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Position weight matrices (PWMs) are widely used to depict the DNA binding preferences of transcription factors
(TFs) in computational molecular biology and regulatory genomics. Thus, learning an accurate PWM to characterize
the binding sites of a specific TF is a fundamental problem that plays an important role in modeling regulatory motifs
and discovering the binding targets of TFs. Given a set of binding sites bound by a TF, the learning problem can be
formulated as a straightforward maximum likelihood problem, namely, finding a PWM such that the likelihood of the
observed binding sites is maximized, and is usually solved by counting the base frequencies at each position of the
aligned binding sequences. In this paper, we study the question of accurately learning a PWM from both binding site
sequences and gene expression (or ChIP-chip) data. We revise the above maximum likelihood framework by taking
into account the given gene expression or ChIP-chip data. More specifically, we attempt to find a PWM such that the
likelihood of simultaneously observing both the binding sequences and the associated gene expression (or ChIP-chip)
values is maximized, by using the sequence weighting scheme introduced in our recent work. We have incorporated
this new approach for estimating PWMs into the popular motif finding program AlignACE. The modified program,
called W-AlignACE, is compared with three other programs (AlignACE, MDscan, and MotifRegressor) on a variety of
datasets, including simulated data, publicly available mRNA expression data, and ChIP-chip data. These large-scale
tests demonstrate that W-AlignACE is an effective tool for discovering TF binding sites from gene expression or
ChIP-chip data and, in particular, has the ability to find very weak motifs.

1. INTRODUCTION

The discovery of regulatory motifs in DNA sequences

is very important in systems biology as it is the

first and important step towards understanding the

mechanisms that regulate the expression of genes.

It is well-known that direct experimental determi-

nation of transcription factor (TF) binding mo-

tifs is not practical or efficient in many biologi-

cal systems 7. However, recent advances in high-

throughput biotechnology such as cDNA microarray

and chromatin immunoprecipitation (ChIP) offer a

chance to discover de novo binding motifs at very low

costs. Taking advantage of these new technologies,

at least three computational strategies for motif dis-

covery have been proposed in the literature. We sum-

marize them briefly in Figure 1. Although tremen-

dous efforts have been made in the past decade, motif

finding still remains a great challenge 30.

Regulatory motifs (or TF binding sites) are often

modeled by position weight matrices (also known as

position specific scoring matrices), which is a prob-

abilistic model that characterizes the DNA binding

preferences of a TF. Therefore, learning an accurate

position weight matrix plays a key role not only in

modeling a TF but also in distinguishing its true

binding sites from spurious sites. This is particu-

larly valuable for some motif discovery algorithms

∗Corresponding author.
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Fig. 1. Three different computational strategies for motif discovery. (1) The primary strategy for motif discovery involves two
separate stages. In the first stage, we find clusters of genes sharing similar expression patterns. A general-purpose clustering
algorithm can be employed here, for example, K-means or self-organized mapping (SOM). Genes in each cluster are potentially
co-regulated by a common TF. In the second stage, we search for short sequence patterns enriched in the promoter regions of
genes in each individual cluster. Essentially, finding enriched patterns is the problem of multiple local sequence alignment 20. The
widely-used algorithms include CONSENSUS 15, MEME 2, and AlignACE 25. Note that, the presence or absence of a promoter
motif has no influence on which cluster a gene is assigned to under this strategy. Furthermore, clustering is itself a well-known
difficult problem. When noise is introduced into the cluster (through spurious correlation or imperfect clustering algorithms), the
desired motif pattern may not be so enriched as to be detected in the second stage. (2) The second strategy attempts to integrate
the two separate processes of the primary strategy. Its basic idea is to find clusters of genes that have both coherent expression
pattern and enriched motif pattern 12, 29. Arguably, the presence of motif patterns can play an important role in determining
the overall clustering of expression patterns. Therefore, the integrated strategy may significantly increase the chance of finding
the true motif pattern. KIMONO 12 is such a program, in which gene clustering and pattern detection are integrated in a way
that allows the output of pattern detection to feed into the clustering algorithm and vice versa at each iteration of two processes.
However, KIMONO is computationally intensive so that it has yet to be tested on real biological data. Therefore, its advantage
on real biological data is still unknown 12. (3) The third strategy bypasses the process of gene clustering required in the previous
two strategies, and explores a way of fitting motif to expression directly 3. It intends to find motif patterns that have strong
correlation with gene expression via significance testing, since biologically meaningful motifs should be those most capable of
explaining variations of expression data over a large number of genes. From this point of view, it is therefore a more promising
strategy than the previous two for motif discovery. A general implementation of this strategy first conducts word enumeration
and then uses regression to assess the goodness of a word fitting to expression data, as exemplified in REDUCE 3 and GEMP 5.
Note that these algorithms are usually computation intensive due to exhaustive word enumeration.

which rely heavily on position weight matrices, for

instance, MEME and Gibbs sampler 2, 16.

A position weight matrix (PWM) is generally

learned from a collection of aligned DNA binding

sites that are likely to be bound by a common TF.

Theoretically, it can be formulated as a maximum

likelihood problem — finding a PWM such that the

likelihood of the observed set of binding sites is maxi-

mized 19. To solve the problem, one may assume that

the binding sites are randomly independent observa-

tions from a product multinomial distribution, from

which it follows that each entry of the PWM will be

proportional to the observed count of its correspond-

ing nucleotide at the corresponding position. This is

precisely the method commonly used to compute a

PWM from a collection of binding sites.

Learning from DNA binding sequences alone

might not be sufficient to find a PWM that accu-
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rately models a TF. An improvement could be made

by taking the evolutionary history into account, as

shown in PhyME 27 and PhyloGibbs 28. More re-

cently, with the advent of DNA microarray and ChIP

technologies, gene expression (or ChIP-chip) data

has proven to be particularly valuable for motif dis-

covery, as it represents an observable effect result-

ing directly from the binding of TFs. As illustrated

in Figure 1, regression-based methods find motifs

by correlating putative binding sites with expression

data 3, 5, 7, 18, 14. However, none of them take ad-

vantage of expression/ChIP data explicitly to esti-

mate an accurate PWM.

In our recent study, a sequence weighting scheme

was proposed to estimate a PWM by explicitly tak-

ing gene expression variations (or binding ratios) into

account 6. We then incorporated it into the basic

Gibbs sampling algorithm for motif discovery 16, but

with the limitation that it could only run in the site

sampling mode (i.e., it assumes exactly one bind-

ing site per sequence). Our preliminary experiments

showed that sequence weighting was a quite effec-

tive approach to the estimation of PWMs, since it

helped find weak motifs in two datasets (for TFs

GAL4 and STE12) that were missed by the orig-

inal (basic) Gibbs sampler. However, our recent

tests on 40 ChIP-chip datasets from 14 indicate that

the approach still has a large room for improvement

since the sequence-weighted Gibbs sampler would

miss many of the motifs found by AlignACE, which

is more modern Gibbs sampling algorithm 13, 25.

In this paper, we continue the development of

the sequence weighting approach, and present several

further improved motif discovery results. First, we

extend the maximum likelihood problem naturally

to find a PWM such that the likelihood of observing

the combination of binding sites and expression data

is maximized. The extension provides a theoretical

foundation of the sequence weighting scheme, which

is missing in 6. Since binding sites inducing dramatic

fold changes in expression (or showing strong binding

ratios in ChIP experiments) are more likely to repre-

sent the true motif 17, the sequence weighting scheme

could therefore offer an approximate while reason-

ably good solution to the new maximum likelihood

problem at very low computational cost. Second, we

incorporate the sequence weighting scheme into the

modern Gibbs sampling program, AlignACE 13, 25.

The modified program is called W-AlignACE. Dif-

ferent from our previous implementation of sequence

weighting in 6, W-AlignACE is able to run in the

motif sampling mode. In other words, it allows zero

or multiple binding sites to occur in a promoter se-

quence. Third, we conduct large-scale tests on two

high-throughput datasets including gene expression

and ChIP-chip data, and compare the results of W-

AlignACE with those obtained from AlignACE, MD-

scan 17, and MotifRegressor 7. Our results demon-

strate that W-AlignACE performed the best in all

tests, and was able to find very weak motifs such as

those for DIG1 and GAL4, which were missed by the

other three program.

The remainder of the paper is organized as fol-

lows. We first formulate a maximum likelihood prob-

lem for learning PWMs jointly from sequence and

expression data in Section 2. Our experiments on

simulated data will be presented in Section 3.1, and

experiments on large real biological datasets, includ-

ing mRNA expression and ChIP-chip data, will be

presented in Section 3.2. Finally, some concluding

remarks are given in Section 4.

2. LEARNING POSITION WEIGHT

MATRICES

We consider how to estimate a PWM from bind-

ing sequences alone and from both binding sequences

and expression/ChIP-chip data separately.

2.1. Learning PWMs from sequences

As mentioned before, a PWM Θ is often used to char-

acterize the nucleotide frequencies at each position of

a binding site, where

Θ = (θ1, . . . , θJ)

and θj = (θa,j , θc,j, θg,j , θt,j)
T represents the proba-

bility of observing the four nucleotides A, C, G, and

T at the jth position of a binding site, such that

θa,j + θc,j + θg,j + θt,j = 1 for each j, 1 ≤ j ≤ J . In

general, Θ is assumed to follow a product Dirichlet

distribution 19, 20. Hence, the prior distribution on

Θ is

π(Θ) = π1(θ1) · · ·πJ (θJ),

where πj(θj) is a Dirichlet distribution Dir(1, 1, 1, 1).

A PWM can be estimated from a collection

of DNA sequences R = (R1, . . . , Rn) that corre-

spond to aligned binding sites of a TF, where Ri =
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(ri1ri2 · · · riJ ) represents the ith binding site, for each

i = 1, . . . , n. These binding sites are assumed 19, 20

to be randomly independent observations from a

product multinomial distribution with parameter Θ;

that is, rij ’s are mutually independent, and with

probability θa,j take the nucleotide A, for example.

It thus follows that the posterior distribution of Θ is

also a product of independent Dirichlet distributions,

π(Θ|R) =

J∏
j=1

Dir(ca,j + 1, cc,j + 1, cg,j + 1, ct,j + 1),

where ca,j , for example, is the count of nucleotide

A among all the jth bases of the binding sites in

R. Further, by maximizing the likelihood of Θ, i.e.,

π(R|Θ), we have

θa,j ∝ ca,j + 1, θc,j ∝ cc,j + 1,

θg,j ∝ cg,j + 1, θt,j ∝ ct,j + 1.

That is, the probability of observing the nucleotide

A (C, G, or T) at position j of a binding site is pro-

portional to the count of nucleotide A (C, G, or T)

among all the j-th position of the binding sites in

R. a Indeed, this is exactly the method commonly

used to estimate a PWM Θ for a TF, given a col-

lection of its binding sites. Consequently, the con-

ditional predictive distribution of a DNA sequence

B = (b1 . . . bJ) will be

π(B|Θ) ∝

J∏
j=1

θbj ,j ∝

J∏
j=1

(cbj ,j + 1).

2.2. Learning PWMs from both sequences

and expression

We propose a new approach to learning PWMs

through the combination of both sequence and ex-

pression data. The method can be easily extended

to ChIP-chip data. Let E = (E1, . . . , En) denote

the fold changes of mRNA expression of downstream

genes, where Ei is associated to the binding site Ri.
b

We want to find a PWM Θ such that its likelihood

π(R, E|Θ) is maximized; that is, Θ can best “ex-

plain” both the sequence and expression data simul-

taneously. The hope is that such a newly formulated

problem will result in a PWM with significantly im-

proved discriminative power. Finding the maximum

likelihood π(Θ|R, E), however, is expected to be very

hard, as it is conditioned on two disparate types of

data whose exact quantitative correlation is not com-

pletely clear yet. Note that, expression fold changes

are assumed to be induced as a result of the binding

between DNA sequences and a TF.

Linear correlation between sequence and expres-

sion, i.e., assuming additivity of binding sites’ con-

tributions to expression, has been used in several ex-

isting methods for motif site predictions 3, 7, most of

which employ the third strategy that we discussed

earlier in Figure 1. For the sake of a simple argu-

ment, the expression (log fold change) is assumed

to be correlated proportionally to the conditional

predictive distribution of its corresponding sequence,

that is,

log Ei ∝ π(Ri|Θ), for each i, 1 ≤ i ≤ n,

or, for short, log E ∝ π(R|Θ). Therefore, we can re-

duce the maximum likelihood problem π(R, E|Θ) to

the problem of finding a PWM Θ such that sequence

R fits expression log E the best by linear correlation.

A natural method to solve such a fitting problem is

via an EM-like iteration, i.e., starting with an initial

PWM and then refining it iteratively 18, 14. How-

ever, such an iterative process is generally very time

consuming. Moreover, it is clearly infeasible to in-

corporate such a process into a Gibbs sampling algo-

rithm, which is an iterative algorithm by itself 19.

In order to approximate Θ with an effective al-

gorithm, we assume that the posterior distribution

π(Θ|R, E) is a product of independent Dirichlet dis-

tributions as π(Θ|R) but with different parameters;

that is,

π(Θ|R, E) =

J∏
j=1

Dir(c̃a,j +1, c̃c,j +1, c̃g,j +1, c̃t,j +1),

where c̃a,j , for example, is the count of nucleotide

A weighted by log E among all the jth bases of the

binding sites in R. In other words,

c̃a,j =

n∑
i=1

δ(rij , A) · log Ei,

where δ(rij , A) =

{
1, if rij = A

0, otherwise

aThe additive term of 1 in the above formula is due to the prior distribution of πj(θj).
bNote that, multiple binding sites may share the same downstream gene and thus its associated log fold change value.
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We can see that the above setting of parameters can

be justified partially by the biological observation

that binding sites inducing big fold changes in ex-

pression are more likely to represent a true motif 17.

It follows that the desired PWM will be

θa,j ∝ c̃a,j + 1, θc,j ∝ c̃c,j + 1,

θg,j ∝ c̃g,j + 1, θt,j ∝ c̃t,j + 1.

Similarly, the conditional predictive distribution of a

DNA sequence B = (b1 . . . bJ) will be

π(B|Θ, E) ∝

J∏
j=1

θbj ,j ∝

J∏
j=1

(c̃bj ,j + 1).

Consequently, the new approach to the learning of

PWMs is indeed done via the sequence weighting

scheme recently proposed in 6. Note that π(B|Θ, E)

is completely equal to π(B|Θ) if every binding site

induces the same fold change in gene expression. Fig-

ure 2 illustrates a simple example that clearly demon-

strates the advantage of our new approach for learn-

ing PWMs from both sequence and expression data.

Gibbs sampling is known to be a very effective

strategy for motif discovery. Its basic idea is to con-

struct a Markov chain of a random variable X with

π(X) as its equilibrium distribution. For details on

Gibbs sampling algorithms, the reader is referred

to 19, 20. The above new predictive distribution

π(B|Θ, E) can be used, in place of π(B|Θ), to imple-

ment a collapsed Gibbs sampling algorithm 19, 20. In

particular, we have incorporated this method of com-

puting PWMs into a powerful Gibbs sampling pro-

gram, AlignACE (for Aligns Nucleic Acid Conserved

Elements 13, 25). The modified program is called W-

AlignACE, and available at http://www.ntu.edu.

sg/home/ChenXin/Gibbs.

2.3. Quality measures of putative motifs

Putative motifs are generally scored and ranked be-

fore they are reported, because only the top few

motifs undergo further investigations in practice.

Therefore, a metric is needed to measure the good-

ness of putative motifs. Indeed, the metric to be

chosen plays an important role in the success of mo-

tif discovery. An inappropriate metric might lower

the rank of a bona fide motif so that it is unlikely to

be discovered.

Information content is often used to measure the

degree of nucleotide conservation in a motif given a

probabilistic model Θ. It is defined as 15

IC =
1

J

J∑
j=1

∑
b∈{A,C,G,T}

θb,j log
θb,j

θb,0
,

where θ0 = (θA,0, θC,0, θG,0, θT,0)
T is the nucleotide

frequencies in the background sequence such that

they sum up to one. The logarithm is often taken

with base two to express the information content in

bits. If each residue is equally probable in the back-

ground sequence then the information content can

be as large as 2, representing the most conserved

motif. Note that, however, a highly conserved motif

may not be statistically significant relative to the ex-

pectation for its random occurrences in the promoter

sequences under consideration. Figure 2 shows an ex-

ample where sequence weighting might improve the

information content of a PWM, although this is not

necessarily always the case.

The MAP score is the metric for motif strength

used by AlignACE to judge different motifs sampled

during the course of the algorithm 13. It is calcu-

lated for a motif by taking into account factors such

as the number of aligned binding sites, the number of

promoter sequences, the degree of nucleotide conser-

vation, and the distribution of information-rich posi-

tions. Therefore, it is believed to be a more sensitive

measure for assessing different motifs, in particular,

those having different widths and/or different num-

bers of aligned binding sites.

Another alternative is to measure the statisti-

cal significance of correlation between putative mo-

tifs and gene expression. For example, the p-values

from multiple linear regression are employed in RE-

DUCE 3 and also in MotifRegressor 7 to rank pu-

tative motifs. Such a metric takes into account

the variation of gene expression data, and is thus

more plausible from the biological perspective. Note

that, however, the presence of a few spurious binding

sites may reduce the significance value dramatically.

Therefore, it is not a robust metric.

2.4. Performance evaluation of putative

motifs

To show the predictive ability of a motif discovery ap-

proach, we need an accurate yet feasible method to

evaluate putative motifs. The most accurate method
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(a)

log E 1 2 3 4 5
4 A C T G A
3 A G T G A
2 A G T C A
1 A C A C A

(b)

1 2 3 4 5
A 1 0 .25 0 1
C 0 .5 0 .5 0
G 0 .5 0 .5 0
T 0 0 .75 0 0

(c)

1 2 3 4 5
A 1 0 .1 0 1
C 0 .5 0 .3 0
G 0 .5 0 .7 0
T 0 0 .9 0 0

Fig. 2. Estimating PWMs. (a) A collection of four aligned DNA sequences bound by a TF, and the logarithmic fold
changes in expression of their corresponding downstream genes listed in the first column. (b) The PWM learned from
sequences alone. Its information content (see section 2.3 for definition) is 1.44 bits. (c) The PWM learned from both
sequences and expression. Its information content improves to 1.53 bits, indicating the higher binding specificity of the
motif. For instance, the TF is shown to bind to nucleotide G more preferentially than C at the fourth position, although
both have the same counts observed in the sequences. Indeed, it can be justified by the fact that the nucleotide G
occurs at the fourth position of the sequences that induce large fold changes in expression.

is clearly to directly verify if putative binding sites

are true or not. This requires that the bona fide

binding sites are already known before the evalua-

tion, which, however, is not the case for most bio-

logical datasets. Therefore, the use of this method is

limited to simulation experiments 24.

The second method is to compare the PWM of

a putative motif with that of the true one. The true

PWMs used for evaluation should be able to correctly

reflect the binding preference of TFs. However, not

many true motif PWMs have been found and are

available in the public databases. For instance, of the

40 motifs that we study below, only 9 have PWMs

in the TRANSFAC database 22. Furthermore, these

PWMs might not be considered true due to at least

two reasons. First, they are derived from as few as

eight binding sequences. Second, the computational

method for learning a true PWM from binding se-

quences is questionable (see Figure 2). These rea-

sons discourage us from using PWMs as benchmark

for reliable performance evaluation, in particular at

a large scale.

The third choice is to consider the consensus pat-

tern of a putative motif. The consensus pattern is

generally described using IUPAC-ambiguity codes,

and hence a more rough (but robust) representa-

tion of TF binding preference than its corresponding

PWM. In the IUPAC code of a motif, {A, C, G, T }

indicate the most conserved region of a consensus

pattern, which we refer to as the core of a consensus

pattern. Note that the core is the most informative

part of a consensus. To compare motifs, a putative

motif is usually considered true if its consensus core

matches that of the true motif (i.e., the weak region

of the consensus pattern are ignored). It can be seen

that such a comparison is not sensitive to either spu-

rious binding sites or the scarcity of binding sites, as

is the previous method using PWMs.

Based on these observations, we will compare

consensus cores in the performance evaluation of our

predicted motifs in this study.

3. EXPERIMENTAL RESULTS

In this section, we present our test results of W-

AlignACE on both simulated and real datasets. Note

that the evaluation method proposed in 30 is not ap-

plicable here because W-AlignACE requires ChIP-

chip or expression data in addition to promoter se-

quences.

3.1. Simulated data

We first perform tests on randomly generated se-

quence data, with artificially planted motif instances,

to get an insight into the algorithm’s idealized per-

formance under controlled conditions. Here, we gen-

erate more complicated simulated data than those

used in many other studies 6, 17, in the hope to ex-

plore in depth how a PWM learned from sequence

and expression effects the performance of motif find-

ing algorithms. The data generating procedure is

summarized as follows.

(1) Manually create a motif consensus sequence con-

sisting of a specified number of nucleotides. In

our experiments, we consider three motif widths,

J = 6, 8, 10, reflecting different levels of difficulty

for motif finding.

(2) Randomly generate 100 promoter sequences of

600 bases each.

(3) A PWM Θ of size 4 × 10 is randomly generated

according to the motif consensus and a given

value for its information content.
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(4) Randomly generate 60 motif occurrences (i.e.,

binding sites) according to the motif probabilis-

tic model given by the PWM Θ.

(5) Among 100 promoter sequences, we will not

plant any binding sites in the bottom 50. That

is, the 60 binding sites are planted in the top 50

promoter sequences at random positions by re-

placing segments of the same width. Because the

planted positions are randomly selected, some of

the top 50 promoter sequences may not contain

any binding sites, while the others may contain

multiple sites. Therefore, the total number of

promoter sequences without any planted bind-

ing sites may exceed 50.

(6) The hyperbolic tangent function, which is a

scaled and biased logistic function, has been

used in several studies to model the relation be-

tween sequence and expression 1, 14. Similarly,

we use it to estimate expression values hypo-

thetically induced by the planted binding sites.

For example, for a promoter sequence S planted

with m binding sites R = (R1, . . . , Rm), where

Ri = (ri1ri2 · · · riJ ) is the ith binding site in S,

its expression value can be set using the following

sequence of formulae,

fΘ(Ri) =
J∑

j=1

log
θrij ,j

θrij ,0
,

hΘ(S) = log

(
m∑

i=1

efΘ(Ri)

)
,

qΘ(S) =
1 − e−hΘ(S)

1 + e−hΘ(S)
,

EΘ(S) = 21+
qΘ(S)

W ,

which starts with computing the log-odds be-

tween the posterior probability of binding sites

and a background probability of nucleotides.

Note that the maximum expression value as-

signed this way could be close to 4. For those

having no binding sites planted, the expression

values are set to be randomly in the interval

[1, 2), simulating a commonly occurred situa-

tion in microarray experiments where some genes

may not have any binding site of the TF under

investigation in their promoter regions, but are

more or less expressed (possibly due to the bind-

ing of other TFs). Compared to equal expression

values to be assigned, random expression values

impose more difficulties on W-AlignACE to find-

ing a correct motif, but apparently has no effect

on AlignACE.

For each motif width, ten test datasets are gener-

ated with varying degrees of conservation, giving rise

to a total of 30 datasets. Each dataset has 100 pro-

moter sequences, each of which assigned an expres-

sion value as described above. We run both program

AlignACE and W-AlignACE on the data, and then

compare their predicted motifs with the planted mo-

tif. A predicted motif is considered true if it has the

same consensus core as the planted motif. The re-

sults are summarized in Table 1. We can see that W-

AlignACE is able to find more true motifs than Alig-

nACE, and in most cases, the true motif is ranked

the first among the list of reported motifs if sorted

by their MAP scores.

3.2. Real data

Due to the stochastic nature of Gibbs sampling,

we run for each dataset both programs AlignACE

and W-AlignACE five times with different random

seeds. MDscan 17 and MotifRegressor 7, instead,

are run only once for each dataset because they

are deterministic algorithms. Predicted motifs are

sorted using their respective sorting schemes (e.g.,

the MAP score for AlignACE), and only the top

four are reported since the remaining motifs (ranked

after the fourth) are generally too insignificant to

be considered as true. In order to evaluate our

method, we retrieve the consensus pattern for each

motif from the Saccharomyces Genome Database 4

(see http://www.yeastgenome.org/), and compare

it with the motifs found by MDscan, MotifRegressor,

AlignACE, and W-AlignACE, respectively. c In our

experiments, no prior knowledge on true motifs is

assumed. Therefore, all the program parameters are

set to their default values. d For instance, the de-

cSome motif consensi in the Saccharomyces Genome Database were obtained from putative binding sites, which have not been
verified experimentally. Therefore, caution must be taken when using them as benchmark data.
dMotifRegressor requires as many as 17 input parameters, for which we chose a typical setting (i.e., their default values are
generally preferred). The specific command line thus used to run MotifRegressor is “MotifRegressor MRexpression.txt MRse-
quences.txt yeast.int 1 1 2 1 1 2.0 1.5 5.0 5.0 10 10 50 30 MRoutput.txt”. For its detailed explanation, please refer to the
documentation of MotifRegressor.
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Table 1. Test results on 30 simulated datasets. For each motif width, we performed
the test on ten PWMs with varying information contents.

AlignACE W-AlignACE
Motif width Information content Rank if found Rank if found

J = 6
0.65, 0.74, 0.77, 0.81, 0.88 −, −, −, −, − −, −, 3, −, −

0.91, 0.98, 1.01, 1.01, 1.18 −, −, −, −, − −, −, 1, −, 1

J = 8
0.61, 0.71, 0.72, 0.88, 0.91 −, −, −, −, − −, −, −, −, 1
0.96, 1.02, 1.04, 1.08, 1.17 −, −, −, −, 1 2, −, 1, 1, 1

J = 10
0.63, 0.74, 0.79, 0.82, 0.93 −, −, −, −, 1 −, −, −, 2, 1
0.98, 1.01, 1.03, 1.03, 1.03 1, −, 1, −, 1 1, 1, 1, −, 1

fault number of columns to align is set to 10. Work-

ing with default values is indeed a common practice,

especially when the discovery of novel motifs is in-

tended.

3.2.1. mRNA expression data

We have applied our algorithm to the publicly avail-

able dataset for yeast from microarray experiments

on environmental stress response 11. A sample of 100

most induced genes by YAP1 overexpression is used

here to demonstrate the advantage of the new learn-

ing approach in motif discovery. The log fold changes

of these genes in mRNA expression range from 1.04

to 3.55.

YAP1 is a transcriptional activator required for

oxidative stress tolerance, and is known to recog-

nize the DNA sequence TTACTAA 10 or the se-

quence GCTTACTAA with higher binding speci-

ficity, as annotated e in the Saccharomyces Genome

Database (http://db.yeastgenome.org/cgi-bin/

locus.pl?locus=YAP1). Our experimental results

show that, AlignACE failed to report any motifs

containing the consensus pattern TTACTAA of the

YAP1 motif among the top four motifs in each run.

Instead, W-AlignACE successfully found the known

YAP1 motif GCTTACTAAT and ranked it the sec-

ond (MAP score: 126.68). A closer examination on

all the putative motifs revealed that, AlignACE re-

ported a weak pattern GATTAGTAAT ranked 12

(MAP score: 10.09) in one run and GCTTAGTAAT

ranked 13 (MAP score: 9.41) in another run. Al-

though both contain the complementary inverse of

TTACTAA, neither exactly matches GCTTACTAA,

the YAP1 motif annotated in the Saccharomyces

Genome Database. Note that the second weak pat-

tern above differs from the YAP1 motif by only one

base at the sixth position, if we ignore the differ-

ence in motif width. MDscan reported the pattern

GATTACTAAT as its top ranked motif, which differs

from the YAP1 motif by one base at the second posi-

tion. MotifRegressor did not performed better than

MDscan, but instead it reported GATTACTAAT as

its second motif. These results give a solid exam-

ple where W-AlignACE is more accurate than Alig-

nACE, MDscan, and MotifRegressor.

Table 2. Test results on the publicly available
datasets from the yeast environmental stress re-
sponse microarray experiment. Note that, only
W-AlignACE discovered the YAP1 motif consen-
sus in the Saccharomyces Genome Database with-
out any mismatching.

Source Consensus Rank

Fernandes et al. 10 TTACTAA -

SGD annotation GCTTACTAA -

W-AlignACE GCTTACTAAT 2

AlignACE GATTAGTAAT 12
GCTTAGTAAT 13

MDscan GATTACTAAT 1

MotifRegressor GATTACTAAT 2

3.2.2. ChIP-chip data

We further apply our algorithm to the ChIP-chip

data reported in 21. Recall that a ChIP-chip exper-

iment uses chromatin immunoprecipitation (ChIP),

followed by the detection of enriched fragments us-

ing DNA microarray hybridization, to determine the

genomic-binding location of TFs (TFs). Although

the data are still noisy, they are the best genome-

wide data of in vivo TF-DNA binding localization so

far 14. Forty datasets, each containing genes targeted

by one TF, have been obtained using ChIP-chip p-

value 0.001 as the cutoff in the study of 14, and are

publicly available at http://biogibbs.stanford.

edu/~hong2004/MotifBooster/. The sizes of these

datasets range from 25 up to 176 genes. For each

eThe annotated consensus is indeed GCTKACTAA using IUPAC ambiguity codes, for which K represents the base G or T.
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gene, its promoter sequence is taken up to 800 bps

upstream, but not overlapping with the previous

gene.

As mentioned earlier, we use consensus cores an-

notated in the Saccharomyces Genome Database as

benchmark, and compare them with the putative

motifs reported by MDscan, MotifRegressor, Alig-

nACE, and W-AlignACE. To evaluate our method,

we search for the putative motifs with consensus

cores matching the annotated ones (while ignoring

the difference in motif width), and consider them as

being correct. Table 3 summarizes all the true mo-

tifs found for the forty TFs under investigation. At

a first glance, it is already very encouraging to see

that W-AlignACE successfully found the correct mo-

tifs for three TFs, DIG1, GAL4, and NDD1. This is

especially interesting since these three TFs were ob-

served in 14 to be among the nine TFs (the other six

are GAT3, GCR2, IME4, IXR1, PHO4, and ROX1)

whose correct motifs are hard to find. f

Compared to the other three program (MD-

scan, MotifRegressor, and AlignACE), W-AlignACE

in general performed strongly. It found correct mo-

tif patterns for all the datasets that AlignACE was

able to solve, and also for six additional datasets

(ACE2, DIG1, GAL4, HAP4, STE12, SWI5). We

further notice that in most cases, W-AlignACE re-

ported a PWM with a much higher MAP score

than AlignACE when a correct motif was found by

both. When a spurious motif was reported, how-

ever, the MAP scores estimated by both program

are comparable. For instance, both AlignACE and

W-AlignACE found the correct consensus pattern

nCGTnnnnAGTGAT for ABF1. Its MAP score

is 351.866 as estimated by AlignACE, much lower

than 436.877 estimated by W-AlignACE. In contrast,

both program also reported an obviously spurious

motif in the top four, GAAAAAAAAA. Its MAP

scores are 176.129 and 165.632 given by AlignACE

and W-AlignACE, respectively. All the above show

that the new PWM learning approach via sequence

weighting could increase the signal-to-noise ratio of

a correct motif, but not of a spurious motif. There-

fore, it may have a profound impact on the success

of computational motif discovery, because it not only

increases the chance of find correct motifs, but also

enhances our confidence about the predicted motifs.

This is further demonstrated by the following case

studies. Note that, the full test results are available

at http://www.ntu.edu.sg/home/ChenXin/Gibbs,

and so is the program W-AlignACE.

ACE2 is a TF that activates the transcription

of genes expressed in the G1 phase of the cell cy-

cle 8. Its ChIP-chip data in our study consists of

46 target genes. W-AlignACE successfully discov-

ered the correct ACE2 motif, and ranked it the first

with the highest MAP score 127.571. AlignACE did

report the ACE2 motif in one of its runs but with

a very low ranking of 9 (MAP score: 22.2304). In

contrast, GAAAAAAAAA is the top motif found by

AlignACE, having the MAP score as high as 104.081.

Figure 3 depicts the distributions of some motifs

in the promoter sequences, from which we can see

that functional binding sites are more likely to oc-

cur in the promoter sequences having higher ChIP-

chip scores. This observation is precisely the basis

of W-AlignACE and why it performs better than

AlignACE. Also note that, both MDscan and Mo-

tifRegressor failed to report any motifs resembling

the correct ACE2 motif.

GAL4 is among the most characterized tran-

scriptional activators, which activates genes neces-

sary for galactose metabolism 26. In our previ-

ous study 6, we incorporated the sequence weight-

ing scheme into the basic Gibbs sampling algorithm

from 16, which was only allowed to run in the site

sampling mode (i.e., assuming that exactly one bind-

ing motif occurs in each input promoter sequence),

and tested it successfully on a small ChIP-chip data

from the genome-wide location analysis 26, which

contains only 10 target genes. The current dataset

from 14 contains 25 target genes. When run on this

larger dataset, our previous algorithm 6 failed to

find any motifs resembling the correct GAL4 mo-

tif (mostly likely because it was limited to the site

sampling mode and could not properly handle mul-

tiple/zero occurrences of the correct motif). Indeed,

GAL4 is a well-known motif that is too weak to

be easily detected 14, partly because there is a 11-

base gap (i.e., degenerate region) in the middle of

fFurther notice that, four of the above mentioned six TFs, GAT3, GCR2, IME4, and IXR1, do not have motif consensi annotated
in the Saccharomyces Genome Database. Therefore, their motifs found by W-AlighACE are not evaluated here, and could still
be true motifs.
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Table 3. Experimental results on 40 ChIP-chip datasets. The highlighted rows indicate TFs for which W-AlignACE was able
to find the correct motifs but AlignACE failed. The TFs with asterisks do not have motif consensus patterns annotated in the
Saccharomyces Genome Database.

TF #seq MDscan MotifRegressor AlignACE W-AlignACE
Consensus Consensus Consensus MAP Consensus MAP

ABF1 176 CGTATATAAT nCGTnnnnAGTGAT 351.866 nCGTnnnnAGTGAT 436.877
ACE2 46 GAACCAGCAA 127.571
BAS1 31 TGACTCCTTT nnnAGGAGTCA 26.242 TGACTCCGnnnnnGA 164.367
CAD1 27 GATTACTAAT GCTGACTAAT 22.3769 TGCTTAnTAAT 55.0084
CBF1 28 TCACGTGACC nGGTCACGTG 91.5147 nGGTCACGTG 112.272
CIN5 116 ATTACATAAnC 25.7981 GnTTAnGTAAGC 162.825

DAL81 32
DIG1 35 CnTnTGAAACAn 246.198
FHL1 124 TGTATGGGTG TGTATGGGTG ATGTnCGGGTG 241.916 ATGTnCGGGTG 370.814
FKH1 40
FKH2 72 TGTTTACAAT AAnGTAAACAA 40.8666 AAAnnGTAAACA 185.944
GAL4 25 CGGnCnAnAnnnnTCCG 184.307
GAT3∗ 31
GCN4 56 AATGACTCAT GATGAGTCAC GGATGAGTCA 42.5719 GnATGAGTCAn 187.854
GCR2∗ 27
HAP4 42 CnnGnnnnTGATTGGnnC 62.6472
HSF1 34 TTTTCTAGAA GAAnnTTCnAGAA 50.569 GAnnnTTCnAGAA 88.2247
IME4∗ 27
IXR1∗ 28

MBP1 74 CGCGACGCGT AAnAAACGCGT 36.9147 AnnAAACGCGTC 103.034
MCM1 59 CCTAATTAGG TTnCCnnnTnnGGAAA 129.158 nTnCCnnAnnnGGAAA 179.82
NDD1 67 CCTAAATAGG TTTCCnAAAnnGG 50.7552 CCnAAnnnGGnAAAnnnT 222.986
NRG1 59 CCCTAGGCGC
PDR1 45
PHD1 70
PHO4 41
RAP1 127 TGTATGGATT ATGTnTGGGTG 204.493 ATGTnTGGGTG 255.127
REB1 89 TCCGGGTAAC nCCGGGTAAC 216.424 nCCGGGTAAC 262.57
RLM1 33
ROX1 28
SKN7 72
SMP1 48
STE12 54 TGAAACACAT CnAnTnTGAAACA 358.174
SUM1 41 TGTGACAGTA GTGnCAGnAAA 50.0198 GTGnCAGnAAA 69.7947
SWI4 90 AACGCGAAAA GnnnCGCGAAAA 66.0847 GnGnCGCGAAAA 247.458
SWI5 72 AAnnnnnAGAnnGCTGG 109.432
SWI6 65 GnGnCGCGAAAA 48.4327 GnGnCGCGAAAA 49.8036
YAP1 35 GCTTACTAAT 24.5596 ATTAGTAAGC 52.1866
YAP5 55
YAP6∗ 65

Fig. 3. The distributions of ChIP-chip scores and occurrences of the binding sites of three TFs ACE2, GAL4 and STE12. The
top right figure depicts the distribution for a spurious motif ranked the first by AlignACE with MAP score 104.81, and the other
three figures correspond to three correct motifs all ranked the first by W-AlignACE with MAP scores, 127.571, 184.307, and
358.174, resp. We can see that the correct motifs occur in promoter sequences with high scores more frequently than in those of
low scores. This property generally does not hold for spurious motifs, whose occurrences are not expected to have any correlation
with ChIP-chip scores or expression values.
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its consensus pattern, i.e. CGGnnnnnnnnnnnCCG.

Therefore, the new dataset for GAL4 presents a new

challenge for computational motif discovery meth-

ods. W-AlignACE once again performed remarkably

better than AlignACE. It ranked the correct GAL4

motif the first with MAP score 184.307. In contrast,

AlignACE failed to find the correct GAL4 motif, and

neither did MDscan or MotifRegressor. A closer ex-

amination on the GAL4 dataset reveals that there

are only 6 of the 25 genes whose promoter sequences

contain the exact consensus pattern (see Figure 3).

Furthermore, these six genes are all among the top

if we sort all genes in the dataset by their ChIP-chip

scores. g This might explain the failure of Alig-

nACE and the success of W-AlignACE in the GAL4

dataset. MDscan failed perhaps because it was not

optimized for finding gapped motifs.

STE12 is a DNA-bound protein that directly

controls the expression of genes in response of hap-

loid yeast to mating pheromones 26. The ChIP-chip

dataset from 14 consists of 54 pheromone-induced

genes in yeast likely to be directly regulated by

STE12. This data is also much larger than the

dataset consisting of 29 genes used in our previous

study 6. W-AlignACE once again found the cor-

rect motif and ranked it the first with MAP score

358.174. On the contrary, AlignACE ranked the cor-

rect motif only the fourteenth with a much lower

MAP score of 49.0173. This is not surprising, be-

cause once again most of the occurrences of the cor-

rect motif are located in the promoter regions of

genes having high ChIP-chip scores, as shown in Fig-

ure 3. In conclusion, the sequence weighting scheme

that learns PWMs from both sequence and expres-

sion data could indeed boost AlignACE’s ability to

pick correct motifs from sequences with noisy back-

ground.

It is interesting to note that MotifRegressor per-

formed much worse than MDscan in this test, al-

though the former uses the latter as a feature extrac-

tion tool to find candidate motifs h. This could be

due to several factors. First, the cutoff used by Mo-

tifRegressor on the significance of linear regression

might be strict. Second, the true motifs are too weak

as evaluated by MotifRegressor based on the signifi-

cance of linear regression (e.g., due to the presence of

spurious binding sequences). Third, the parameter

setting that MotifRegressor applied to MDscan did

not work as well as the default one, which we used to

test MDscan. Last, the parameters that we set for

MotifRegressor might not be optimal either.

4. DISCUSSION AND FUTURE RESEARCH

Learning an accurate PWM from a collection of

aligned binding site sequences is a delicate prob-

lem that plays an important role in modeling a TF.

In this paper, we tackled this problem by propos-

ing a new approach to learning PWMs jointly from

sequence and expression. We believe that this ap-

proach could be a very useful enhancement to many

of the motif discovery programs that are based on

PWMs, such as Gibbs sampling and MEME. Our

preliminary experiments on Gibbs sampling support

this belief, and demonstrate that W-AlignACE is

a very effective tool for biologists to computation-

ally discover TF binding motifs when the gene ex-

pression or ChIP-chip data are given. The web

W-AlignACE service is provided at http://www1.

spms.ntu.edu.sg/~chenxin/W-AlignACE. Our fu-

ture work includes more delicate/theoretical treat-

ment of multiple motif occurrences, and treatment

of multiple experiment expression data (which are

usually time series data) and cooperative motifs (or

cis-regulatory modules).
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