
MANGO: A NEW APPROACH TO MULTIPLE SEQUENCE ALIGNMENT

Zefeng Zhang and Hao Lin

Computational Biology Research Group, Division of Intelligent Software Systems,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Email: {zhangzf,linhao}@ict.ac.cn

Ming Li∗

David R. Cheriton School of Computer Science,
University of Waterloo, Ont. N2L 3G1, Canada

∗Email: mli@uwaterloo.ca

Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is
NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by
most state of the art multiple sequence alignment programs suffer from the ‘once a gap, always a gap’ phenomenon.
Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal
multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these
seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by
the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive
than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new
approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried
out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against
state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-
ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0. MANGO is available at
http://www.bioinfo.org.cn/mango/.

1. Introduction

Multiple sequence alignment is a basic and essential

step of many sequence analysis methods6. For ex-

ample, the multiple sequence alignment is used in

phylogenetic inference, RNA structure analysis, ho-

mology search, non-coding RNA (ncRNA) detection

and motif finding. For recent reviews in this area,

see Refs. 35 and 13.

Finding the optimal alignment (under the SP

score with affine gap penalty) for multiple sequences

has been shown to be NP-hard44. A trivial solution

by dynamic programming takes O(nk) time with k

sequences, each of length n. Under moderate as-

sumptionsa, the problem has a polynomial time ap-

proximation scheme (PTAS)28. However, this PTAS

remains to be a theoretical solution since it has a high

polynomial power related to the error rate. With the

rapid growth of molecular sequences, the problem be-

comes more prominent.

Thus many modern alignment programs re-

sort to heuristics to reduce the computational cost

while sacrificing accuracy. The prevailing strategy

is the progressive alignment method14, 41, imple-

mented in the popular ClustalW41 software, as well

as in the more recent multiple sequence alignment

programs MUSCLE11, T-Coffee34, MAFFT19, and

Progressive-POA17, to name a few. The idea be-

hind progressive alignment is to build the multiple

sequence alignment on the basis of pairwise align-

ments under the guidance of an evolutionary tree.

A distance matrix is computed from similarities of

sequence pairs, according to which a phylogenetic

tree is built38. The multiple alignment is then con-

structed by aligning two sequences or alignment pro-

files along the phylogenetic tree. In this way, the

progressive alignment method avoids the exponen-

tial search.

For a large number of sequences, distance matrix

calculation can be slow, and the optimal phylogenetic

tree construction itself, under the usual assumptions

of parsimony, max likelihood, or max number of

quartets, is NP-hard anyways. After all, sometimes

the purpose of doing multiple sequence alignment is

∗Corresponding author.
aFor example: when the average number of gaps per sequence is a constant, the problem has a PTAS.

237

to construct a phylogenetic tree itself. Then if we

didn’t believe the initial phylogeny (constructed to

do multiple sequence alignment), why should we be-

lieve in the phylogeny that is constructed based on

a multiple alignment which in turn is based on the

untrusted phylogeny? Again, heuristics were used to

accelerate the phylogenetic tree construction. Pair-

wise similarity is estimated using fast k-mer count-

ing in MUSCLE, and similar strategy can be seen

in the fast version of ClustalW. However, in spite

of its most attractive virtue — the speed, progres-

sive approach (adding sequences greedily to form

multiple sequence alignment) is born with the well-

known pitfall that, error introduced in early stages

cannot be corrected later (so-called ‘once a gap, al-

ways a gap’). Many efforts have been made to rem-

edy this drawback to enhance the accuracy of final

alignment. MUSCLE adds tree refinement after pro-

gressive alignment stage to tune the result. T-Coffee

uses consistency-based score reflecting global infor-

mation to assist pairwise alignment during the pro-

gressive alignment process. PROBCONS adopts a

probabilistic consistency-based way. All of them do

achieve better accuracy.

There are two alternatives to progressive ap-

proaches. One is simultaneous alignment of all se-

quences by standard dynamic programming (DP).

Two packages — MSA26 and DCA39 follow this idea.

However, algorithms in this category do not scale up

because of their heavy computational costs. Another

alternative is the iterative strategies16, 33, 18, 25.

Starting from an initial alignment, these methods

iteratively tune the alignment until there are no im-

provements to the objective functions. These iter-

ative strategies require a good initial alignment as

a start point, otherwise the iterative process will be

time-consuming or easily fall into local optima.

We now introduce the core idea of MANGO.

Given a set of sequences, how do we really judge

an alignment? Do we really care about aligning a

non-homologous region well? No. What we really

care is the aligner’s ability of putting similar regions

together, including the distant homologous regions.

Some similar regions are shared by most of (if not all)

sequences, while others may be shared by only a few

sequences. Gaps are inserted to get an alignment

which lines up the similar regions properly. With

this simple observation, we describe a new paradigm

to do multiple sequence alignment. Our new algo-

rithm uses the novel idea of optimized spaced seeds,

introduced by Ma, Tromp, and Li31 initially for

pairwise alignment, to find similar regions and bind

them together via sophisticated algorithms (which

are of theoretical interests on their own) and then

refine the alignment. Note that similar approaches

(Ref. 32) using consecutive or non-optimized k-mers

(with some gaps) might have been used in some pro-

grams to some degree, however, without optimized

spaced seeds, such approaches cannot achieve high

sensitivity and specificity as in MANGO. Also note

that these optimized spaced seeds are not dependent

on any data, they are independently optimized as

in Refs. 31, 29 and 9. Our new algorithm requires

neither the slow global multiple alignment nor the

inaccurate progressive local pairwise alignment.

The optimized spaced seeds have shown their ad-

vantages over traditional consecutive seeds for pair-

wise alignment in PatternHunter software31. It has

since been adopted by most modern homology search

software including BLAST (MegaBLAST). It has

been shown31, 22, 7, 30 that the optimized spaced

seeds can achieve much better sensitivity and speci-

ficity than consecutive seeds. After that, the idea of

a single optimized spaced seed is extended to multi-

ple optimized seeds in PatternHunter II program29.

Multiple seeds29, 40, vector seeds3, and neighbor

seeds8 were studied for even better sensitivity and

specificity. One multiple genomic DNA alignment

program4 uses optimized spaced seeds to find hits

between two sequences.

To validate our new approach, we have im-

plemented MANGO: Multiple Alignment with N

Gapped Oligos. MANGO uses multiple optimized

spaced seeds to catch similar regions (hits) quickly

with high sensitivity and specificity. A scoring

scheme is designed to encode global similarity infor-

mation in hits. Hits with scores beyond a threshold

are arranged carefully to form parts of the alignment.

Under the constraint of these hits, banded dynamic

programming is carried out to achieve a global solu-

tion.

Experiments were carried out on large 16S RNA

benchmarks showing that MANGO compares favor-

ably, in both accuracy and speed, against state-of-

art multiple sequence alignment methods, including

ClustalW, MUSCLE, MAFFT, ProbConsRNA, Di-

align, DIALIGN-T, T-Coffee, POA and Kalign.

The experiments were performed only on nu-

238

cleotide sequences for the purpose of justifying our

new approach. For multiple protein sequence align-

ment, other factors, such as similarity scoring schema

and secondary structure information affect the align-

ment quality a lot, hence potentially would blur the

comparative results on the effectiveness of optimized

spaced seed approach.

2. Method

The work flow of MANGO is given in Fig 1. Our

strategy contains three stages. After any stage,

MANGO can be stopped and it will output the align-

ment constructed so far. In stage one of template

construction, MANGO locates super motifs in input

sequences, and builds a skeletal alignment by pasting

each sequence to the template exposed by motifs. In

stage two of hit binding, MANGO first sorts the hits

according to their agreements among themselves and

then tries to bind hits one by one into the skeletal

alignment. Iterative refinement is then carried out

in stage three to produce the final alignment, where

MANGO picks out one sequence at a time, and aligns

it to the current alignment of the rest of sequences.

high freq

kmer

profile

template

skeletal

alignment

low freq

kmer
hits sorted hits

locate

motif

paste

each seq to

template

vote

among

hits

bind hits

greedily

initial

alignment

final

alignment

iterative

refinement

stage one

stage two

stage three

Fig. 1. Three stages of MANGO: template construction, hit
binding and iterative refinement, producing skeletal align-

ment, initial alignment and final alignment, respectively.

2.1. Seeds selection

Following the original notation of Ref. 31, we de-

note a spaced seed by a binary string. A “1” in the

spaced seed means it requires a match at the po-

sition, and a “0” indicates a “don’t care” position

not requiring a match. The length of the seed is

the length of the binary string, and the weight of

the seed is the number of 1’s in the seed. For rea-

sons why the optimized spaced seeds are much better

than the consecutive BLAST type of seeds, please

see Refs. 31 or 30 which points to many more recent

theoretical studies. We have used eight highly in-

dependent spaced seedsb generated from the parent

seed 1110110010110101111, with seed weight 13 and

seed length ranged from 19 to 23 from Ref. 9. 82 sin-

gle optimal spaced seed with weight ranged from 9

to 16 and length ranged from 9 to 22, are optimized

against a 64-length IID region of similarity level 0.7,

using the dynamic programming algorithm described

in Ref. 22. These 82 seeds are sorted with decreasing

weight, to prefer specificity to sensitivity. We used

the first seed to locate the super motifs and construct

profile template, then we applied the other seeds one

by one.

For each seed-match (namely a hit), we call the

matched fragment a k-mer. The k-mer has the same

length as the seed.

2.2. Stage one: constructing profile

template

If a piece of sequence segment is shared by a consid-

erably large portion of input sequences, we call it a

super motif. The super motifs reflect the conserved

parts among sequences and are very likely to ap-

pear in the final alignment, hence pining them down

will give guidance to the whole alignment process.

MANGO uses an optimized spaced seed to detect

super motifs, thus they are not necessarily the same

(due to ‘no care’ positions of spaced seed), as long as

they have high similarity to be caught by the spaced

seed. The detection is performed as the following.

Highly frequent k-mers (currently defined as 25% of

the input sequences having the k-mer) extracted by

the spaced seed are lined up according to their rel-

ative appearance in each sequence. Then MANGO

determines overlapping portion (see middle of Fig 2

for demonstration of overlap) of adjacent k-mers, by

searching for their existing overlapping parts in each

sequence. In this way, a super motif is represented

b11100110110010101111,1101110110000110100111,
1011110010110111011,11001110000010110101111,
10110111010110001111,10101010110010100101111,
1110110001111101101,11001110110010010001111.

239

by a series of overlapping k-mers, and all those k-

mers are concatenated together to form the profile

template. After that MANGO aligns each sequence

to the template. As Fig 2 indicates, those highly

frequent k-mers resided inside each sequence is di-

rected (aligned) to corresponding position in profile

template, thus produces a skeletal alignment.

profile template

sequence 1

sequence 2

Fig. 2. MANGO locates super motifs by highly frequent k-
mers (shaded boxes) and constructs profile template by con-

catenating them. Those k-mers inside each sequence are
aligned to the profile template, producing a skeletal alignment.

The impact of this stage is twofold: the profile

template provides anchors and constraints for later

alignment process, and wiping out highly frequent

k-mers greatly reduces the number of hits to be con-

sidered in stage two of hit binding.

2.3. Stage two: binding the hits

2.3.1. Vote among hits

After getting rid of the super motifs, less frequent

k-mers extracted by single or multiple spaced seeds

will generate a set of hits among sequences. Hits may

conflict to each other and MANGO tries to select a

good compatible subset of them. Since the consistent

relationship among those hits reflects the global sim-

ilarity of input sequences, MANGO encodes global

information into each hit by assigning it a priority

score, which is voted by other hits to agree or dis-

agree that this hit should appear in final alignment.

The consistency and inconsistency relationships

of the hits are illustrated in Fig 3, corresponding to

“yes” vote (positive score) and “no” vote (negative

score), respectively. Assume that hiti and hitj occur

between the same two sequences. Let S(i, j) be the

vote score for hiti by hitj, which is calculated as:

(1) if hiti and hitj are incompatible (either they

are order incompatible as in Fig 3(1.a) or they

are overlapped but their nucleotide mapping or-

der is inconsistent as in Fig 3(1.b)), they can

not appear in the same alignment simultane-

ously. Hence hitj will vote against hiti, and

S(i, j) = −Wdisagree;

(2) if hiti and hitj are order compatible as Fig 3(2.a)

indicates, the appearance of hitj in a certain

alignment will encourage hiti to appear too, and

S(i, j) = Wagree;

(3) if hiti and hitj are overlapped and their nu-

cleotide mapping order is consistent as Fig 3(2.b)

indicates, MANGO further considers their

overlapped region size in this case. De-

fine overlapping ratio between them as α =

overlap size/(2l − overlap size), where l is the

spaced seed (hit) length. Then S(i, j) = α ∗

Woverlap high + (1 − α) ∗ Woverlap low;

We also have indirect votes from k-mers on other

sequences too. If hitj votes for or against hiti (as in

Fig 3(3.a) and (3.b)), those k-mers same as k-mer of

hitj on other sequences (C in Fig 3(3)) will increase

the power of voting, since occurrence of C through

hitj will enhance the probability that hiti appears

or doesn’t appear in final correct alignment.

1.a order incompatible

hiti hitj

C

hiti
hitj

1.b overlap incompatible

hiti hitj

2.a order compatible 2.b overlap compatible

hiti
hitj

hiti hitj

3.a indirect agree

C

3.b indirect disagree

hiti hitj

C T G A TA

C T G TA G G A T

C T G A TA

C T G TA A

Fig. 3. To uncover global similarities, MANGO assigns hiti
a priority score, which is voted by other hits: (1) “no” vote:
hitj and hiti are order incompatible in 1.a or they have incon-
sistent nucleotide mapping order in 1.b; (2) “yes” vote: hitj
and hiti are order compatible in 2.a or they have consistent
nucleotide mapping order in 2.b; (3) indirect vote from k-mer
C who increases voting power of hitj to hiti.

Let N(hit) be the number of sequences that have

the same k-mer as that inside hit. The priority score

assigned to hiti is calculated as
∑

j S(i, j) ∗ (1 +

(N(j) − 2) ∗ Windirect). The voting results are col-

lected and hits are sorted according to their score.

Low scored hits (probably random hits) are removed

240

and the remaining hits are considered as candidates

into next hit binding stage.

2.3.2. Bind hits greedily

In the second part of stage two of hit binding,

MANGO will try to bind each hit (high score first)

into skeletal alignment generated from stage one, by

greedily checking hit candidates one by one. To

bind a hit is to align all corresponding sequence let-

ter pairs along the hit and fix their positions (once

aligned, they remain aligned). What we want is to

arrange the relative positions of the hits carrying

similarity information. Thus, a natural way is to

formulate an alignment solution as a directed acyclic

graph(DAG), by viewing aligned nucleotides as one

vertex. We found Ref. 25 employs a similar DAG

formation.

S0

S1

S2

S3

0 1 2 3 4 5 0 1 2 3 4 5

(A) (B)

Fig. 4. By viewing aligned nucleotides as one vertex, an
alignment can be formulated as a DAG.

Given N sequences each with Li nucleotides, we

denote jth nucleotide in sequence Si as a vertex Si,j .

Directed edges are linked from Si,j to Si,j+1, for 0 ≤

j < Li − 1. Thus, the initial graph G = 〈V, E〉 has
∑

0≤i<N Li vertices and
∑

0≤i<N (Li − 1) edges. If

the nucleotide of Si,j is aligned to another nucleotide

of Si′,j′ , we merge vertex Si,j to Si′,j′ , with their cor-

responding edges naturally to the super node. It is

obvious that each valid alignment solution is equiv-

alent to a DAG. The skeletal alignment we have ob-

tained in the first stage of MANGO is such a DAG,

as Fig 4 indicates.

For the DAG G = 〈V, E〉 of skeletal alignment,

a hit can be represented by a vertex pair array

〈(s1, t1), (s2, t2), . . . , (sl, tl)〉, where si, ti ∈ G(1 ≤

i ≤ l) and 〈si, si+1〉 ∈ E, 〈ti, ti+1〉 ∈ E(1 ≤ i ≤ l−1).

In other words, a hit is a vector of adjacent ver-

tex pairs. Binding a hit means to merge a vertex

pair into one single vertex. But the success of doing

so requires that the resulting graph is still a DAG,

which represents a valid alignment solution. Start-

ing from the DAG of skeletal alignment, MANGO

greedily chooses a hit from the candidate set. If the

above criteria are satisfied, MANGO binds it to the

DAG (updates the DAG by merging the correspond-

ing vertices); otherwise, the hit is discarded.

Let reach(s, t) be a predicate which is true iff

s �= t and there is a directed path from s to t

in the DAG. If we merge two vertices x and y

when reach(x, y) ∨ reach(y, x) is true, then the re-

sulting graph is no longer a DAG, due to the cir-

cle introduced. So a hit 〈(s1, t1), (s2, t2), . . . , (sl, tl)〉

can be bound into alignment DAG, if and only if

¬reach(si, ti) ∧ ¬reach(ti, si), for 1 ≤ i ≤ l.

si

ti

hitsi-1

ti-1

s1

t1

s2

t2

sl

tl

(1) (2)

? ? ?

Fig. 5. (1) The success of binding a hit 〈(s1, t1), (s2, t2), . . . ,

(sl, tl)〉 requires that there is no directed path between any
vertex pair (si, ti), 1 ≤ i ≤ l; (2) We check that by expanding
left predecessors (grey area) of (si, ti), bypassing those already
expanded by (si−1, ti−1) (dark grey area).

Now we describe the process of binding a hit can-

didate. As indicated in Fig 5(1), we need to check

that there is no directed path between two vertices

in any vertex pair, and if success, we will update

the DAG. An intuitive way is to maintain a transi-

tive closure matrix, that is, to record the reachability

for each pair of vertices. This strategy has constant

query time and update time of O(l ∗ n), where n is

the vertex number. Neither the space complexity of

O(n2) nor the updating complexity of O(l ∗ n) is ac-

ceptable, as n is too large and the update operation

is quite frequent.

To our knowledge, the best result of reachability

algorithm without explicitly maintaining transitive

closure matrix on general directed graph is due to

Ref. 37. They provide a nice full dynamic (support-

ing query, edge insertions and deletions) algorithm

with query time O(n) and amortized update time

of O(m + nlog(n)), where m is the edge number.

The best result on DAGs appears in Ref. 36 with

query time of O(n
log(n)) and amortized update time

of O(m). Neither of them is suitable to our prob-

lem with frequent updates of vertex merging. Thus

we design an algorithm supporting query and ver-

tex merging on DAGs, with nearly constant update

241

(merging) time and O(n) query time in the worst

case, for a vector of arbitrary number of adjacent

vertex pairs.

Let L(s) = {i|reach(i, s), i ∈ V } and R(s) =

{i|reach(s, i), i ∈ V }. We call L(s) the (left) prede-

cessor set of s and R(s) the (right) successor set of

s. We know that:

Lemma 2.1. reach(si, ti) ⇐⇒ R(si) ∩ L(ti) �= ∅.

Corollary 2.1. hit 〈(s1, t1), (s2, t2), . . . , (sl, tl)〉 can

be bound into alignment DAG ⇐⇒ L(si) ∩ R(ti) =

∅ ∧ R(si) ∩ L(ti) = ∅, for 1 ≤ i ≤ l.

The reachability of vertex pairs in a hit are not

independent, due to:

Lemma 2.2. L(si) ⊂ L(si+1) and R(ti) ⊃

R(ti+1)(1 ≤ i < l).

By Corollary 2.1 and Lemma 2.2, we can check

reachability of vertex pairs in an incremental way.

After we checked that L(si) ∩ R(ti) = ∅ ∧ R(si) ∩

L(ti) = ∅, for vertex pair (si+1, ti+1), we only need to

check that (L(si+1)\L(si))∩R(ti+1) = ∅∧R(si+1)∩

(L(ti+1)\L(ti)) = ∅. So for each given vertex pair, we

check reachability between them by expanding the

left predecessors of these two vertices, searching for

any vertex that is located at the right side (marked

black in Fig 5(2)) along two sequences, while bypass-

ing those vertices already expanded by prior pairs.

This can be done in O(n) time in the worst case for

arbitrary number of vertex pairs, because no vertex

is expanded twice during checking process of all ver-

tex pairs of a hit. Nearly constant update (merging)

time O(l ∗ α(n)), where α(n) is inverse Ackermann

function, is achieved if for each vertex we maintain a

list of its incoming vertices and record the list head

and tail pointers. To merge two vertices, we alias

them by Union-Find algorithm and merge their in-

coming lists.

At this point, MANGO applies seeds sequen-

tially, with seeds of higher weights used first. That

is, for each given seed, MANGO searches for hits,

calculates their voting score and finds the best way

to bind them. This strategy is temporarily adopted

mainly for memory efficiency. In future, MANGO

will include an option of using several seeds each

step. This will increase significantly the memory us-

age, however it has a potential to further increase

sensitivity and specificity.

It should be noted that similar regions are ar-

ranged carefully to form a basic alignment without

considering any gap penalty in the above two steps.

2.4. Stage three: iterative refinement

After stage two of hit binding, input sequence let-

ters are tightly bound as a DAG, and the final stage

of MANGO tries to refine this alignment, with re-

spect to the topological structure of DAG. Each time

one sequence is selected and corresponding DAG ver-

tices (black nodes in Fig 6) are picked out to form

one input. The rest of vertices inside DAG form an-

other input, and MANGO performs a dynamic pro-

gramming (DP) using similar heuristic strategy to

Ref. 20. User can also choose to perform an optimal

alignment search with affine gap penalty described

in Ref. 21, which we modified to fit in our alignment

situation.

The scoring scheme we used is the simplest sum-

of-pairs (SP) score, with matching nucleotide pairs

scoring 1 and mismatching pairs scoring 0. The gap

open penalty and gap extend penalty are −1.53 and

−0.23 respectively, same with that used in MAFFT.

a

b

b

a

(1) (2)

selected

sequence

Fig. 6. (1) In refinement stage, MANGO picks out a sequence
each time and aligns it to other sequences based on current
alignment. (2) The topological order of DAG (such as vertex a

must appear before vertex b) helps to narrow down the search
space (the grey area is skipped).

However, the vertex orders in DAG can help to

narrow down the search space of DP. This can be

seen from Fig 6. The DAG requires vertex b to ap-

pear after vertex a in any valid alignment, thus a

portion (shaded area in Fig 6(2)) of quadratic search

space is cut off. In practice, the DP is performed in

a banded search space with almost linear time and

space.

We find the idea of Iterative POA25 is similar to

what we do in the refinement part. It extracts one

sequence out and aligns it to the rest DAG by DP,

slightly different from the DP with constraints we re-

vised from Ref. 21. However, without the guidance

242

of bounded hits, local optima is easily reached in the

iterative way.

The above three stages constitute the core al-

gorithms of MANGO. Finding profile template and

constructing a skeletal alignment is the fastest; bind-

ing hits is efficient by the reachability detection algo-

rithm described above, and experiments (see below)

show that this stage is responsible for most accuracy

ratio; refinement stage is the slowest, but it can un-

cover similarities that have escaped the detection of

the optimal spaced seeds.

3. Results

This section assesses the performance of MANGO on

three large alignment benchmarks of small subunit

(SSU) ribosomal RNA (16S RNA) for phylogenet-

ically representative sets of prokaryotes, mitochon-

drial and eukaryotes, respectively (version 9.36)5.

These alignments are hand-curated by the Ribosomal

Database Project (RDP-II) at the Michigan State

University.

All leading multiple sequence alignment soft-

ware (using their most recent publicized versions),

which are able to do large scale multiple sequence

alignment, are compared with MANGO: ClustalW

1.8341, the most popular software; MUSCLE 3.611,

a fast program aims at speed and accuracy; MAFFT

5.86119, with many recent improvements from pre-

vious versions; Dialign 2.2.132; DIALIGN-T 0.2.12,

improved version of Dialign; T-Coffee 4.8534, well

known for its accuracy; POA 2.025, 17, based on

partial order graph formulation and Kalign 2.024.

Two versions of ClustalW: ClustalW-fast (with

−quicktree parameter) and ClustalW (full ver-

sion), two versions of MUSCLE: MUSCLE-fast (with

−maxiters 1 −diags parameters) and MUSCLE

(full version), two versions of MAFFT: MAFFT-fast

(FFT-NS-1 with −retree 1 −maxiterate 0 parame-

ters, the fastest version) and MAFFT (L-INS-i with

−localpair −maxiterate 1000 parameters, the most

accurate version), two versions of Dialign: Dialign-

fast (with −o −ds parameters to speed up DNA

alignment) and Dialign (full version) are tested to

compare speed, memory usage and alignment accu-

racy. All experiments were carried out on a PC with

Intel Celeron-2.0 processor and 1G main memory,

and all data sets and experimental results are avail-

able on MANGO website. ProbConsRNA10 has com-

parable SP score and PS score with MAFFT on the

three data sets. However, its consuming time is too

long, so we included the MAFFT result only.

3.1. Measurement

Alignment accuracy is measured by SP and PS

scores11. Let A be the alignment generated by the

program. Let R be the (supposedly correct, or hu-

man curated in our case) reference alignment. SP

score (also known as Q score and SPS score43) is de-

fined as the number of correctly aligned nucleotide

pairs in A divided by total number of nucleotide let-

ter pairs in R. PS score12 is defined as the number

of correctly aligned nucleotide pairs in A divided by

total number of nucleotide pairs in A. Thus, SP

score measures the sensitivity of the alignment A

and PS score measures the specificity of the align-

ment A. All these scores were calculated by the pro-

gram bali score from Ref. 43, which removes noisy

columns containing mostly gaps from alignments.

3.2. MANGO versions

Time and accuracy varies if we choose to use first

eight seeds or use all ninety seeds. Also time is

reduced if we remove refinement stage. We simply

provide the experimental results for all four versions

of MANGO: MANGO8, where we used eight neigh-

bor seeds without the refinement stage; MANGO8-r,

where the refinement stage was added to MANGO8;

MANGO90, where we used all 90 seeds without re-

finement; and MANGO90-r, where the refinement

stage was added to MANGO90.

3.3. The 16S SSU rRNA data set

The 16S SSU rRNA benchmark has three data sets

for prokaryotes, mitochondrial and eukaryotes, re-

spectively. The first data set (prokaryotes) has 218

sequences with average sequence length 1487 bp; the

second data set (mitochondrial) has 76 sequences

with average length 1075 bp and the third data set

(eukaryotes) has 140 sequences with average length

1823 bp. The mitochondrial data set is the smallest

but with the lowest similarity among three data sets.

3.4. The assessment

Table 1 to 3 present the experimental results on the

data sets. We make a few observations below:

243

• On all three data sets, MANGO90 is simultane-

ously more sensitive (SP score), more specific (PS

score) and much faster than ClustalW, ClustalW-

fast, MUSCLE, iterative POA and progressive

POA. The sensitivity of MUSCLE-fast is too low.

MANGO8 has higher sensitivity, higher specificity,

and higher speed simultaneously than MUSCLE-

fast. Comparing to MUSCLE and ClustalW (the

two most trusted software), MANGO90-r achieves

both higher SP and PS scores, in half of MUS-

CLE’s or ClustalW’s time, on all three data sets.

• Except for a few unbalanced cases (when

DIALIGN-T has very low sensitivity but higher

specificity), for all data sets, with lower speci-

ficity and significantly lower sensitivity, Dialign,

DIALIGN-T and Dialign-fast all run many times

slower than any version of MANGO. The speci-

ficity of these programs is generally good. Al-

though Kalign runs quite fast, it has both low sen-

sitivity and specificity.

• On all three data sets, MANGO has slightly lower

sensitivity (SP scores) but higher specificity (PS

scores) against MAFFT full version but MANGO

(MANGO90-r), at similar sensitivity and speci-

ficity, is at least 5 times faster than MAFFT full

version in all cases.

• On the low similarity data of mitochondrial data

set, all programs have very poor performance ex-

cept MANGO and MAFFT. MAFFT has high SP

score and MANGO has high PS score and with sec-

ond highest SP score. Here MANGO90 finished in

37 seconds vs. MAFFT finishing in 14 minutes.

• T-Coffee failed in two cases. For the case (mi-

tochondrial) it finally finished after 37 hours, its

sensitivity and specificity were both inferior to

MANGO90-r, which finished in less than 3 min-

utes.

• MANGO seeds were trained universally as in

PatternHunter31, 29, 9, not tuned for these data

sets.

• MANGO’s strategy is more suitable for medium

scale input, such as data sets with more than

20 sequences. Because MANGO does not invest

heavily on the refinement stage, it doesn’t per-

form as well as some of the specialized methods

such as ClustalW on the popular nucleotide MSA

benchmark BRALiBASE15, in which each refer-

ence alignment is generally short and composed of

small number of sequences.

• MANGO is also able to handle extremely large

data sets. In addition to these three data sets,

we have also used MANGO to align over 20,000

reads for some repeat regions, for the purpose of

sequence assembly, which was one of our original

reasons to begin this research.

• As a word of caution, higher SP scores or higher PS

scores do not necessarily imply that the alignment

is better biologically. What we hope to achieve via

this experiment is to demonstrate that our new ap-

proach can help to capture the global features (re-

flected by the PS score) of an alignment. We think

capturing sufficient aligned parts with higher con-

fidence is probably more important than aligning

more pairs in a random region.

We also carried out experiments on multiple

alignment of Alu sequences in Human genome. Due

to the space limit, more experimental results will be

presented in the full version of this paper.

4. Discussion

In this paper, we have presented a new approach

to multiple sequence alignment, orthogonal to ex-

isting approaches. Necessary algorithms were de-

veloped for managing the hits efficiently, getting rid

Table 1. performance evaluation on prokaryotes 16S SSU
rRNA benchmark data set

data set program SP PS time(s) mem(M)

ClustalW-fast 0.937 0.929 324 4
ClustalW 0.913 0.932 6380 4
MUSCLE-fast 0.925 0.928 145 216
MUSCLE 0.937 0.928 1427 216
MAFFT-fast 0.931 0.930 42 137
MAFFT 0.949 0.942 6006 149
Dialign-fast 0.924 0.934 123083 409

proka- Dialign 0.921 0.928 202903 401
ryotes DIALIGN-T 0.770 0.952 20719 201

T-Coffee - - failed -
POA-iter 0.881 0.901 1106 48
POA-prog 0.899 0.927 8495 71
Kalign 0.926 0.914 73 6
MANGO8 0.929 0.942 121 49
MANGO8-r 0.944 0.939 660 49
MANGO90 0.943 0.945 299 49
MANGO90-r 0.944 0.943 592 49

a The SP and PS scores for each method on three 16S SSU
rRNA benchmark data sets are listed, together with CPU time
in seconds and memory usage in megabytes. Top three SP and
PS scores are marked bold.

244

Table 2. performance evaluation on mitochondrial 16S SSU
rRNA benchmark data set

data set program SP PS time(s) mem(M)

ClustalW-fast 0.442 0.408 63 3
ClustalW 0.478 0.469 242 3
MUSCLE-fast 0.357 0.364 30 74
MUSCLE 0.442 0.421 333 74
MAFFT-fast 0.591 0.558 33 147
MAFFT 0.734 0.691 829 129
Dialign-fast 0.538 0.777 1070 34

mitoch- Dialign 0.588 0.763 3024 37
ondrial DIALIGN-T 0.209 0.000 1202 26

T-Coffee 0.594 0.740 135063 1000
POA-iter 0.316 0.328 234 30
POA-prog 0.485 0.494 581 10
Kalign 0.375 0.330 12 4
MANGO8 0.530 0.859 4 10
MANGO8-r 0.595 0.739 589 89
MANGO90 0.590 0.878 37 10
MANGO90-r 0.596 0.836 155 42

b The inconsistency of SP and PS score for DIALIGN-T is due
to the calculation process of bali score, which removes columns
containing mostly gaps.

Table 3. performance evaluation on eukaryotes 16S SSU rRNA
benchmark data set

data set program SP PS time(s) mem(M)

ClustalW-fast 0.874 0.844 348 5
ClustalW 0.844 0.866 4013 5
MUSCLE-fast 0.588 0.675 148 186
MUSCLE 0.863 0.836 2638 186
MAFFT-fast 0.887 0.874 81 192
MAFFT 0.905 0.880 3428 147
Dialign-fast 0.821 0.891 28604 205

eukar- Dialign 0.840 0.894 53791 205
yotes DIALIGN-T 0.761 0.936 15527 112

T-Coffee - - failed -
POA-iter 0.753 0.796 1011 69
POA-prog 0.796 0.822 5238 76
Kalign 0.869 0.837 71 6
MANGO8 0.861 0.904 75 28
MANGO8-r 0.896 0.880 2281 72
MANGO90 0.887 0.911 305 29
MANGO90-r 0.890 0.896 661 41

of false hits and combining the hits. To demonstrate

our methodology, we have implemented MANGO for

multiple alignment of nucleotide sequences.

Our new approach build the alignment “region

by region”, unlike progressive alignment methods

which build the alignment sequence by sequence. In

this way, we align sequences simultaneously, avoiding

the inherent ‘once a gap, always a gap’ phenomenon

for progressive approaches. Additionally, the new

paradigm has two more advantages. First, prior bi-

ological knowledge can be easily added to the skele-

tal alignment, as user-defined constraints/bindings.

Secondly, input sequences from diverging families

can cause problems for many global multiple se-

quence alignment programs. In this case, local mul-

tiple sequence alignment programs1, 27 are prefer-

able. This problem is taken care of naturally by our

method. Since we build the skeletal alignment and

arrange hits step by step on the basis of similar re-

gions, sequences with different conserved regions do

not interfere among themselves as much as in the

progressive alignment approaches.

Hits produced by spaced seeds are the footstone

of our method and the alignment accuracy is based

on the correctness of binding hits. Though our voting

strategy can get rid of most of the false hits, choos-

ing a better set of multiple spaced seeds with higher

sensitivity and specificity can enhance the accuracy

and reduce running time. Up to now, the refinement

stage contributes not too much to the final result,

but we believe changing the scoring scheme in the

final stage will enhance the result more.

Though we have focused on nucleotide sequences

in this paper for the purpose of clean methodol-

ogy comparative study, our method can be extended

to protein sequences by designing multiple seeds for

protein sequences and redefining seed hits on protein

sequences similar to protein pairwise alignment23,

then fusing the secondary structure and profile in-

formation into hit finding. This project is underway.

Acknowledgement

We thank Bin Ma for providing the neighbor seeds

from Ref. 9, and Dan Brown, Dongbo Bu and Yu Lin

for discussions on multiple sequence alignment.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W.,
Lipman, D.J. (1990) Basic local alignment search
tool. Journal of Molecular Biology 215, 403-410.

2. Amarendran, R.S., Jan W.M., Michael K., Burkhard
M. (2005) DIALIGN-T: An improved algorithm for
segment-based multiple sequence alignment. BMC
Bioinformatics 6, 66.

3. Brejová B., Brown, D., Vinar, T. (2005) Vector
seeds: An extension to spaced seeds. Journal of
Computer and System Sciences. bf 70 364-380.

4. Brown, D.G., Hudek, A.K., (2004) New Algo-

245

rithms for Multiple DNA Sequence Alignment. Al-
gorithms in Bioinformatics, 4th International Work-
shop (WABI), 314-325

5. Cannone, J.J., Subramanian, S., Schnare, M.N., Col-
let, J.R., D’Souza, L.M., Du, Y., Feng, B., Lin, N.,
Madabusi, L.V., Muller, K.M., Pande, N., Shang,
Z., Yu, N., and Gutell, R.R. (2002) The Comparative
RNA Web (CRW) Site: An Online Database of Com-
parative Sequence and Structure Information for Ri-
bosomal, Intron, and other RNAs. BioMed Central
Bioinformatics 3, 2.

6. Carrillo, H. & Lipman, D. J. (1988) The multiple se-
quence alignment problem in biology. SIAM J. Appl.
Math. 48, 1073-1082.

7. Choi, KP. & Zhang, LX. (2004) Sensitivity analysis
and efficient method for identifying optimal spaced
seeds. Journal of Computer and System Sciences, 68,
22-40.

8. Csűrös, M. & Ma, B. (2005) Rapid Homology Search
with Two-Stage Extension and Daughter Seeds. CO-
COON 11, 104-114.

9. Csűrös, M. & Ma, B. (2006) Rapid homology search
with neighbor seeds. To appear in Algorithmica

10. Do, C.B., Mahabhashyam, M.S.P., Brudno, M.,
and Batzoglou, S. (2005) PROBCONS: Probabilis-
tic Consistency-based Multiple Sequence Alignment.
Genome Research, 15, 330-340.

11. Edgar RC. (2004) MUSCLE: multiple sequence
alignment with high accuracy and high throughput.
Nucleic Acids Res 32, 1792-1797.

12. Edgar RC. & Sjolander K. (2004) MUSCLE: A com-
parison of scoring functions for protein sequence pro-
file alignment. Bioinformatics 8, 1301-1308.

13. Edgar RC. & Batzoglou S. (2006) Multiple sequence
alignment. Current Opinion in Structural Biology
16, 368-373.

14. Feng, DF. & Doolittle, RF. (1987) Progressive se-
quence alignment as a prerequisite to correct phylo-
genetic trees. J. Mol. Evol. 25, 351-360.

15. Gardner PP, Wilm A, Washietl S. (2005) A bench-
mark of multiple sequence alignment programsupon
structural RNAs. Nucleic Acids Res. 2005, 33, 2433-
2439.

16. Gotoh O. (1996) Significant improvement in accu-
racy of multiple protein sequence alignments by it-
erative refinement as assessed by reference to struc-
tural alignments. J Mol Biol 1996, 264, 823-838.

17. Grasso, C. and Lee, C. (2004) Combining partial
order alignment and progressive multiple sequence
alignment increases alignment speed and scalabil-
ity to very large alignment problems. Bioinformatics
2004, 20, 1546-1556.

18. Katoh K, Misawa K, Kuma K, Miyata T. (2002)
MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic
Acids Res 2002, 30, 3059-3066.

19. Katoh K, Kuma K, Toh H, Miyata T. (2005)
MAFFT version 5: improvement in accuracy of mul-

tiple sequence alignment. Nucleic Acids Res 2005,
33, 511-518.

20. Kececioglu, J. and W. Zhang. (1998) Aligning align-
ments. Proceedings of the 9th Annual Symposium on
Combinatorial Pattern Matching 189-208.

21. Kececioglu, J. and D. Starrett. (2004) Aligning align-
ments exactly. Proceedings of the 8th ACM Confer-
ence on Research in Computational Molecular Biol-
ogy (RECOMB) 85-96.

22. Keich, U., Li, M., Ma, B., Tromp, J. (2004) On
spaced seeds for similarity search. Discrete Applied
Mathematics 138 253-263.

23. Kisman, D., Li, M., Ma, B., and Wang, L. (2005)
tPatternHunter: gapped, fast and sensitive trans-
lated homology search. Bioinformatics, 21:4, 542-
544.

24. Lassmann T. and Erik L.L. Sonnhammer (2005)
Kalign - an accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics 6, 298.

25. Lee C, Grasso C, and Sharlow MF. (2002) Multi-
ple sequence alignment using partial order graphs.
Bioinformatics 18(3), 452-464

26. Lipman, D. J., Altschul, S. F. & Kececioglu, J. D.
(1989) A tool for multiple sequence alignment. Proc.
Natl Acad. Sci. USA, 86, 4412-4415.

27. Lawrence, C. E., Altschul, S. F., Boguski, M. S.,
Liu, J. S., Neuwald, A. F. & Wootton, J. C. (1993)
Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science, 62, 208-
214.

28. Li, M., Ma, B., Wang, L. (2000) Near optimal align-
ment within a band in polynomial time. Proc. 32nd
ACM Symp. Theory of Computing (STOC’00), Port-
land, Oregon, 425-434.

29. Li, M., Ma, B., Kisman, D., Tromp, J. (2004)
PatternHunter II: highly sensitive and fast homol-
ogy search. Journal of Bioinformatics and Compu-
tational Biology 2 411-439.

30. Li, M., Ma, B., Zhang, L. (2006) Superiority and
complexity of the spaced seeds. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Dis-
crete algorithms (SODA 2006), 444-453.

31. Ma, B., Tromp, J., Li, M. (2002) PatternHunter:
faster and more sensitive homology search. Bioin-
formatics 18 440-445.

32. Morgenstern, B. (1999) Dialign2: improvement of
the segment-to-segment approach to multiple se-
quence alignment. Bioinformatics, 15, 211-218.

33. Notredame, C. & Higgins, D. G. (1996) SAGA: se-
quence alignment by genetic algorithm. Nucl. Acids
Res. 24, 1515-1524.

34. Notredame, C., Higgins DG, Heringa J. (2000) T-
Coffee: a novel method for fast and accurate mul-
tiple sequence alignment. J. Mol. Biol. 2000, 302,
205-217.

35. Notredame,C. (2002) Recent progress in multiple se-
quence alignment: a survey. Pharmacogenomics, 3,
131-144.

246

36. Roditty, L. and Zwick, U. (2002) Improved dynamic
reachability algorithms for directed graphs. Proceed-
ings of FOCS’02, 679-689.

37. Roditty, L. and Zwick, U. (2004) A fully dynamic
reachability algorithm for directed graphs with an
almost linear update time. Proc. of 36th STOC, 184-
191.

38. Saitou, N. & Nei, M. (1987) The neighbor-joining
method: a new method for reconstructing phyloge-
netic trees. Mol. Biol. Evol. 4, 406-125.

39. Stoye, J., Moulton, V. & Dress, A. W. (1997)
DCA: an efficient implementation of the divide-and-
conquer approach to simultaneous multiple sequence
alignment. Comput. Appl. Biosci. 13, 625-626

40. Sun, Y., Buhler, J. (2004) Designing multiple simul-
taneous seeds for DNA similarity search. Proc. 8th
Annual International Conference on Computational

Molecular Biology (RECOMB). 76-84
41. Thompson, J., Higgins, D. & Gibson, T. (1994)

ClustalW: improving the sensitivity of progres-
sive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucl. Acids Res. 22, 4673-4690

42. Thompson, J., Plewniak, F. & Poch, O. (1999)
BaliBase: a benchmark alignment database for the
evaluation of multiple sequence alignment programs.
Bioinformatics, 15, 87-88.

43. Thompson, J. D., Plewniak, F. & Poch, O. (1999)
A comprehensive comparison of multiple sequence
alignment programs. Nucl. Acids Res. 27, 2682-2690.

44. Wang, L. & Jiang, T. (1994) On the complexity
of multiple sequence alignment. J. Comput. Biol. 1,
337-348.

247

