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Statistical relations between genome-wide mRNA transcript levels have been successfully used to infer regulatory

relations among the genes, however the most successful methods have relied on additional data and focused on

small sub-networks of genes. Along these lines, we recently demonstrated a model for simultaneously incorporating
micro-array expression data with whole genome genotype marker data to identify causal pairwise relationships among

genes. In this paper we extend this methodology to the principled construction of networks describing local regulatory

modules. Our method is a two-step process: starting with a seed gene of interest, a Markov Blanket over genotype and
gene expression observations is inferred according to differential entropy estimation; a Bayes Net is then constructed

from the resulting variables with important biological constraints yielding causally correct relationships.

We tested our method by simulating a regulatory network within the background of of a real data set. We found
that 45% of the genes in a regulatory module can be identified and the relations among the genes can be recovered

with moderately high accuracy (> 70%). Since sample size is a practical and economic limitation, we considered
the impact of increasing the number of samples and found that recovery of true gene-gene relationships only doubled

with ten times the number of samples, suggesting that useful networks can be achieved with current experimental

designs, but that significant improvements are not expected without major increases in the number of samples. When
we applied this method to an actual data set of 111 back-crossed mice we were able to recover local gene regulatory

networks supported by the biological literature.

1. INTRODUCTION

Understanding the function of every gene and its
role in expression of a particular complex trait is
one of the fundamental aims of genomics. Avail-
ability of genome-wide data has made it possible
to tackle this problem from a systems biology per-
spective. Global putative gene regulatory networks
have been constructed using mRNA abundance data
collected through micro-array experiments. In some
cases supplemental information like chip-CHIP bind-
ing data 13 and single or multiple gene perturbation
data 5 have been used to construct more robust net-
works. Recently there has been growing interest in
a quantitative genetics strategy wherein, along with
gene expression data, genetic marker data is used
for constructing such networks20, 33. In this strat-
egy, crosses are made from inbred strains that differ
in physical and genetic attributes. Resulting indi-
viduals can be considered the result of thousands
of gene perturbations. Whole genome markers are
genotyped and the abundance of transcripts are mea-
sured for each individual. For example, Brem and
colleagues used a cross of a wild strain of yeast and
baker’s yeast to create one of the first such data

sets17. Schadt and colleagues have collected such
data for mouse and maize1.

Figure 1(a) describes the data. Gene expression
(Tj) represents transcript abundance. Discrete geno-
type values (Mk) for bi-allelic markers are measured
at relatively uniform positions across the genome.
For an F2 diploid cross, if the parent genotypes are
AA and BB, then markers may take values AA, AB
and BB. We assume alleles have additive effect and
represent genotypes as integers (0, 1, 2). The geno-
type of a gene (Qj) is not directly measured, but can
be estimated by maximum likelihood using the flank-
ing marker genotypes and genetic linkage distances
to those markers (DL and DR in the figure)35. Our
aim is to find genetic and genomic factors (i.e. some
subset of (T ∪ Q)) that affect a particular complex
trait and infer the relationships among these factors.
We generally refer to (T ∪ Q) as an expression ge-
netics data set.

There has been several efforts to infer regulatory
relationships among genes using expression genetics
data sets. A key quantitative genetics concept in
all these approaches is the quantitative trait locus
(QTL), which refers to a region along a chromosome
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Fig. 1. Expression genetics data description. Gene Gj is located between markers Mk and Mk+1. Its genotype is Qj and amount

of mRNA translated is Tj . Note that Qj is unobserved and must be estimated. (b) The QTG model of a single regulator-target
pair of genes (regulator is gene j and target is gene i). Ml and Ml+1 are flanking markers of gene i.

where the markers are significantly correlated with a
measured trait. QTLs are determined using interval
mapping34 or other related methods35. In our case,
the gene expression level is the trait of interest and
QTLs of this kind are called eQTLs.

Finding pairwise regulatory relations between a
regulator gene and a target gene is a simpler prob-
lem than that of constructing more elaborate net-
works. Bing and Hoeschele chose a regulator gene
that is maximally correlated to the target among
those found in a target’s eQTL24. In our previous
work, we generalized this idea by mapping eQTLs
using a modified interval mapping model that simul-
taneously fit the joint contributions of both geno-
type and expression level of each candidate regulator
along a chromosome. We called this model QTG2.
Its important new feature was the ability to cap-
ture the varying nature of regulation with respect to
a regulator’s genotype. Through this approach we
could discover regulators that act as enhancers or
repressors depending on their genotypes. (Described
in more detail in section 1.3.)

Network structure prediction has also been at-
tempted by 25 and 26. In these works the network is
represented by a Bayesian Network (BN) where the
nodes are observed gene expression levels and the
edges represent conditional dependencies, which are
assumed to correspond to causal relationships. In
both of these works, the key idea is to place strong
priors over possible network structures according to
the eQTLs associated with each gene. Li et al25

selected candidate regulators with non-synonymous
polymorphisms that are positioned within eQTLs.
Later an exhaustive search over BN structures was
performed to reconstruct a global regulatory net-
work. Zhu et al 26 used a set of heuristics based on

the characteristics of eQTLs to determine probable
edge direction and connectivity.

In this paper, we present an improved BN recon-
struction algorithm with the following major contri-
butions:

• Regulatory modules, instead of global reg-
ulatory networks, are inferred, which miti-
gates some of the difficulties of BN structure
inference when sample size is small relative
to the number of variables;

• Genotype values and expression levels are
modeled together in a single BN, which pro-
vides simultaneous integration of data types
and the identification of different kinds of
regulatory control;

• Multiple genes and genetic effects are con-
sidered together, rather than a single gene
or a single QTL;

• Gene “self effects” are included, which in-
corporates the often significant effect of cis-
acting polymorphisms;

• and the interacting effect between geno-
type and expression level is modeled (QTG
model), which allows for complex regulatory
behavior.

The rest of the paper is organized as follows.
Subsections 1.1-1.2 present important concepts re-
garding Markov blankets and Bayesian networks.
More details of the QTG model are described in
1.3. We present our new regulatory network infer-
ence method in section 2, describe our experiments
in section 3.1 and end with a discussion and conclu-
sion in section 4.
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1.1. Markov Blanket

The Markov blanket of a variable Xs ∈ X is defined
as the minimal set of variables MB ∈ X−{Xs} that
provide the maximum possible information about
Xs. Knowing the value of other variables outside of
MB does not provide additional information. For-
mally,

∀X̄⊆X−MB−{Xs}(X̄ ⊥ Xs|MB) .

In a Bayesian network, the Markov blanket is the
union of parent, child and spouse (i.e. parents of
children) nodes. In a gene regulatory network, the
Markov blanket of a gene contains its regulators, tar-
gets and co-regulators. Thus, a Markov blanket of a
gene of interest corresponds to the biological concept
of a local gene regulatory module (figure 2).

Recovering the Markov blanket using raw
data is well-studied in the context of feature
selection29, 3, 32. Here we describe one particularly
attractive approach.

Fig. 2. Example of Markov Blanket. Nodes marked gray be-

long to Markov blanket of node marked in green

1.1.1. Incremental Association Markov Blanket

Incremental association Markov blanket (IAMB)
is an information theoretical approach to infer a
Markov blanket (MB) from data3. This is a two-step
algorithm. In the first step, nodes are added to an
interim MB∗ based on a greedy search for variables
that are not conditionally independent. Since it is a
greedy algorithm some nodes that should not be in
the final MB might be present in MB∗. These nodes
are removed in the second step through an exhaus-
tive search of all subsets of MB∗. When the data set
is faithful to the true distribution and the measure of

conditional independence is accurate, then this algo-
rithm is guaranteed to give correct results. Usually
conditional mutual information is used for measuring
conditional independence such as in 3, 32. In practice
the conditional independence test is deemed reliable
only when the number of samples is at least five times
the number of degrees of freedom. For discrete data
this imposes a requirement of an exponential num-
ber of samples with respect to the number of vari-
ables in the conditioning set. However, when data
is continuous and Gaussian distributed, as assumed
here, then the number of required samples is only
quadratic with respect to the number of variables in
the conditioning set.

Algorithm 1.1 IAMB algorithm
INPUT: Data: X = {X1, X2, . . . , Xn}, Tar-
get: s, Threshold: θ OUTPUT: Markov Blanket:
MB

1: MB = ∅
2: repeat
3: i = arg maxi �=s MI(Xi; Xs|MB)
4: if MI(Xi; Xs|MB) > θ then
5: MB = MB ∪ {Xi}
6: end if
7: until MB does not change
8: repeat
9: i = arg minXi∈=MB MI(Xi; Xs|MB − {Xi})

10: if MI(Xi; Xs|MB − {Xi}) < θ then
11: MB = MB − {Xi}
12: end if
13: until MB does not change

Conditional independence for continuous data
can be computed using the differential entropies of
the involved variables. Differential entropy is a rela-
tive measure that quantifies the amount of surprise
(or information) of a continuous variable. It is equal
to the expected log of the probability density.

h(x) = E(log(f(x)))

=
∫ +∞

−∞
f(x) log(f(x))dx

where f is the probability density function of
x. For a multivariate Gaussian variable X =
{X1, X2, . . . , XN} differential entropy h(X) is equal
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to

h(X) =
1
2
ln{(2πe)Ndet(Σ)}

where Σ is the co-variance matrix of X. Conditional
relative entropy is defined as the amount of surprise
in one variable when the condition variable is known.

h(X|Y ) = E(log(f(X|Y )))

= h(X, Y ) − h(Y )

Mutual information quantifies the amount of in-
formation that is contained in a random variable (X)
about the other variable (Y ). It is equal to the differ-
ence between the amount of information in one of the
variables (which is entropy, h(X)) and the amount
of information in it that is unexplained by the other
variable (which is conditional entropy, h(X|Y )). Un-
der condition Z it is equal to:

MI(X; Y |Z) = h(X|Z) − h(X|Y, Z)

1.2. Bayesian Networks

A Bayesian network (BN) is a minimal graphical rep-
resentation of a joint probability distribution over a
set of random variables22. Each variable in a BN cor-
responds to a node and each dependency corresponds
to an edge. Nodes are connected by a directed edge
and the resulting graph will be a directed acyclic
graph. The distribution of a variable conditionally
depends only on its parents.

Like Markov blanket selection, construct-
ing Bayesian networks is also a well-studied
problem22, 30, 28. For a given network structure, the
conditional probability distribution function of each
variable can be calculated using maximum likelihood
estimates. Using these functions, the posterior prob-
ability of the data can be calculated and a network
can be scored. Let X = {X1, X2, . . . , XN} be the set
of variables in the network. The posterior likelihood
of an observation x is given by:

P (x) =
N∏

i=1

P (xi|Pa(xi), Θ)

where Pa(xi|Θ) is the set of parent nodes corre-
sponding to node Xi and Θ is the hyper-parameter
set determining the conditional probability distribu-
tion. For a data set X = {x1, x2, . . . , xM} the poste-
rior likelihood is given by:

P (X|Θ) =
M∏

j=1

N∏
i=1

P (xj
i |Pa(xj

i ))

Log likelihood is used as the scoring function:

LL(X , Θ) =
M∑

j=1

N∑
i=1

log(P (xj
i |Pa(xj

i )))

Since the hyper parameter Θ is estimated using the
finite number of samples, it is always possible to in-
crease the log likelihood of a graph by increasing its
connectivity. This over-fitting phenomenon can be
be avoided by using a scoring scheme that takes con-
nectivity into consideration. Bayesian information
criterion(BIC, also known as Schwarz information
criterion) is one such scheme.

ScoreBIC(X, Θ) = 2LL(X , Θ) − k log(M)

where k is the number of free parameters in Θ. For
linear Gaussian models k is equal to the total number
of edges in the network.

Given that the possible network structure space
is super-exponential with respect to the number of
nodes, an exhaustive search through all possible
graphs is usually not feasible. Reasonable heuristics
like node ordering30 can be used when the number of
samples is high and the number of variables is low.
But those algorithms are infeasible when the number
of dimensions is high and inaccurate when the num-
ber of samples is low. Another class of algorithms
use information theory to construct these networks.
A polynomial time algorithm exists28 when an or-
acle, which determines if two variables are depen-
dent conditioned on a set of variables, is available
and the data is DAG-faithful. Such an oracle can
be constructed by calculating conditional mutual in-
formation for the set of variables. But calculation
of mutual information can be problematic when the
number of samples is low, just as with the Markov
blanket algorithms, as mentioned above, and when
the number of variables is high. In our method we
overcome this limitation by restricting ourselves to
building local networks around our gene of interest.
As the number of genes in the regulatory neighbor-
hood of a gene is usually low, we can keep our net-
work searching problem tractable.
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Fig. 3. Trans-acting effect as a function of regulator geno-
type allows for complex enhancer/suppressor relationships.

Note that expression and genotype may be marginally inde-

pendent of the target, but the regulatory relation can still be
identified.

1.3. QTG Model

The conventional model for mapping linkage of loci
to phenotypes is a linear model of the form

P (Ti|Qj) = N (β0 + β1Qj , σ)

where Ti is the phenotype of interest (expression of a
target gene) and Qj are inferred genotypes of genes
Gj along a chromosome.

In 2, we suggested an alternative model that
explicitly incorporated the genotype and expression
level at gene Gj as well as the potential interacting
effect of genotype and expression level, yielding

P (Ti|Qj , Tj , θ) = N (β0 + β1Tj + β2Qj + β3TjQj , σ)
(1)

where θ is the β and σ model parameters. (Fig-
ure 1b.)

A scanning method, like conventional QTL map-
ping, can be used in which pairwise relationships are
found by computing the log posterior odds for all Gj

in the genome. Equation 1 has the advantage of cap-
turing the types of dependency relationships shown
in figure 3. However, the scanning method does not
incorporate multi-locus regulatory control.

2. METHODS

Now we present an algorithm that finds the loci
that are in the regulatory neighborhood of a gene of
interest and reconstructs the corresponding partial
network. The main advantage of this new method

over our previous scanning method2 is that we con-
struct networks involving multiple genes to specifi-
cally model the joint distribution, whereas the pre-
vious approach could only identify putative pairwise
relationships akin to a relevance network37.

2.1. Mixed Type Bayesian Network Under

Biological Constraints

We model a gene regulatory network as a highly con-
strained Bayesian network subject to the biological
conditions as graphically described in Figure 4. A
“gene” is modeled as a meta-node, such that a node
(Ga) consists of expression (Ta), genotype (Qa) and
interaction (TaQa) variables (Figure 4a). Edges de-
note regulation between genes where edges are drawn
from the regulator meta-node to a target meta-node.
The kind of regulatory control between two genes
depends on which terms in the meta-nodes were
used (Figure 4b). Since genotypes represent inde-
pendently random recombination events, edges are
always directed away from genotype variables.
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Fig. 4. (a) Elements of gene A. Ta is the expression, Qa is the
genotype and TaQa is the interaction variable. (b) All edge

types. Colors are used to visually code predicted networks
(such as in figure 7. (c) Example of gene-gene relationship

with two edge types involved.

2.2. Markov Blanket Inference

Algorithm 2.1 for inferring a Markov blanket is very
similar to the IAMB algorithm with several domain
specific differences. The candidate variable set C

consists of all gene expression values (Ti, 1 ≤ i ≤ n,
where n is the number of genes), all marker geno-
types (Mj , 1 ≤ j ≤ k, where k is the number of
polymorphic markers) and approximate interacting
terms estimated from the product of expression and
flanking marker genotypes (where we write TQl

i to
mean TiML(i), TQr

i to mean TiMR(i), and ML(i)
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and MR(i) are the flanking left and right markers
of gene Gi). In the forward step, based on condi-
tional independence, variables from C are incremen-
tally added to the Markov blanket MB and in the
backward step false positives are removed. A con-
tinuous form of conditional mutual information (as
explained in section 1.1.1) is used as the measure of
conditional independence. Variables are assumed to
follow a multinomial Gaussian distribution. If we
make the reasonable biological assumption that any
gene has no more than about ten genes in its local
regulatory network38, then we require only (≈ 100)
samples to accurately calculate conditional mutual
information.

Algorithm 2.1 Inferring Markov Blanket of a gene.
MI calculates the conditional mutual information as
described in section 1.1.1. Functions max and min
return maximum/minimum element in the array and
its index.
INPUT: Expression Levels: T = {T1, T2, . . . , Tn},
Marker Genotypes: M = {M1,M2, . . . ,Mk},
Interaction terms: I = {TQl

1, TQr
1, . . . , TQl

n, TQr
n},

Seed Gene s, Threshold α

OUTPUT: Markov Blanket MB ∈ T ∪ M ∪
I

1: MB=∅
2: C=(T ∪ M ∪ I) − {Ts, TQl

s, TQr
s}

3: repeat
4: for Ci ∈ C do
5: scorei = MI(Ci; Ts|MB)
6: end for
7: [maxMI, maxi] = max(score)
8: if maxMI ≥ α then
9: MB = MB ∪ {Cmaxi}

10: end if
11: until maxMI < α

12: repeat
13: for Ci ∈ MB do
14: scorei = MI(Ci; Ts|MB − {Ci})
15: end for
16: [minMI,mini] = min(score)
17: if minMI < α then
18: MB = MB − {Cmaxi}
19: end if
20: until maxMI < α

21: return MB

2.3. Gene regulatory network reconstruction

We use an incremental algorithm similar to 31 for
constructing the local network for a seed gene, s (Al-
gorithm 2.2) given its Markov blanket, MBs. The
novelty of our method is that we must simultane-
ously estimate the unobserved genotype values Qi

while constructing the graph edges.
We begin with an MBs that contains zero or

more expression and genotype terms (e.g. Ti, TQr
i ,

etc.) for each gene Gi. We define the regulatory
neighborhood of seed gene s as RNs = MBs ∪ {Ts}.
For all genes with a flanking marker in the MBs we
introduce the true but unobserved genotype Qi and
estimate its maximum likelihood value according to
the distances to the flanking markers. Similarly we
replace any TQl

i and TQr
i terms with TQi.

Next, the variables in RNs are consolidated into
gene meta-nodes, such that all variables associated
with gene Gj are grouped. Then, beginning with an
empty graph, edges are added, removed, or reversed
between variables in separate meta-nodes based on
an increase in the network score. Unlike a conven-
tional Bayes Net construction, we explicitly consider
combined genotype and expression effects including
interacting effects. These different kinds of regula-
tory effects are represented as different types of edges
(figure 4b). The score is computed as the log of the
joint probability with a Bayesian Information Crite-
rion(BIC) penalty term to control for complexity of
the network.

Finally, the Qi terms are re-estimated based on
the new graph structure (connected genes and flank-
ing markers). With the new values of Qi, a new
graph structure is generated. This EM-like iterative
process is repeated until convergence, which happens
quickly in practice.
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Algorithm 2.2 Algorithm for constructing local
regulatory network. EstimateGenotype function es-
timates the genotype of a locus by using the geno-
types of the flanking markers and the distance to
those markers. Score calculates the optimal score of
a network using EM strategy. In expectation step
all the Qs and TQs are estimated using the current
value of hyper parameter set (Σ) and their priors.
Later in maximization step the Σ is re-calculated us-
ing the re-estimated values of Qs and TQs. AddScore
is the score of the new network when a edge is added,
reversed or removed. This function also checks for
DAG consistency of the network and if that is vio-
lated returns −∞. from can be any node, to node
needs to have expression term in it and kind can be
any kind of edge shown in 4 or of kind no edge (used
when an edge needs to be deleted).
INPUT: Markov Blanket MBs,
Expression profiles: T = {T1, T2, . . . , Tn},
Marker Genotypes: M = {M1,M2, . . . ,Mk},
Interaction terms: I = {TQl

1, TQr
1, . . . , TQl

n, TQr
n}

Seed Gene s, Threshold β

OUTPUT: Local Network BNs

1: RNs = MBs ∪ Ts

2: for each gene i do
3: Qi = EstGenotype(ML(i),MR(i), Location(i))
4: end for
5: for each gene i do
6: Gi = {Ti, TiQi, Qi}
7: end for
8: CG = {Gi|Ti ∈ RNs ∨ TiQ

l
i ∈ RNs ∨ TiQ

r
i ∈

RNs}
9: BNs = ∅

10: curMaxScore = Score(BNs, CG)
11: while forever do
12: {from, to, kind} =

argmaxfr,to,kd Addscore(BNs, {fr, to, kd}, CG)
13: if AddScore(BNs, {from, to, kind}, CG) −

curMaxScore > β then
14: if ∃kind s.t {from, to, kind} ∈ BNs then
15: BNs = BNs − {{from, to, kind}}
16: end if
17: if ∃kind s.t {to, from, kind} ∈ BNs then
18: BNs = BNs − {{to, from, kind}}
19: end if
20: BNs = BNs ∪ {{from, to, kind}}
21: else
22: return BNs

23: end if
24: end while

Purely genetic hyper-nodes are an interesting
special case. In some cases a marker variable Mi

might not have a gene in MBs to which it can be
grouped with. In those cases a dummy gene hyper
node is created for this marker. These dummy genes
are assigned a range of locations (determined using
the location of markers Mi−1 and Mi+1 that flank
Mi) instead of having one exact location as with
regular gene hyper nodes. During the network op-
timization the exact location of this dummy gene is
re-calibrated to maximize the score. This strategy
allows us to detect genetic elements that are either
not associated with any of the known genes. Such ef-
fects include, for example, cis-acting QTLs and non-
coding genes.

3. EXPERIMENTS AND RESULTS

Simulations were performed to test the fidelity of the
model, to set appropriate threshold parameters, and
to calculate the sample size needed to achieve good
accuracy and recovery.

3.1. Simulations

T
a

 Q
a T

b
 Q

b

T
c
 Q

c
T

d

T
a

Fig. 5. Simulation Strategy. Black nodes were selected from

the existing data and the red nodes were simulated using a

linear Gaussian model.

Synthetic data was generated to test the viability of
this approach. To keep the simulation as realistic as
possible and to preserve the distribution of the real
data, only a small set of simulated data was added to
the existing data. Networks of various size were sim-
ulated. Importantly, parent and spouse genes were
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not simulated, but selected from existing genes. Tar-
get genes and their children were simulated using a
linear model with Gaussian noise. A example of such
simulated network is shown in Figure 5. The coeffi-
cients of this linear model were selected from a Gaus-
sian distribution. To test the data requirement for
sample sizes greater than the available 111 samples,
we simulated additional expression values as Gaus-
sian and genotypes from linkage probabilities.

Results of these simulations are presented in Fig-
ure 6 for a 5 node network. (For network sizes greater
than 5, accuracy did not decrease substantially and
the number of recovered genes remained almost the
same; data not shown.) Figure 6a describes the
performance of the Markov blanket recovery. Each
line in the figure corresponds to a sample size. Re-
sults suggest that this algorithm can recover parts
of the network with high accuracy at useful recov-
ery rates. For example, greater than 45% of genes in
the true Markov blankets were recovered at an accu-
racy of about 75%. Reducing the threshold did not
result in increased recovery but caused accuracy to
drop substantially. When we increased sample size
to 1000 (ten times the current available data) there
was a marked improvement in recovery(> 75%) and
accuracy(> 85%).

Figure 6b describes the performance of network
inference, i.e. edge prediction, over the Markov blan-
ket variables. Considering only gene meta-node con-
nectivity, the algorithm exceeded 90% accuracy and
90% recovery for the correct placement of edges.
When the correct direction is also taken into account,
accuracy of 85% could be achieved with recovery of
about 85%. Edges of correct direction and correct
edge type could be recovered with 70% accuracy and
70% recovery. Thus, a quite reasonable reconstruc-
tion of a network could be achieved with a large ma-
jority of edges properly labeled and oriented.

We found that a threshold of α = 0.1 on condi-
tional mutual information and β = 50.0 for adding
an edge in network reconstruction yielded the best
results.

3.2. Biological Significance

For practical experimental results we used data col-
lected by Schadt et al1, consisting of gene expres-
sion profiles for 111 F2 mice derived from cross-
ing C57BL/6J and DBA/2J. The dataset contains
expression for 23,574 genes and genotypes for 134

markers spread over 19 chromosomes.
We applied our algorithm to construct local net-

works seeded by 400 highly cited mouse genes in
PubMed database, under the assumption that well-
annotated seeds are more useful when performing a
manual, qualitative review of predicted regulatory
networks. A simple analysis showed that 69% of
these networks seed gene shared common Gene On-
tology annotation with at least one other gene in
the network. Further, in 31% of the cases seed gene
shared annotation with two or more neighbors. Sev-
eral of these networks are shown in Figure 7 with
the biological interpretations and analysis. The in-
ferred local regulatory network of Dlx2 is shown in
figure 7a. Three of the genes in the network, Dlx2,
Aebp1 and Dnmt3a, are known transcription factors.
This indicates that these genes might be involved in
a transcriptional cascade. The local regulatory net-
work of Rela (figure 7b) contains Mapk1 and both
of these are involved in organ morphogenesis. Rela
seems to be regulating Usmg5, which is involved in
skeletal muscle growth, which suggests that Rela’s
role is skeletal muscle growth. The inferred local
regulatory network of Pcna (figure 7c) suggests that
Pcna and Dmap1 might be co-regulating Prim1.
This is interesting as these two genes are known to in-
teract with similar domains36. The local network of
Fgfr2 (figure 7d) is interesting in many ways. Biolog-
ically this network makes sense as there is reasonable
functional overlap among the genes n the network.
Fgfr2 and Ptk2 are involved in regulation of actin cy-
toskeleton. Fgfr2, Ptk2 and Gnaq are all nucleotide
binding proteins. This network is also interesting
computationally as we can predict the causality of
this network though there are no genetic variables.
In this network all the genes are well correlated with
the seed gene, but Ptk2 and Ppt are uncorrelated.
This is the only network that is able to capture these
informational dependencies accurately39.

4. DISCUSSION

Expression genetics data has helped scientists to un-
derstand the genetics behind expression of many sim-
pler traits that are affected by very few genetic fac-
tors. Understanding genetics behind more complex
traits needs careful modeling of the interaction be-
tween the quantitative (gene expression) and quali-
tative (genotype) traits.

We presented an extension of our QTG model
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for analyzing regulation involving multiple genes as
a directed acyclic graph. In this study we investi-
gated the use of an information theoretic method
for accurately constructing local gene regulatory net-
work from a seed gene. Our model allows use of
both expression and genotype in the same network
thereby exploiting the natural dependencies. The
method combines conventional quantitative genetic
mapping and model-based network inference in one

unified algorithm compared to approaches where ge-
netic analysis is done first and results are used to
refine genomic study results.

Our simulation results suggest that reasonably
accurate small networks can be constructed using
our approach. Importantly, we also found that small
sample size is the most important limitation on the
utility of these data sets. Our study suggests that a
magnitude increase in number of samples would go
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a long way in identifying reliable and complete gene
regulatory networks, but such large experiments are
impractical in the near term.

A brief analysis of the local networks that are
constructed around some well known genes suggest
that our method is capable of recovering biologically
relevant networks from the expression genetics data.
Most of the networks have edges between the genes
that are known to be functionally similar and/or are
active in the same cellular locations.
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