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To understand the regulation of the gene expression, the identification of transcription start sites (TSSs) is a primary and important step. 

With the aim to improve the computational prediction accuracy, we focus on the most challenging task, i.e., to identify the TSSs within 

50 bp in non-CpG related promoter regions. Due to the diversity of non-CpG related promoters, a large number of features are extracted. 

Effective feature selection can minimize the noise, improve the prediction accuracy, and also to discover biologically meaningful 

intrinsic properties. In this paper, a newly proposed multi-objective simulated annealing based optimization method, Archive Multi-

Objective Simulated Annealing (AMOSA), is integrated with Linear Discriminant Analysis (LDA) to yield a combined feature selection 

and classification system. This system is found to be comparable to, often better than, several existing methods in terms of different 

quantitative performance measures. 

                                                          
* Corresponding author. 

1.   INTRODUCTION

It is known that the initiation of transcription of a gene  

is the important first step in gene expression. RNA 

polymerase II (Pol II) plays the key role during 

transcription and is recruited by other transcription 

factors (TFs) to TSS within the preinitiation complex 

(PIC). Determining the location of the TSSs has become 

crucial for mapping the cis-regulatory elements and 

hence for further studying the mechanism of gene 

regulation.  

The core promoter region is centered around the 

TSS, within a length of ~100bp and the proximal 

promoter, which is also enriched by transcription factor 

binding sites (TFBSs), is located immediately upstream 

of the core promoter within several hundred base pairs. 

Given the relationship between promoters and TSSs, a 

promoter region must contain the information for PolII 

to recognise TSSs, this information forms the basis for 

identifying the TSS in silico. Moreover, through 

computational modeling, important cis-regulatory 

element features may be identified. Good predictive 

features and accurate TSSs will help forming testable 

hypothesis and designing targeted experiments.  

Predicting the TSS in silico is an old but still very 

challenging problem. A strategy was proposed by Zhang 

in 19981: an initial identification of a promoter 

approximately within a distance of 2 kb, followed by a 

more specific prediction method to locate the TSS 

within a 50 bp region. Many methods have been 

developed in the past decade2, generally belonging to 

the two categories: namely the initial identification of a 

gross promoter and the more specific prediction of the 

TSS. It is also demonstrated by recent studies that, in 

vertebrates, one should treat the CpG related and the 

non-CpG related promoters (see the definition of non-

CpG related promoters in the data section) separately for 

better TSS prediction, which is biologically sound and 

computationally feasible3. For the CpG related 

promoters, the TSS prediction is much easier and has 

largely been solved2, 4. However, predicting TSSs for 

non-CpG related promoters remains challenging. In this 

paper we focus on predicting TSSs within 50 bp for 

non-CpG related promoters. 

Almost all the previous methods for TSS prediction 

have been summarized in the recent reviews3, 5. The 

main idea of those methods is to use some characteristic 

features, which can differentiate between a promoter 

region a non-promoter region, in the classification tests. 

The resulting classifiers (or predictive models) are 

applied to new input DNA sequences for TSS prediction. 

However, Bajic et al
5 describe detecting TSSs in non-
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CpG related promoter as a bottleneck of current 

technology. The reason may be due to poor 

understanding of transcriptional initiation mechanism 

and the diversity of non-CpG related promoters, 

especially tissue specific promoters. Hence the features 

which could be used to distinguish the promoter from 

non-promoter regions cannot be easily determined. To 

solve this problem, one strategy is to start with a large 

number of potential features and then select the most 

discriminative ones according to certain classification 

objectives.  

A good feature selection not only can improve the 

accuracy of the prediction, but also can reveal 

biologically meaningful features which may provide 

deeper biological insights. Feature selection is the 

process of selecting a subset of the available features 

such that some internal or external criterion is optimized. 

The purpose of this step is the following: building 

simpler and more comprehensible models, improving 

the performance of some subsequent machine learning 

algorithm, and helping to prepare, clean, and understand 

data. Different algorithms exist for performing feature 

selection. One important approach is to use an 

underlying search and optimization technique like 

genetic algorithms6, 7. However, it may often be difficult 

to evolve just a single criterion that is sufficient to 

capture the goodness of a selected subset of features. It 

may thus be more appropriate and natural to treat the 

problem of feature selection as one of multi-objective 

optimization. Such an approach is adopted in this article. 

A newly developed multi-objective simulated annealing 

algorithm called Archived Multi-Objective Simulated 

Annealing (AMOSA)8, 9 is utilized for this purpose. 

2.   MATERIALS AND METHOD

2.1.   AMOSA 

Archived multi-objective simulated annealing 

(AMOSA)8, 9 is a generalized version of the simulated 

annealing (SA) algorithm based on multi-objective 

optimization (MOO). MOO is applied when dealing 

with the real-world problems where there are several 

objectives that should be optimized simultaneously. In 

general, a MOO algorithm usually admits a set of 

solutions that are not dominated by any solution it 

encountered, i.e., non-dominated solutions.10, 11 During 

recent years, many multi-objective evolution algorithms, 

such as Multi-Objective SA (MOSA), have been 

suggested to solve the MOO problems.12  

Simulated annealing (SA) is a search technique for 

solving difficult optimization problems, which is based 

on the principles of statistical mechanics13. Recently, SA 

has become very popular because not only can SA 

replace the exhaustive search to save time and resource, 

but also converge to the global optimum if annealed 

sufficiently slowly14.  

Although the single objective version of SA is quite 

popular, its utility in the multi-objective case was 

limited because of its search-from-a-point nature. 

Recently Bandyopadhyay et al developed an efficient 

multi-objective version of SA called AMOSA8, 9 that 

overcomes this limitation. AMOSA is utilized in this 

work for selecting features for the task of TSS 

prediction. 

The AMOSA algorithm incorporates the concept of 

an archive where the non-dominated solutions seen so 

far are stored. Two limits are kept on the size of the 

archive: a hard or strict limit denoted by HL, and a soft 

limit denoted by SL. The algorithm begins with the 

initialization of a number (γ x SL, 0<γ<1) of solutions 

each of which represents a state in the search space. The 

multiple objective functions are computed. Each 

solution is refined by using simple hill-climbing and 

domination relation for a number of iterations. 

Thereafter the non-dominated solutions are stored in the 

archive until the size of the archive increases to SL. If 

the size of the archive exceeds HL, a single-linkage 

clustering scheme is used to reduce the size to HL. 

Then, one of the points is randomly selected from the 

archive. This is taken as the current-pt, or the initial 

solution, at temperature T=Tmax. The current-pt is 

perturbed to generate a new solution named new-pt, and 

its objective functions are computed. The domination 

status of the new-pt is checked with respect to the 

current-pt and the solutions in the archive. A quantity 

called amount of domination ∆doma,b between two 

solutions a and b is defined as follows: 

 ∆doma,b = ∏
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where fi(a) and fi(b)are the ith objective values of the two 

solutions and Ri is the corresponding range of the 

objective function. Based on domination status different 

cases may arise viz., accept the (i) new-pt, (ii) current-pt  

184



or (iii) a solution from the archive. Again, in case of 

overflow of the archive, clustering is used to reduce its 

size to HL. The process is repeated iter times for each 

temperature that is annealed with a cooling rate of 

α (<1) till the minimum temperature Tmin is attained. 

The process thereafter stops, and the archive contains 

the final non-dominated solutions.  

It has been demonstrated that the performance of 

AMOSA is better than that of MOSA15 and NSGA-II16, 

both are well-known MOO algorithm, in many 

applications.9  

2.2.   Data

Since TSS prediction for non-CpG related promoters is 

still unsolved, our newly proposed prediction system is 

aimed at such TSSs. All the data used come from the 

work of Zhao et al
17. We take promoter sequences as 

non-CpG related if the normalized CpG content of the 3 

kb centered at the TSS is less than 0.3.  

All of the examples were taken from Eukaryotic 

Promoter Database (EPD)18 and the Database of 

Transcription Start Site (DBTSS)19, both of them have 

relatively high quality annotation. EPD is based on 

experimentally determined TSSs while DBTSS on full-

length oligo-capped cDNA sequences. A total of 1,570 

sequences containing non-CpG related promoters were 

selected, including 299 from EPD and 1,271 from 

DBTSS. These sequences are of 10 kb in size and are 

centered at the annotated TSSs. 

Positive and negative samples are defined in order 

to train LDA classifiers (or prediction models) to 

accomplish the more specific prediction of TSSs. Within 

the known promoter regions, positive samples are the 

sequences around core promoters from site -250 to site 

50, denoted as [-250, 50] (for a gene, site 0 is not 

included), and negative ones are [-850,-550), [-550,-

250), (50,350] and (350,650] (Fig. 1(a)). It is obvious 

that negative ones can be divided into up- and down-

stream negative samples. 

For a test sequence with TSS unknown, we slide a 

300 bp window by 1 bp step to get samples with the 

same length as that of the training samples (Fig. 1(b)). 

Several features were extracted for all the samples, 

including positive and negative samples in training set 

Fig. 1. Samples and Classifiers. (a) Preparation of the samples in the training set. The promoter region from 250bp 
upstream to 50bp downstream of the annotated TSS is taken as the positive sample, while the other upstream and 
downstream sequences are taken as negative samples. The upstream negative samples (U) are used with the positive 
samples (P) to train the classifier P vs. U, and the downstream negative samples (D) are used with the positive samples (P) 
to train the classifier P vs. D. (b) The classification on the samples in test set. A window of 300-bp is scanned along the 
DNA sequence to be tested at a 1-bp step, forming the test sets. There are 2401 samples from each sequence. The two 
classifiers (P vs. U and P vs. D) are applied on each of the samples and the outputs of them are combined, generating a 
series of prediction scores at each position of the sequence. Post-processing then is used for making the final decisions 
based on the scores (see text and Fig. 2 and 3).  
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and the samples in test set. Before feature selection, 

there are 210+ numeric features (see Table 1 in Zhao et 

al’s paper17). To make the analysis of the features easier, 

we categorize them as follows: (i) basic sequence 

features; (ii) mechanical properties; (iii) motif features. 

The basic sequence features include scores of core 

promoter elements (TATA, Inr, CCAAT-box and GC-

box), the frequencies of 1-mer or 2-mer related to C 

or/and G, and the scores from 3rd order Markov chain 

modeling. The mechanical properties capture the 

characteristics of the energy and flexibility profiles 

around TSS, and the distance and correlation values are 

computed with different sequence lengths and 

smoothing window lengths. The motif features are 

generated by featuretab, part of CREAD suite of 

sequence analysis tools20. The motif weight matrices are 

from TRANSFAC21 and maximal scores of the weight 

matrices for TFBSs are used as the motif features. There 

are about 66 features in this category.  

If too few features are used to classify promoter and 

non-promoter regions and to predict TSSs, the 

predictive power may be very low. On the other hand, 

however, if the number of the features is too large, the 

noise may go up and the predictive power would come 

down. Hence, feature selection is one of the most 

important steps of the whole system for TSS prediction. 

The multi-objective optimization method AMOSA is 

implemented in our system for effective feature 

selection. 

2.3.   Classification Strategy

In our proposed TSS prediction system, we use Fisher’s 

linear discriminant analysis or LDA to build the basal 

classifiers. LDA, originally developed in 1936 by R.A. 

Fisher, is a classic classification method. The main idea 

of Fisher’s linear discriminant is to project data, usually 

in a high-dimensional space, onto a direction so that the 

distance between the means of the two classes is 

maximized while the variance within each class is 

minimized. Thereafter, the classification becomes a one 

dimension problem and classification can be done by a 

proper threshold cut-off.22 As LDA considers all 

samples in the projection, it has been shown to be robust 

to noise and often performs well in many applications. 

LDA models are built with the features selected, 

and their performance is used as the guide in the feature 

selection procedure.   

2.4.   Feature Selection with AMOSA

Among the 210 features to be used for predicting TSSs 

in non-CpG related promoters, there might be ones 

which contribute little to the classification but bring in 

more noises. In this article, a state of the AMOSA 

denotes the features that are selected for classification. 

LDA classifiers are built with only the selected features. 

Three objectives, namely, sensitivity (Sn), positive 

predictive value (PPV) and Pearson correlation 

coefficient (CC), are used to evaluate the performance 

of the LDA classifiers with the selected features. They 

are computed using 10-fold cross validation as: 

TP
Sn

TP FN
=

+
 (2) 

TP
PPV

TP FP
=

+
 (3) 

( )( )( )( )

TP TN FP FN
CC

TP FP TP FN TN FP TN FN

× − ×
=

+ + + +
 (4) 

where TP, TN, FN, and FP are the numbers of true 

positives, true negative, false negatives, and false 

positives, respectively.  

We consider the three objectives are equally 

important, where Sn controls false negatives, PPV limits 

false positives, and CC balances classification results. 

However, the traditional optimization methods, which 

can only optimize one objective, could not deal with this 

problem. The multi-objective optimization method 

AMOSA is therefore implemented in order to solve the 

three-objective optimization problem. For multi-

objective optimization methods usually allow multiple 

solutions, we get several sets of selected features in each 

experiment.  

2.5.   Prediction System

Our whole prediction system contains two phases. At 

first, AMOSA is combined with LDA as a feature 

selection and classification system. Thereafter, post 

processing is performed to integrate classification scores 

and get prediction results. 

Fig. 2 shows the flow chart of the whole prediction 

system, which contains two phases: feature selection & 

classification, and post processing. Note that there are 

two symmetrical parts in Phase I. This is because we 

train two types of models (P vs. U and P vs. D) using 
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Fig. 2. Flow Chart for the Prediction System. 

three categories of training samples: Positives (P), 

Upstream negatives (U) and Downstream negatives (D), 

and thus classify the test samples twice. We take the left 

side for example to explain the procedures in Phase I. 

First of all, we pre-select the features (removing those 

features that have almost same values for both P and U 

samples). Then, we come to the key step, where 

AMOSA is used to select the features and LDA to 

classify the samples. Let n denote the number of the 

feature subsets output by AMOSA. Correspondingly, we 

get n  LDA classifiers trained. For an input sequence, 

we slide a 300-bp-width window with 1 bp step to  

generate the test samples. After we use the n  feature 

subsets and the n  classifiers to classify the sequential 

samples, n  vectors of classification scores are output. 

Let l denote the length of the vectors. Treating the n

vectors equally, we sum up the n  vectors to get the 

summed scores iS , i = 1,2,…,l, and then normalize 

them by:  

' min

max min

1.0 2i

i

S S
S

S S

−
= − + ×

−
 (5) 

where 
i

S , i = 1,2,…,l, denote the initial summed scores, 
'

iS , i = 1,2,…,l, the ones after normalization, and maxS , 

minS  are the maximum and minimum of all the initial 

summed scores, respectively. The right-hand side of 
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Phase I, the classifier for P vs. D is also implemented 

similarly.  

We consider the two vectors output by the two 

symmetrical classifiers to contribute equally for the 

prediction, and add the two scores for the prediction. 

We use Eq. (6) to smooth the sum:  

min( 50, )
* 2

max(1, 50)**

min( 50, )
2

max(1, 50)

exp( ( ) / 5000)

exp( ( ) / 5000)

i l

j

j i

i i l

j i

S j i

S

j i

+

= −

+

= −

× − −

=

− −

∑

∑

  (6) 

where *

j
S , j = 1,2,…,l, denote the scores before 

smoothed and **

iS , i = 1,2,…,l, denote the smoothed 

scores. We choose a RBF (Radial Basis Function) 

window with width of ± 50 rather than a flat window 

because the influence decays with the distance. 

We cluster the sites with the scores larger than a 

given threshold (the thresholds can be chosen in [-0.2, 

0.25], and the corresponding results with the varying 

thresholds are shown in Fig.4 as a PPV-Sn curve.), and 

in a cluster the site with maximum score is the putative 

TSS (Fig. 3). 

2.6.   Cross Validation

We use a 5-fold cross validation to evaluate the 

performance of our proposed TSS prediction system. 

We divide the 1,271 sequences from DBTSS into 5 

parts, each time 4 parts of the five and all the 299 

sequences from EPD forming a training set and the 

remaining part forming the corresponding test set. Thus, 

5 pairs of training and test sets are prepared. 

For each sequence (10kbp length, with annotated 

TSS located at site 1) in test set, we slide a window to 

get 300-bp-length samples from site -1200 to 1201. 

Therefore, there are 2401 samples from each sequence 

in test set. 

True positive (TP), false positive (FP) and false 

negative (FN) are defined. The putative TSS which is 

located within 50 bp from any of the annotated TSS is 

considered as a TP, otherwise an FP. If there is no 

predicted TSS in the ± 50bp region of an annotated 

TSS, this counts as one FN. Two important criteria, Sn

and PPV, are as defined in Eq. (2) and (3). 

Note that for one annotated TSS there is either a TP 

or a FN, and for one sequence in our data there is only 

one annotated TSS, so the sum of TP and FN equals to 

#sequences. The Eq. (2) can be simplified as: 

#sequences

TP
Sn =  (7) 

2.7.   Other TSS Prediction Methods 

In comparison study, we compare our newly proposed 

TSS prediction system with three other most effective 

and publicly available methods5, 17: McPromoter23, 

Eponine24, and CoreBoost17. McPromoter combines 

DNA sequence likelihoods and profiles of physical 

properties as features, and a neural network is 

implemented for predicting TSSs. Eponine uses a set of 

Fig. 3. Last Steps of Post Processing.
(a) The vector of bars stands for the vector of scores, high bar indicating high score. A threshold is set. (b) The 
bars under the threshold are removed. (c) The remaining bars within certain distance are clustered as one cluster. 
(d) The site with maximum score in a cluster is output as the putative TSS. 
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weight matrices for extracting features, and applies a 

hybrid relevance vector machine method to build the 

prediction model. And CoreBoost proposes a feature 

selection strategy which can select useful features 

among basic sequence information, mechanical 

properties and motif features, and then a boosting 

technique is implemented to predict TSSs. We got 

McPromoter software from its authors and downloaded 

Eponine from its website25. We ran the programs of the 

three methods on our local computer.  

3.   RESULTS AND DISCUSSION

3.1.   Performance of AMOSA 

The performance of our system with AMOSA embedded 

is first compared with that without feature selection, i.e., 

using all available features for the prediction. Table 1 

shows the TP, FP, Sn and PPV values comparing the 

two methods due to different parameters. From table 1, 

we can see that the system using all the features to 

predict TSSs does not perform as good as the one 

having AMOSA feature selection embedded with the 

same parameters. Therefore, it can be concluded that, 

the feature selection method with AMOSA implemented 

is effective, making the prediction system achieve higher 

Sn and PPV even using fewer features.  

Table 1. Prediction results between all features and selected 

features using AMOSA. 

Parametersa Method TP FP Sn(%) PPV(%) 

All Features 283 887 22.3 24.20.10/1000 

AMOSA 319 886 25. 1 26.5

All Features 281 832 22.1 25.2 0.10/2000 

AMOSA  316 813 24.9 28.0 

All Features 304 1004 23.9 23.2 0.00/1000 

AMOSA  335 1014 26.4 24.8 

All Features 303 939 23.8 24.4 0.00/2000 

AMOSA 333 932 26.2 26.3

aThe parameters are the classification scores threshold (e.g. 0.10) 
and clustering distance (e.g. 1000). 

3.2.   Features for TSS Prediction

Among all the original features (more than 210), only 

about 90 features are selected each time on an average 

during the 5-fold cross validation. It is not surprising 

that not all the selected features are the same for 

different training sets, but there are quite a few features 

which are selected almost all the times. We count the 

number of times each feature is selected during the 5-

fold cross validation experiment.  

Table 2 lists the top features selected for model P 

vs. U and P vs. D separately while Table 3 for both 

models. From the tables, we can see that the known core 

promoter elements play great roles in the prediction, for 

their weight scores such as TATA90, Inr90, GCbox90 

appear in the top rank. Log-likelihood ratios from 3rd 

order Markov chain (denoted by MC) together with 

some energy/flexibility characters and motif features are 

also among the top features. Moreover, for the two LDA 

classifiers (P vs. U and P vs. D), the selected features 

are different. For example, the weighted score of the 7 

mer TATA box (denoted by TATA-7) has a lager 

possibility to appear in the classifier P vs. U, while the 

weighted score based on Bucher et al
26 for Inr (denoted 

by Inr90) is more frequently selected in the classifier P 

vs. D. That’s why we train the two classifiers (P vs. U 

and P vs. D) separately. The LOGOs for the motifs 

mentioned in table 2 or 3 are shown in table 4. 

As to the three categories of the features, namely 

the basic sequence features, the mechanical properties, 

and the motif features, the proportion of the features 

selected are not the same. We call the ratio of #(selected 

features) to #(total features) in each category as the 

feature selection ratio. From table 5, we can see that the 

selection ratio for the motif features is very low, even 

less than half of the other two. It indicates that the TFBS 

motif weight matrices seem to have less information in 

predicting TSSs in non-CpG related promoters. 

However, the reason may also be that there are many 

different motifs, playing different roles in different 

promoters (e.g. tissue-specificity). If we group the 

motifs according to their functions, their contribution in 

the prediction might be more and the performance might 

be further improved. Besides the motif features, there 

are also redundancies existed in the other two 

categories. 

3.3.   Comparison with Other Methods

We compare our system with three other effective and 

publicly available methods: McPromoter23, Eponine24, 

and CoreBoost17. Five-fold cross validation is used to 

evaluate the performance of our prediction system. 
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Fig. 4 depicts the plot of PPV vs. Sn to show the 

comparison results. Those different points for one 

method are due to the different parameters. The asterisks 

and the circles are for Eponine and McPromoter, 

respectively. The solid and dashed curves are for 

CoreBoost. And the squares and the triangles are for our 

system with different clustering distances, where the 

different points with the same symbol are for the 

different score thresholds from -0.20 (bottom right) to 

0.22 (top left). It is clear that our prediction system with 

clustering distance 2000bp outperforms Eponine, 

McPromoter and CoreBoost. The score threshold 0.03 

achieving 26.0% Sn and 26.5% PPV is chosen as the 

default threshold in our prediction system.  

Table 2.   Top selected features using AMOSA for models P vs. U and P vs. D. The 

total number of subsets of the selected features for the model P vs. U in 5-fold 

experiment is 43, while that for P vs. D is 46. 

P vs. U� count� ratio%�  P vs. D� count� ratio%�

MC� 43� 100.00 � aveTATA.flex� 46� 100.00 �

corr.flex.150.1000� 43� 100.00 � aveTSS.flex� 46� 100.00 �

corr.eng.500.250� 43� 100.00 � Inr90� 46� 100.00 �

corr.eng.1000.1300� 43� 100.00 � MC� 46� 100.00 �

V$ELK1_02.pos� 43� 100.00 � corr.flex.5.1300� 46� 100.00 �

V$HNF1_Q6.pos� 43� 100.00 � corr.eng.5.500� 46� 100.00 �

V$MYC_Q2.pos� 41� 95.35 � corr.eng.500.250� 46� 100.00 �

V$PAX6_01.pos� 41� 95.35 � CCAAT90� 45� 97.83 �

aveTATA.flex� 40� 93.02 � corr.eng.1000.1300� 45� 97.83 �

TSSdiffNew1.eng� 39� 90.70 � V$CDPCR1_01.pos� 44� 95.65 �

eud.eng.5.250� 39� 90.70 � TSSdiffNew2.eng� 41� 89.13 �

TATA90� 38� 88.37 � TATACCAAT90� 40� 86.96 �

corr.flex.500.1000� 38� 88.37 � aveTATA.eng� 39� 84.78 �

TATAdiffNew3.flex� 37� 86.05 � TATA90� 39� 84.78 �

Density� 37� 86.05 � TATAGCbox90.dist� 39� 84.78 �

eud.flex.1000.1000� 37� 86.05 � mc1stmc� 39� 84.78 �

Table 3. Top selected features using AMOSA in common. The total number of 

subsets of the selected features for both models in 5-fold experiment is 89. 

P vs. U P vs. D Both 

count� ratio%� count� ratio%� count� ratio%�

corr.eng.500.250� 43� 100.00 � 46� 100.00 � 89� 100.00�

MC� 43� 100.00 � 46� 100.00 � 89� 100.00�

corr.eng.1000.1300� 43� 100.00 � 45� 97.83 � 88� 98.88�

aveTATA.flex� 40� 93.02 � 46� 100.00 � 86� 96.63�

corr.flex.5.1300� 35� 81.40 � 46� 100.00 � 81� 91.01�

V$ELK1_02.pos� 43� 100.00 � 36� 78.26 � 79� 88.76�

TATA90� 38� 88.37 � 39� 84.78 � 77� 86.52�

V$HNF1_Q6.pos� 43� 100.00 � 34� 73.91 � 77� 86.52�

eud.eng.5.250� 39� 90.70 � 35� 76.09 � 74� 83.15�

V$CDPCR1_01.pos� 30� 69.77 � 44� 95.65 � 74� 83.15�

Inr90� 27� 62.79 � 46� 100.00 � 73� 82.02�

TSSdiffNew1.eng� 39� 90.70 � 34� 73.91 � 73� 82.02�

V$PAX6_01.pos� 41� 95.35 � 32� 69.57 � 73� 82.02�

Density� 37� 86.05 � 35� 76.09 � 72� 80.90�
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Fig. 4. Positive predictive value vs. sensitivity. 
The asterisks are for Eponine, which is the default result. The circles are for McPromoter with the default clustering distance 2000bp. 
The solid and the dashed curves are for CoreBoost, with the solid curve for clustering scores within 500bp and the dashed one for 
2000bp. The squares and the triangles are for our system with AMOSA embedded, of which the clustering distances are 2000bp and 
1000bp, respectively.  

Table 4. LOGOs of motifs listed in top features. 

Motif LOGO Note 

V$ELK1_02

V$HNF1_Q6 P vs. U 

V$MYC_Q2 P vs. U 

V$PAX6_01 P vs. U 

V$NFY_Q6_01 P vs. U 

V$PAX_Q6 P vs. U 

V$CDPCR1_01

V$HNF4_Q6_01

Table 5. The feature selection ratios for the different feature categories.

sequence features mechanical properties motif features total

ave. # ratio(%) ave. # ratio(%) ave. # ratio(%) ave. # ratio(%)
overall 33 100 114 100 66 100 213 100
P vs. U 15.4 46.7 55.2 48.4 15.4 23.3 86.0 40.4 

P vs. D 16.6 50.3 57.6 50.5 13.6 20.6 87.8 41.2 
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3.4.   Discussion

In this paper, we have proposed a new system based on 

AMOSA feature selection to predict TSSs in non-CpG 

related human promoters. Firstly, we generate features 

from the sequence characteristics, the mechanical 

properties and the TFBS motif scores. Thereafter, we 

implement AMOSA to select features to train LDA 

models. And finally, we use the LDA classification 

scores followed by some post-processing to predict 

TSSs. As a result, relatively higher prediction Sn and 

PPV are achieved when comparing to the other existing 

methods. 

It can be observed that the performance of all these 

methods still has a lot of room for improvement. This 

reflects the complexity of the problem and the 

insufficient understanding of the underlying biology. 

However, considering that we are trying to predict a 

single TSS with 50 bp resolution de novo from a long 

genomic DNA sequence, such moderate sensitivity and 

specificity are still welcome. The results can be also 

useful, in conjunction with other gene prediction tools, 

for helping biologists to prioritizing their experimental 

targets. Further improvement will likely require more 

detailed information on chromatin state and tissue/stage-

specificity of the promoter sequences.  
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