MFPT, we can use the same

expression as in Eqn 2 if one is only interested in the

mean value of the MFPT itself. In the next section

we report the results based on this mean value of the

MFPT distribution. However, it is also possible to

compute the exact MFPT distribution of each node

in the chain.

It should be noted that the above expressions

for the general distribution of the MFPT and cor-

responding first and second moments were derived

assuming Ti �= Tj, for all i, j. This will be true for

most cases as it is quite unlikely that the mean of the

reaction times are equal (because the mean also de-

pends on the concentration of the reactant molecules

and most states in the chain will have different con-

centrations of the particular reactants of the specific

reaction). However, in certain cases, the mean re-

action times might be equal and we need to add a

small δ to make them different such that the above

reactions remain valid. Consider a 2-fold convolution

of exponentially distributed random variables with

means T1 and T2. If T1 = T2, the general distribu-

tion takes the form xe
−

x
T1

T1
, and when T1 �= T2, it is of

the form (e
−

x
T1 −e

−

x
T2 )

T1−T2
. However, with δ = T1 − T2,

we can show that

lim
δ→0

(e−
x

T1 − e−
x

T2 )

T1 − T2
=

xe−
x

T1

T1

Hence, smaller the value of δ, the more precise are

the results obtained.

3.6. Approximating the Markov Chain:

Reducing complexity at the cost of

accuracy

In most cases, it is not possible to derive an ana-

lytical solution of the CME. The following approxi-

mation techniques have been proposed to reduce the

complexity of the CME:

(1) Langevin approximation (LA) 16: A useful ap-

proximation to the CME is obtained by assum-

ing that there exists a time step dt such that the

following two conditions are satisfied:

• Changes in the hidden system states that

occur during time interval [t, t + dt) do not

appreciably affect the propensity functions.

• The expected number of occurrences of each

reaction in a time interval [t, t+dt) is much

larger than one.

It can be shown that, under both conditions, the

dynamic evolution of the hidden state process is

governed by a simpler system of stochastic differ-

ential equations that can be solved by the Monte

Carlo estimates.

(2) Linear Noise approximation (LNA) 26, 27: Un-

fortunately, the LA method does not allow us

to obtain an expression for the joint probabil-

ity density function (PDF) of the hidden states.

However, by using additional approximations,

the hidden states can be characterized by a mul-

tivariate Gaussian PDF that can be solved nu-

merically (e.g., by the standard Euler method)

and is faster than the Monte Carlo method.

However, both the LA and LNA methods require

both conditions (shown above) to be satisfied si-

multaneously which is not possible in most bio-

logical systems.

(3) Poisson approximation (PA) 28: A better ap-

proximation of the HMM is obtained by employ-

ing a time step dt satisfying the first condition,

but may not necessarily satisfy the second one.

Since reactions that occur during the time inter-

val [kdt, (k + 1)dt) will not appreciably change
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the values of the propensity functions, these re-

actions will occur independently of each other.

Moreover, the number of occurrences of the mth

reaction during [kdt, (k + 1)dt) is assumed to be

a Poisson random variable.

(4) Mean-Field approximation (MFA) 29: The PA

method does not allow us to derive an expression

for the joint PMF of the hidden states. However,

it is possible to approximately characterize the

hidden states by a PMF by the dynamic evo-

lution of the normal Gibbs distribution. This

method is superior to the LNA method for three

main reasons:

• It is based on the more accurate Poisson

approximation,

• its approximation accuracy does not de-

pend on the cellular volume, and

• it does not require linearization of the un-

derlying propensity functions.

(5) Stochastic quasi-equilibrium approximation

(SQEA) 30: Most often, reactions occur on

vastly different time scales e.g., the transcription

and translation reactions are typically slow re-

actions, whereas dimerization is a fast reaction.

This means that transcription and translation

may occur infrequently, whereas, dimerization

may occur numerous times within successive oc-

currences of slow reactions.

In such cases, the Gillespie algorithm spends

most of the time simulating fast reaction events.

It may, however, be less important to know

the activity of fast reactions in detail since the

system’s dynamic evolution may be mostly de-

termined by the activity of the slow reactions.

Hence, it is possible to approximate the CME

by one that involves only slow reactions.

In our Markov model formulation, we do not have

any hidden states as the chain can be appropriately

characterized by the number of different molecule

types present in the system (denoting the states of

the chain), and each state transition is character-

ized by the corresponding reaction/docking events.

Hence, most of the above techniques are not directly

applicable to this formulation. However, we can em-

ploy the SQEA approach to substantially simplify

the markov chain (with lesser number of states) mak-

ing the MFPT computations faster. In this case, the

states of the markov chain will have the same tuples

as before, however the state transitions will only be

governed by the slow reactions. During each state

transition, the new state in the chain is computed

depending on this slow reaction and also computing

how many fast reactions can occur in that time and

appropriately updating the molecule counts of the

reactants in the fast reactions.

In fact this technique has a direct analogy to

Gillespie’s tau-leap algorithm, wherein, we can spec-

ify a certain time step ∆t, and compute how many

reactions (both fast and slow) occur within that pe-

riod. Thus we can compute the next state and

the markov chain will become a 1-dimensional chain

thereby greatly reducing the complexity. Also the

memory requirements for storing the Markov chain

can be completely removed as the MFPT can be com-

puted online as the chain progresses in time.

4. RESULTS AND ANALYSIS

4.1. Enzyme-Kinetics system

Figs 3-5 show the molecular distributions of the

product (P ) molecules with time for different num-

ber of enzyme (E) and substrate (S) molecules. Note

that it is possible to report the exact molecular dis-

tributions of any molecule type in the system using

our approach. The time axis reports the mean value

of the MFPT (which is also a random variable as

discussed earlier). Fig 8 compares the dependency

of mean number of P type molecules on time with

that reported from an exact simulation of the CME

(obtained from Monte Carlo simulation of the differ-

ential equations in the system). Our results compare

very well with the exact simulation for low number

of molecules in the system. With large number of

enzyme molecules present, the reactions occur very

fast and the markov model formulation being driven

in discrete time produces less accurate results. Nev-

ertheless, it is computationally very fast and allows

the study of more complicated systems (with large

number of reactions and molecular types involved).

Figs 6-7 plots the probability distributions of the

product molecules. The different bars at each pos-

sible molecular count value of the P type molecules

correspond to the probability of reaching different

states (from the initial state) in the Markov model

having that number of P type molecules (and dif-

ferent molecular count values for the other entities

in the system). It is again possible to compute the
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Fig. 3. Molecular distribution of P
type molecules, with E=10, S=5.
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Fig. 4. Molecular distribution of P
type molecules, with E=10, S=100.
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Fig. 5. Molecular distribution of P
type molecules, with E=1000, S=100.
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Fig. 6. Probability distribution of P
type molecules, with E=10, S=5.
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Fig. 7. Probability distribution of P
type molecules, with E=10, S=100.
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Fig. 8. Mean number of P type
molecules, Our model Vs Exact Sim-
ulation.
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Fig. 9. Effects of SQEA and Tau-
leaping approximations.
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Fig. 10. Mean to standard deviation
ratios of molecular distribution of P
type molecules with constant number
of enzyme molecules.
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Fig. 11. Mean to standard deviation
ratios of molecular distribution of P
type molecules with constant number
of substrate molecules.

complete distribution (not just the first and second

moments) of all the different molecule types in the

system with our formulation.

Fig 9 shows the effects of the SQEA (denoted by

“quasi approx”) and tau-leap approximations to our

markov model. The reversible reactions are consid-

ered fast reactions in our analysis. As expected, the

SQEA approach provides a very accurate approxi-

mation of the mean number of product molecules

whereas the tau-leap variation (with ∆t = 10−3 secs)

provides the fastest (and most memory efficient) so-

lution at the cost of accuracy.

Figs 10-11 plot the mean to standard deviation

ratio of the molecular distribution of the product
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Fig. 12. A simple transcriptional regulatory system.

Fig. 13. Terminology for the Transcriptional Regulatory
System.

M Protein (monomer)

D Transcription factor (dimer)

RNA mRNA

DNA DNA template free of dimers

DNA.D DNA template bound at R1

DNA.2D DNA template bound at R1 and R2

Fig. 14. Reactions Associated with the Transcriptional
Regulatory System.

Reaction Rate Constant

1 RNA → RNA + M 0.043s−1

2 M → ∅ 0.0007s−1

3 DNA.D → RNA + DNA.D 0.0715s−1

4 RNA → ∅ 0.0039s−1

5 DNA + D → DNA.D 0.02s−1

6 DNA.D → DNA + D 0.4791s−1

7 DNA.D + D → DNA.2D 0.002s−1

8 DNA.2D → DNA.D + D 0.8765 × 10−11s−1

9 M + M → D 0.083s−1

10 D → M + M 0.5s−1

molecules with varying number of substrate and en-

zyme molecules respectively. With less number of

substrates, the stochastic resonance is quite high in

the system (as the ratio is less than 1). With higher

number of substrates, the ratio saturates at 1.5 im-

plying lesser stochasticity in the system. Also, the

stochasticity is not very much dependent on the num-

ber of enzyme molecules in the system as depicted in

Fig 11. Thus from these plots we can infer that the

stochastic resonance in the molecular distribution of

the product molecules is primarily governed by the

number of substrate molecules in the system.

4.2. Transcriptional Regulatory System

We next show the results for a simple transcriptional

regulatory system as shown in Fig 12. Protein M ,

synthesized by transcription of a gene, dimerizes to

the transcription factor D, which may bind to the

gene’s regulatory region at two binding sites, R1 and

R2. The promoter coincides with R2. Binding of D

at R1 activates transcription of M . However, bind-

ing of D at R2 excludes the RNA polymerase from

binding at the gene’s promoter and in this case tran-

scription is repressed. Fig 13 presents the terminol-

ogy used for the different components of this example

system, whereas Fig 14 shows the list of reactions in-

volved along with their respective rate constants 29.

In this section, we present the results for the well

known Enzyme Kinetics system governed by the fol-

lowing three elementary reactions:

E.S → P + E, E + S ↔ E.S

The rate constant for the reversible reaction pair is

set at 1s−1 and that for the first reaction is 0.1s−1.

In this system as well, we find very good agree-

ment between the exact simulation results with that

from our model. Thus, for reaction-pairs {5, 6} {7, 8}

and {9, 10} we choose the forward reactions as 6, 7

and 10 respectively and drive the Markov Chain for-

mulation accordingly. The accuracy of our system

suffers from this approximation (hence the difference

from the exact simulation results).

It should be noted that these results were gener-

ated for a low number of the different molecule types

in the system. As the number of molecules increase,

the MFPT based results are further off from the ex-
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Fig. 15. Mean number of monomers:
Exact Simulation Vs Our Model.
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Fig. 16. Mean number of dimers: Ex-
act Simulation Vs Our Model.
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Fig. 17. Mean number of mRNA tran-
scripts: Exact Simulation Vs Our
Model.

act simulation results because of the approximations.

Thus, our model allows for a computationally effi-

cient implementation of a complex biochemical sys-

tem simulation which can give accurate results when

the number of molecules of the components in the

system are small.

5. DISCUSSION

Here we make some comments regarding both the

differential equation based and our discrete random

process based approach for biological system model-

ing. The former approach is usually used to model

the variations of the concentrations of biomolecules,

where the latter models the variations of the num-

ber of biomolecules. As for any research problem

for which there are a variety of feasible solutions,

each of these approaches has its own pros and cons.

For example, when the number of biomolecules is ex-

tremely large, it may not even be practical to use our

discrete random process-based model because of the

following reasons:

(1) the number of possible candidate states of a

molecular entity, X(t) ∈ {0, 1, ...,the maximum

number of molecules}, can be too huge to handle

(2) if a discretization strategy is used, accuracy of

the model could be compromised.

No matter which model is used, some of the parame-

ters (e.g., kinetic parameters for the differential equa-

tion based models) need to be estimated. The para-

metric models we have introduced for biochemical

reactions and docking can estimate these parameters

theoretically and can be used once we have sufficient

fidelity in these models. However, the Markov model

based approach presented in this paper will work for

both cases i.e., by estimating the kinetic parameters

through controlled experiments or by using the para-

metric models.

6. CONCLUSION AND FUTURE

DIRECTIONS

We have introduced a Markov Chain based analy-

sis technique as an alternative for complex biologi-

cal process modeling. The main idea of this mod-

eling is to transform the biological processes from

a continuous deterministic process to a discrete ran-

dom process. Because of its simplicity in comparison

to solving numerically a large number of differential

equations, our framework reduces the computational

overhead and increases scalability considerably. We

are currently working on a complex pathway model

with many molecular types and with large number

of molecules of each type to estimate the computa-

tional complexity. The main benefit of this analysis

is to analyze the stochasticity of many reactions oc-

curring together. Current experimental methods are

not able to capture this measurement at a molecular

level without special set-up.

The challenge in the model proposed here is the

optimization of memory and computational speed of

DFS and MFPT algorithms. Note that each node

in the Markov Chain has an out-degree of M , where

M is the number of reactions/docking considered in

the system. The storage of an arbitrary graph with a

large number of nodes and out-degree will have mem-

ory problems. It is also important to find appropriate

simplifications and data structures to speed up the

process. Can the chain be converted into a tree struc-

ture by eliminating (adding) pseudo nodes (edges) ?

This will allow us to traverse the chain (during DFS
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or MFPT computations) in O(logMV ) time. We

have already stated that the tau-leap approximation

on the chain reduces it to a 1-dimensional chain and

the MFPT computations can be performed online.

Also, can the tree structure be converted into a trie

wherein the chain is compressed optimally thereby

reducing the memory overheads ?

The complete cell model by this analysis may not

be feasible due to the large number of molecules in

the cell, but we expect that many complex biological

systems can be modeled by this technique.
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