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Molecular surfaces of proteins and other biomolecules, while modeled as smooth analytic interfaces separating

the molecule from solvent, often contain a number of pockets, holes and interconnected tunnels with many openings

(mouths), aka molecular features in contact with the solvent. Several of these molecular features are biochemically

significant as pockets are often active sites for ligand binding or enzymatic reactions, and tunnels are often solvent

ion conductance zones. Since pockets or holes or tunnels share similar surface feature visavis their openings (mouths),

we shall sometimes refer to these molecular features collectively as generalized pockets or pockets. In this paper we

focus on elucidating all these pocket features of a protein (from its atomistic description), via a simple and practical

geometric algorithm. We use a two-step level set marching method to compute a volumetric pocket function φP (x)

as the result of an outward and backward propagation. The regions inside pockets can be represented as φP (x) > 0

and pocket boundaries are computed as the level set φP (x) = ε, where ε > 0 is a small number. The pocket function

φP (x) can be computed efficiently by fast distance transforms. This volumetric representation allows pockets to be

analyzed quantitatively and visualized with various techniques. Such feature analysis and quantitative visualization

are also generalizable to many other classes of smooth and analytic free-form surfaces or interface boundaries.

1. INTRODUCTION

Molecular surfaces are solvent contact interfaces be-

tween the strongly covalent bonded atoms of the

molecule and the ionic solvent environment which

is mostly water. Molecular surfaces often contain a

number of pockets, holes and interconnected tunnels

with many openings (mouths), aka molecular fea-

tures in contact with the solvent. Several of these

molecular features are biochemically significant as

pockets are often active sites for ligand binding or

enzymatic reactions [7], and tunnels are often sol-

vent ion conductance zones [45]. Since pockets or

holes or tunnels share similar surface feature visavis

their openings (mouths), we shall sometimes refer to

these molecular features collectively as generalized

pockets or pockets.

The surface of a protein can be represented as a

closed compact surface S in R
3 and the closed inte-

rior V as the region bounded by S. It is important

to correctly identify the main biophysical features of

S in our protein model, such as its ”pockets”, ”tun-

nels”, and ”voids” , and so that they can be used for

quantitative scoring of binding affinities and other

biochemical reactions.

In this paper we present a simple and fast geo-

metric algorithm for extracting pockets of any closed

compact smooth surface, particularly complicated

solvent contact surfaces of proteins. We use a two-

step level-set marching method, first outward from

the original protein surface S and then backward

from a topological simple enclosing shell obtained as

a result of the first marching. The pockets are ex-

tracted as the regions outside S and not reached by

the backward propagation, as illustrated in Figure

1. The result of the outward and backward prop-

agation is represented as a 3D volumetric ”pocket

function” φP (x). The pockets in S can be repre-

sented implicitly as the regions φP (x) > ε, where ε

is a small constant. This volumetric representation
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Fig. 1. (a) Outward propagation from S to the shell T that has a simple topology. (b) Backward propagation from T to the

final front F . Pockets are extracted as the yellow regions between F and S.

of pockets is very convenient, since it allows us to

compute the pocket’s mouth surfaces as a contour

set φP (x) = ε, quantitative the pocket’s volumetric

properties, and visualize them with various volume

visualization techniques.

We present some relevant background and re-

lated work in the next section, and then describe de-

tails of our pocket extraction algorithm in section 3.

In section 4 we discuss our implementation of the al-

gorithm and compare its results with prior published

work.

2. BACKGROUND AND RELATED WORK

The description of protein surfaces is important in

the analysis of protein-protein and protein-ligand in-

teractions. Several computational models of molec-

ular surfaces for proteins have been used in the

past. The van-der-Waals surface [10], is the bound-

ary of the union of balls, where each atom is rep-

resented as a spherical solid ball. Other popular

models include the solvent accessible surface [38] and

the solvent contact surface [14] . More recent work

[2, 13, 39, 48]show how to extract triangular meshes

of smooth molecular surfaces.

Smooth (and analytic) molecular surfaces can

also be modeled as the level set of a volumetric func-

tion, e.g. the level set E(x) = 1 for the electron den-

sity function E(x) in space R
3 [9,18,25]. An isotropic

Gaussian kernel function, Gi(x) = exp( bi∗(x−ci)
2

r2

i

−

bi), x ∈ R
3, approximates the electron density dis-

tribution of a single atom around the atomic center.

The decay constant for the Gaussian kernel is de-

noted by bi, while ci is the center of the i-th atom,

and ri is the van der Waals radius of the atom. The

electron density field E for a molecule is obtained by

summing the individual atomic density distributions

for all its atoms,

E(x) =
∑

i

Gi(x)

Shape properties such as normal, Gaussian and

mean curvatures can be computed and displayed for

the molecular surfaces [3,18]. However, we are often

more interested in the shapes of active sites (pockets)

instead of the overall properties of the protein sur-

faces. Several pocket extraction methods have been

developed and published. Delaney [15] uses cellular

logic operations on grid points in a spirit similar to

our two-step marching algorithm, but its results are

very rough approximations and difficult for further

visualization and analysis. Edelsbrunner et al. [19]

computes pockets for molecular surfaces based on the

union-of-balls model using Delaunay triangulations

and alpha shapes. The Delaunay triangulation DB

(and its dual Voronoi diagram) are first constructed

for the set B of atomic centers [19]. A flow relation

can then be defined for two Delaunay tetrahedra,

τ ∈ DB and σ ∈ DB , if they share a common plane

and the dual Voronoi vertex of τ lies on different sides

of the plane from σ. If τ ≺ σ, τ is called a predeces-

sor of σ and σ a successor of τ . A tetrahedron flows

to infinity, if its dual Voronoi vertex is outside DB

or its successor flows to infinity. The alpha-shape

AB ⊂ DB at α = 0 is the subsimplex of DB con-

tained in the union of balls. Pockets P are defined

276



in [19] as the set of Delaunay tetrahedra that do not

flow to infinity and do not belong to the alpha-shape

AB , i.e.

P ⊂ DB − AB .

The alpha-shape based algorithm was imple-

mented and tested for a number of sample proteins

[34]. One shortcoming of this method is that the

alpha-shape representations of the pockets are usu-

ally not smooth. Our algorithm in this paper rep-

resents the pockets with a smooth volumetric func-

tion, from which smooth pocket surfaces can be com-

puted. Furthermore, our approach works for any

representations of protein surfaces, either based on

smoothed union-of-balls, [2,3,14,38] or the volumet-

ric model [9, 18]. Our feature analysis algorithm is

also clearly generalizable to many other classes of

smooth and analytic free-form surfaces.

Complicated shapes are often captured via vol-

umetric functions coupled to morphological opera-

tions on the functions. In 2D range images, Kr-

ishnapuram and Gupta [30] uses dilation and ero-

sion operations to detect and classify edges; Gil and

Kimmel [24] discussed algorithms for computing one-

dimensional dilation and erosion operators. In ad-

dition to the extraction of polygonal surfaces from

volumetric functions, 3D polygonal models are also

converted into volumetric representations and then

modified, repaired and simplified using morphologi-

cal operations [21,36].

A related problem to finding pockets in molecu-

lar surfaces is shape segmentation, which has been

studied using different geometric and topological

structures such as shock graphs [40], medial axes

[32], skeletons [44], Reeb graphs [26], and others

[27, 33, 35]. A notable approach is based on Morse

theory, which segments the domain manifold M into

stable (unstable) manifolds [16] or Morse-Smale cells

[20] of critical points of a Morse function. The Morse

function commonly used for shape segmentation is

the distance function to a set of discrete points P

[16, 19,23]:

h(x) = min
p∈P

‖x − p‖.

Again the Delaunay triangulation (and the dual

Voronoi decomposition) can be computed for the

points in P . The critical points of h are the intersec-

tions of Delaunay elements with their Voronoi com-

plements. The stable-manifolds of the critical points

of the distance function to a set of discrete points are

called the flow complex in [23], and which is homo-

topy equivalent to its alpha-shape [17]. The stable

manifolds of maxima has the same dimension as the

the manifold M and give a segmentation of M . It

is possible to consider the pocket extraction problem

as the segmentation of the complementary space out-

side the surface S. However, a large number of points

are necessary to sample complex surfaces and a large

number of maxima and stable manifolds would seg-

ment it into many small pieces that have no direct

correspondence to the pockets.

3. ALGORITHMS

In this section, we first present the two-step marching

algorithm for computing the pocket function φP (x)

in section 3.1. Section 3.2 describes the method of

computing signed distance function (SDF) that is

based on fast distance transforms and used in the

computation of the pocket functions. Section 3.3 dis-

cusses the quantitative analysis and visualization of

the protein pockets.

3.1. Pocket Extraction

Consider a closed compact surface S, e.g. the green

inner curve in Figure 1. We use a two-step marching

(fill and removal) strategy to extract pockets in S.

First we fill all pockets, voids, and depressions on S

by marching outward from S. As shown in Figure

1(a), the front propagates outward from the surface

S to a final shell surface T . During the marching

the topology of the propagation front changes, for

example the topology of front R in Figure 1 is differ-

ent from S and T . T is chosen to be a propagated

front with distance t that is far enough away from S

such that T has the simple topology as a sphere and

the topology would not change any more by further

propagation. The exact value of the distance t from

S to T is not significant in our algorithm of pocket

extractions. For a typical protein, we choose t as the

larger value between 40 Å and the twice the largest

dimension of the protein.

In the subsequent removal step, the front is prop-

agated backwards from the shell T towards the orig-

inal surface S. The distance of backward marching

is also t so that the front is not allowed to penetrate

S and stops when it touches S. Notice the outward
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marching in the fill step is irreversible and the final

front of the backward marching cannot extend into

the depressed regions in the surface S. Therefore in

our algorithm, pockets are defined as the regions be-

tween the final front F of the backward propagation

and the original surface S. The shaded (yellow) area

in Figure 1(b) illustrates a 2D example pocket found

by using this fill and removal strategy. This defini-

tion intuitively captures the main characteristics of

protein pockets. We now also give a more mathe-

matical definition.

Starting from the initial surface S, the outward

propagation front moves along its normal directions

at a speed v. The marching front R(t) at time t can

be determined according to the level set method [41],

i.e. R(t) is the zero level set of a function φ(�x, t) sat-

isfying the evolution equation:

φt + v|�φ| = 0

with initial condition φ(x, t = 0) = d(x), where d(x)

is the signed distance function (SDF) from S, defined

as

|d(x)| = min
y∈S

|x − y|. (1)

SDF d(x) is positive/negative when x is out-

side/inside the surface S, and the marching front

R(t) is the level set φ(x, t) = 0. If the speed

v = 1 is constant, as we would assume in our two-

step marching algorithm, the marching front R(t) at

time(distance) t is simply the level set

d(x) = t. (2)

Assume we already have an efficient algorithm to

compute the signed distance functions (SDF) of a

closed compact surface, which will be discussed in

section 3.2. We present here the algorithm of com-

puting the volumetric pocket function φP (x) that

represents the pockets in the protein surface.

(1) Compute the signed distance function dS(x)

from the original surface S.

(2) Extract the shell surface T as a level set dS(x) =

t, where the distance t > 0 is large enough so

that T has a simple sphere topology. As men-

tioned earlier, the exact value of t is not signifi-

cant in the algorithm.

(3) Compute the signed distance function dT (x)

from the surface T , where the sign of dT (x) is

inverted, i.e. dT (x) > 0 if x is inside T and

dT (x) < 0 if x is outside T .

(4) The volumetric pocket function φP (x) is con-

structed as:

φP (x) = min(dS(x), dT (x) − t), (3)

where dS(x) and dT (x) are the distance functions

computed in step 1 and 3. Notice φP (x) > 0 only

for points outside S and not reachable by back-

ward propagation from T , i.e. points in pockets,

tunnels, etc. The bounding surfaces of pockets

are then extracted as the level set φP (x) = ε,

where a small number ε > 0 is used to take into

consideration the size of solvent atoms. For ex-

ample, we usually choose ε to be between 1 and

1.5 Å.

This pocket extraction algorithm is simple, flex-

ible, and robust. It works for any closed surfaces in

R
n space. Particularly it works for any molecular

surface descriptions: union of balls, solvent accessi-

ble surface, or contours of electron density functions.

Figure 2 shows the successful extraction of two tun-

nels in an ”8” shape.

(a) (b)

(c) (d)

Fig. 2. (a) The original ”8” shape in white and the final

shell surface from the outward propagation in dark red. (b)

The ”8” shape and tunnel mouth shown in green. (c) The

bounding surfaces of the two tunnels extracted as a level set

of the pocket function. (d) A slice of the pocket function of

the ”8” shape, where the white circles are the cross-section of

the tunnel surfaces.
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Pocket Mouth In many applications we wish to find

a pocket’s ”mouth”, the bounding surface that sep-

arates the inside of pockets from the outside region.

The number of surface openings (mouths) m of a

pocket (or tunnel) classifies the type of the pocket

(or tunnel):

• void if m = 0

• normal pocket if m = 1

• hole or simple tunnel (simple conector) if m = 2

• arbitrary tunnel (multiple connector) if m >= 3

The above pocket function can be used to easily ob-

tain any pocket’s mouths. The bounding surfaces of

a pocket consists of its mouth and surface patches

that are coincident with the original surface S. In

other words, pockets mouths are the patches of the

final backward propagation front F , which do not

match with the original surface S as illustrated in

Figure 1(b). Therefore, in our algorithm pocket

mouths are determined as portions of the level set

φP (x) = ε satisfying the condition dS(x) > ε.

In order to demonstrate the effectiveness of our

algorithm, we select a random protein ”Bacteri-

ochlorophyll Containing Protein” (PDB ID: 3BCL)

from the protein data bank (PDB) [6]. This protein

has a very complex molecular surface and contains

one large binding site in the middle and some small

pockets on its surface, as shown in Figure 3(a). Fig-

ure 3(b) shows as a color map a slice of the SDF

from the the complex molecular surface of the pro-

tein. The cross-section of the protein surface is dis-

played in Figure 3(b) as white curves, on which the

SDF d(x) = 0. The large tunnel in the middle is

clearly visible, with several small surface pockets and

internal voids.

The pocket function of the protein (3BCL) is

computed using the algorithm described in section

3.1 and the corresponding slice of the pocket func-

tion is shown in Figure 3(c), in which the cross-

section of the pocket bounding surface is displayed

as white curves. Finally in Figure 3(d), we superim-

pose the pocket surface with the molecular surface,

where pocket mouths are extracted and drawn as yel-

low line segments. The result matches very well with

our own intuition of pockets and their mouths. One

can see that our pocket extraction algorithm has al-

most perfectly located all pockets and holes in the

molecular surface.

3.2. Signed Distance Functions

Efficient and stable computation of signed distance

functions (SDF) d(x) plays a critical role in the

pocket extraction algorithm described in section 3.1.

A number of SDF algorithms have been developed

in recent years. In this section, we present a method

of computing the SDF dS(x) and dT (x) based on

fast distance transforms [22]. Other stable SDF

algorithms may also be applied, for example SDF

algorithms using graphics hardware [42] for better

speedup.

Given a 2D/3D binary image as input, its dis-

tance transform calculates the shortest distance from

each pixel (voxel) to the nearest non-zero pixels (vox-

els). The distance transform computation is very ef-

ficient and can be done in time linear to the number

of pixels (voxels). We extend the distance transforms

to compute SDF for any closed compact surface.

Considering a closed compact surface S embed-

ded in a regular grid, we define a grid point p as a

near point, highlighted in Figure 4(a), if at least a

cell containing p intersects S. Otherwise p is con-

sidered as a far point. The signed distance function

dS(x) to the surface S is computed as follows:

(1) A binary image I0 is constructed by setting the

values of near points to 1 and far points to 0.

(2) We compute the distance transform for the bi-

nary image I0. Particularly, for each far point p

its closest near point cp is recorded. We call cp

the near cousin of p. The time for this step is

linear to the number of grid points.

(3) For each near point q, its shortest distance dS(q)

to S is computed and the sign of dS(q) is set pos-

itive/negative if q is outside/inside S. The point

q̃ on S nearest to the point q is also recorded.

In order to determine whether q is outside

or inside S, we assume that S has been decom-

posed into simplices, e.g. triangles in 3D, and the

normal vectors always point towards the outside

of S. In R
3, the nearest point q̃ may be inside

a triangle, on a triangle edge, or on a triangle

vertex. If q̃ belongs to only one simplex t ∈ S,

i.e. q̃ is within the interior of t, then q is out-

side if (q − q̃) · �nt > 0, where �nt is the normal

vector of t. But this dot-product criterion fails

if q̃ is a shared point of two or more simplices,

i.e. q̃ is on a corner or edge of S. In this case,
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(a) (b) (c) (d)

Fig. 3. Example slices of the pocket function and extracted pocket surfaces for the ”Bacteriochlorophyll Containing Protein”
(PDB ID: 3BCL). (a) The protein surface and the big tunnel in the middle. (b) A cross-section of the protein surface shown as
white curves on the color map of the SDF. (c) A slice of the pocket function for the ”Bacteriochlorophyll Containing Protein” is
shown as color map and the pocket boundaries are shown as curves. (d) The pockets in (c) are superimposed onto the protein
surface in (b).
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Fig. 4. (a) Near points are highlighted in orange. (b) Exam-
ples of determining whether a near point is inside/outside the
surface S, where q̃1 is contained in only one simplex but q̃2 is
shared by two simplices. The dashed line is a ray from q2 to
find the nearest intersecting simplex.

we use a ray-shooting method to find the closest

simplex to q. We cast a ray Rq from q through

an interior point of a simplex containing q̃ and

compute the intersection points between Rq and

other simplices sharing the same q̃, as illustrated

in Figure 4(b). The first simplex t0 intersected

by Rq is chosen and the sign of dS(q) is set as

the sign of (q − q̃) · �nt0 .

(4) The SDF dS(p) of a far point p has the same sign

as that of its near cousin cp. The magnitude of

dS(p) is evaluated as |p− c̃p|, where c̃p ∈ S is the

nearst point to cp on S computed in step 3.

We state two propositions about the signed distance

functions dS(p) computed in the above algorithm.

Prop 3.1. The sign of SDF dS(p) is correctly set for

every far point p .

Proof. We prove this by contradiction. The sign

of dS(p) of the far point p is the same as that of

its closest near point cp. If p is outside S, then its

near cousin cp is inside S. Let us follow the path

from p to cp that consists of three segments along

the x, y, and z axes. The last outside point on the

path must be a near point and is closer to p than cp.

This contradicts the definition that cp is the closest

near point to p. The same arguments hold if p is

inside S.

Prop 3.2. The error of dS(p) is not accumulative

and is bounded by the same order as the grid cell

side δ.

Proof. Clearly the magnitude of dS(p) is larger than

the distance |d(p, cp)| from p to its near cousin cp

and less than |d(p, cp)| + |d(cp, c̃p)|. The distance

|d(cp, c̃p)| from the near point cp to the closest point

c̃p on S is in the order of O(δ). Thus we have the

following inequality,

|d(p, cp)| ≤ |dS(p)| ≤ |d(p, cp)| + |d(cp, c̃p)|

= |d(p, cp)| + O(δ).

Therefore error between dS(p) and its approximate

d(p, cp) + d(cp, c̃p) is bounded by O(δ).

Since SDF always achieves the correct signs and

has bounded errors for the SDF, the above algorithm

is very robust.It is also very efficient and works even

for highly complicated protein surfaces. The running

time of each step of algorithm is O(N) linear to the

number of grid points N , except for step (3). In

the worst case, step (3) has computational complex-

ity O(s · Nn), where s is the number of simplices in

the surface S and Nn is the number of near points.
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(a) (b) (c)

Fig. 5. The molecular surface and pockets of HIV-I protease visualized using combined surface and volume rendering.

However, we use spatial decomposition of the regular

grid to limit the search of the nearest point of q to a

small subset of simplices on S . On average then, the

complexity of step (3) is O(Nn), proportional to the

number of simplices in S, which makes the computa-

tion of the SDF efficient even for highly complicated

protein surfaces in our experiments.

3.3. Quantitative Analysis and Visualization

Representing pockets as a volumetric function φP (x)

allows for a number of different ways to visualize and

analyze the pocket structures quantitatively.

Visualization As the pocket function φP (x) is a 3D

volumetric scalar function, we can visualize it using

various volume visualization techniques, e.g. ray-

cast or texture based volume rendering and isosur-

face rendering. As an example of visualization, Fig-

ure 5 displays the HIV-I protease (PDB ID: 1HOS),

that is important for the maturation of HIV-I virus.

An inhibitor can bind in a tunnel of the HIV-I pro-

tease, as shown in Figure 5(a). We compute the

pocket function of the HIV-1 protease and success-

fully extract the binding site as the large pocket re-

gion of the function. Figure 5(b) renders the pocket

function using 3D texture-based volume rendering

combined with the protein surface to illustrate the

overall distribution of the pocket regions. Figure

5(c) displays the bounding surfaces of the largest four

pockets of the HIV-1 protease, one of which is on the

other side of the protein and invisible from this view.

The ligand binding tunnel is extracted as the pocket

(tunnel) with the largest volume. The visualizations

were performed using surface and volume rendering

capabilities of TexMol [1].

Quantitative Analysis Based on the volumetric

pocket function φP (x), we can extract the bounding

surfaces of all pockets, tunnels, and voids in a protein

once as the level set φP (x) = ε. Quantitative mea-

sures like the volume and surface area of each pocket

can be computed from the pocket function by sum-

ming up the contributions from individual cells that

belong completely or partially to the pocket. If the

3D domain is decomposed into simplices, the contri-

bution from each simplex to the volume or surface

area of the level set φP (x) = ε can be represented

as a B-spline function of the variable ε and the total

measure is the sum of all non-zero B-splines [4].

Additional geometric and shape properties can

also be computed for protein pockets based on the

pokcet function φP (x), for example curvatures dis-

tributions [14, 43], shape histograms [29, 37], coef-

ficients of volumetric function expansions [28], and

shape context [5]. Those shape properties of pro-

tein pockets may be used for building a database of

the proteins pocket structures, and applied to the

problem of ligand binding [31]. An affine-invariant

method of comparing protein structures is described

in [47] by using multi-resolution dual contour trees

(MDCT) of the molecular shape functions, e.g. sol-

vent accessibility, combined with geometric, topolog-

ical, and electrostatic potential properties. We think

the pocket functions would better capture the most

important features of the protein shapes and provide

more accurate comparison and classification.

Contour tree (CT) is an affine-invariant data

structure that captures the topological structures of

the level sets of a volumetric function F (x) [11],

which may also be used for volumetric function

matching and protein docking. Each node of the
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Fig. 6. (a) The contour tree of the pocket function for the ”Bacteriochlorophyll A Protein” (3BCL) (b), (c), and (d) are the

DCTs of the pocket function at three different resolutions of 16, 4, and 1 intervals.

CT corresponds to a critical point of the function

and each arc corresponds to a contour class connect-

ing two critical points. A contour class is a maximal

set of continuous contours which do not contain any

critical points. If we cut the CT at the isovalue w,

the number of connected contours of the level set

F (x) = w is equal to the number of intersections

(cuts) to CT. In the case of pocket function φP (x),

the number of cuts to CT of the pocket function at

ε > 0 is the number of continuous surface patches

bounding the pockets, i.e. the number of separate

pockets.

Our pocket algorithm works for general 3D sur-

face models, e.g. the tunnels in the ”8” shape shown

in Figure2, and for complex protein surfaces. This

method is very sensitive. For a complicated surface

such as the molecular surfaces computed from elec-

tron density functions, the pocket function will cap-

ture the large binding sites as well as even small de-

pressions and voids in the surface. This distinctive

feature offers both opportunities and challenges in

protein shape and structure analysis.

For example, the CT of the pocket func-

tion φP (x) for the ”Bacteriochlorophyll A Protein

(3BCL)” is shown in Figure 6(a). Since we are only

interested in the pocket regions where φP (x) > 0, the

CT has been truncated to remove the uninteresting

part of φP (x) < 0. However, it still is very complex

and contains 2,063 nodes (critical points). A cut at

ε > 0 would introduce a large number of individual

pockets, many of which are very small and of little

importance. Furthermore the critical points and the

structure of the CT are sensitive to the noise in the

data.

Pocket Filtering We need to simplify the pocket

function and/or the corresponding CT, in order to

focus on the major pockets and filter out small ones.

Carr et. al [12] describes a method of simplifying

isosurfaces by tagging CT edges with geometric in-

formation and suppressing contours of small geomet-

rical measures. While this approach can be applied

to the pocket functions to pick the major pockets,

the CT itself is not simplified and it is very hard to

compare the CT’s of two protein pocket functions.

Another way of simplification is to construct a sim-

plified data structure for the volumetric function, e.g.

the dual contour tree (DCT) introduced in [46,47].

A DCT studies properties of interval volumes

within a specific range of a scalar function and is

constructed by partitioning arcs of a CT into sets

of connected segments, each of which corresponds

to a connected interval volume of the function do-

main [47]. These interval volumes represent con-

nected regions whose function values are within a

specific range. Each node of a DCT is such a con-

nected interval volume. For example, in the case of

a pocket function φP (x), the interval volumes within

the range [ε,max(φP (x))] are the 3D regions inside

the pockets, where ε > 0 is a value for the con-

siderations of the solvent size. The relevant range

[ε,max(φP (x))] of the pocket function is divided into

a number of smaller intervals to get a high-resolution

and more complete representation of the underlying

pocket function. Figure 6(b) shows the DCT con-

structed from the CT in Figure 6(a) by dividing the

φP (x) functional range [ε,max(φP (x))] into 16 inter-

vals. Each node in Figure 6 (b) represents a con-

nected volume within a certain functional interval.

For each node of the DCT, geometric and topolog-
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Table 1. Computational time for some examples. T1, T2, and T3 are the time for computing

dS(x), dT (x), and pockets function respectively.

data tri# T1(s) T2(s) T3(s) total (s)

”8” shape 1,536 2.1 5.45 0.33 7.88

”Bacteriochlorophyll A Protein” (3BCL) 275,456 10.25 6.38 0.33 16.96

”Hydrolase” (1C2B) 268,876 9.92 5.63 0.45 16

ical properties of the corresponding interval volume

are computed. We refer to [46,47] for details of con-

structing DCT and computing the volume and other

attributes of the DCT nodes.

Because protein surfaces are highly compli-

cated, they usually contain many small pockets and

voids. On the other hand, biologically important ac-

tive/binding pockets must have enough size to hold

the solvated ligand. We can thus remove the very

small pockets from further consideration by pruning

the DCT nodes whose volumes fall under a given

threshold. The DCT in Figure 6(b) has been simpli-

fied by pruning. The pruning process can be facil-

itated by merging functional ranges and construct-

ing DCT’s of coarse resolutions. Figure 6(c) and (d)

show the DCTs of the same protein with four range

intervals and one range interval respectively. A node

in a lower-resolution DCT is merged from multiple

child nodes from the higher resolution DCT. Prun-

ing a lower resolution DCT node shall remove all its

child nodes as well. In the single-range DCT in Fig-

ure 6(d), only two nodes are left after prune, one of

which contains more than 94% of total pocket volume

and corresponds to the large binding site in the mid-

dle of the ”Bacteriochlorophyll A Protein (3BCL)”.

4. IMPLEMENTATION AND EXAMPLES

We have implemented both the pocket extraction

and the SDF computation algorithms in C++ and

encapsulated them in our freely available TexMol

software [1]. Our implementation is portable across

multiple compute platforms. The implementation

is very robust and efficient, and can compute pock-

ets for complicated molecular surfaces with multiple

thousands of atoms in a few seconds. Excluding the

time of extracting the original molecular surfaces,

Table 1 shows the computation time without opti-

mization on a DELL Laptop with 1.6 GHz processor

and 1GB memory for the ”8” shape and two proteins,

”Bacteriochlorophyll A Protein” (3BCL) and ”Hy-

drolase” (1C2B), downloaded from the PDB. The

”Hydrolase” (PDB ID: 1C2B) is a protein complex

containing four similar subunits. We choose the di-

mensions of the regular grid as 128 × 128 × 128 for

the balance between accuracy and the requirements

for memory. The smaller the grid size, the more ac-

curate the SDF computation. However it also re-

quires more memory and longer computation time

because the distance transform time is linear to the

number of grid points. Our experiments show that a

128 × 128 × 128 grid is sufficient for extracting pro-

tein pockets. For example, when we increase the grid

resolution for the protein 3BCL from 128×128×128

to 196× 196× 196, we still get the same set of pock-

ets and the volume of the largest pocket has changed

less than 5%.

In Table 1, T1 is the time for computing the

SDF dS(x) for the original surface S, T2 is the time

for extracting the shell surface T and computing the

SDF dT (x), and T3 is the time for constructing the

pocket function φP (x) and extracting the pockets.

3BCL and 1C2B have longer T1 than the ”8” shape

because they have more simplices (triangles) in the

original surface. All three data sets have similar time

for T2 and T3, which is proportional to grid dimen-

sion.

We compared our results to the alpha-shape

based ”CAST” algorithm [8, 34], using the sample

protein list given in [34]. CAST uses the union-of-

ball model of proteins. It gets atomic radius for

each atom from a PDB file, computes the three-

dimensional weighted Delaunay triangulation, and

then computes the alpha-shape and the volume and

areas of the pockets. The pockets are visualized in

CAST by displaying the protein residues around the

pocket with different color [8], as shown in Figure

7(c). Contrary to the CAST algorithm, our pocket

algorithm can use any molecular surface model, in-

cluding the union-of-ball model. In our implemen-

tation, we model molecular surfaces as smooth level

sets of the electron density functions E(x), which are

computed as the summation of the Gaussian ker-

nel density functions of all atoms contained in the

corresponding PDB files. The molecular surface S,
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as mentioned before, is extracted as the level set of

E(x) = 1. The pocket function φP (x) is computed

as described in section 3.1. As mentioned earlier, we

can apply more flexible and powerful visualization

to the pocket function than the results of CAST. We

can actually extract and visualize the pocket volumes

themselves, as shown in Figure 7 (a) and (b), which

can be further used to be compared with the shapes

of binding ligands.

In our analysis, We use multi-resolution DCT’s

to prune geometrically insignificant nodes and to re-

move small pocket components. We set a conser-

vative threshold to be 1% of the total pocket vol-

ume, since pocket below this threshold are simply

too small to be a binding site. A pocket or void is

discarded if its volume is below the threshold. For

most proteins under consideration, there is a pocket

with dominant volume corresponding to the binding

site. In table 2, we present the number of pock-

ets after our pruning step, the volume of the largest

pocket, and the percentage of its volume over the

total pocket volume. In the computation we have

chose ε = 1.5 for extracting pockets as the level set

of φP (x) = ε. The results are compared to those

from CASTp [8].

Although we used a different molecular surface

model from the ”CAST” algorithm, our quantita-

tive results are correlated well with the results from

CAST [34] and experiments. For example, the Bacte-

riochlorophyll A Protein (3BCL) was shown in table

2 to contain a large pocket (tunnel) of 94.4% of the

total pocket volume, consistent with the experimen-

tal binding site and the result in CAST [34]. How-

ever, the values of the pocket volumes do not match

exactly. This may be due to two major reasons: first

the two algorithms use different protein models for

pocket extraction; second pockets are segmented dif-

ferently in the two methods. For example ”porin”

(2por) has 45 pockets in CAST compared to 2 in

our algorithm. We believe our algorithm is quantita-

tively more accurate according to the visualizations.

Our definition of pockets is mathematically rigorous

and the extraction algorithm has been shown to vi-

sually correct as in Figure 3 and 5.

5. CONCLUSION

In this paper we present a simple and practical ge-

ometric algorithm to compute pockets of any closed

compact surface, particularly complicated molecular

surfaces. The pockets are represented as a volumetric

pocket function, which has the advantage of allow-

ing a wide range of quantitative analysis and visual-

ization. Furthermore, the advantage of our method

lies in its generality and applicability to any defini-

tion of molecular surfaces. We also present an effi-

cient volumetric sign distance function calculation,

necessary for the pocket function. Additionally, we

combine quantitative analysis with DCT’s to filter

insignificant features from molecular surfaces. The

combined set of algorithms provide an efficient and

robust to extract complementary space features from

very complex protein surfaces and additionally other

free-form surfaces. The results of our implementa-

tion capture all the protein pockets and correlate

well with experiments and prior pocket extraction

algorithms.

ACKNOWLEDGEMENTS

We thank Dr. Bong-Soo Sohn for several

helpful discussions related to pocket computa-

tions. This research was supported in part

by NSF grants EIA-0325550, CNS-0540033,

and NIH grants P20-RR020647, R01-GM074258,

R01-GM073087, R01-EB004873. The Tex-

Mol software can be freely downloaded from

http://www.ices.utexas.edu/CCV/software/

References

1. Bajaj, C., Djeu, P., Siddavanahalli, V., and

Thane, A. Texmol: Interactive visual exploration of
large flexible multi-component molecular complexes.
Proc. of the Annual IEEE Visualization Conference
(2004), 243–250.

2. Bajaj, C., Lee, H. Y., Merkert, R., and Pas-

cucci, V. Nurbs based b-rep models from macro-
molecules and their properties. In In Proceedings
Fourth Symposium on Solid Modeling and Applica-
tions, Atlanta,Georgia, 1997,C. Hoffmann and W.
Bronsvort Eds., ACM Press. 1997, pp. 217–228.

3. Bajaj, C., and Siddavanahalli, V. An adaptive
grid based method for computing molecular surfaces
and properties. ICES Technical Report TR-06-57,
2006.

4. Bajaj, C. L., Pascucci, V., and Schikore, D. R.

The contour spectrum. In IEEE Visualization Con-
ference (1997), pp. 167–173.

5. Belongie, S., Malik, J., and Puzicha, J. Shape
matching and object recognition using shape con-

284



(a) (b) (c)

Fig. 7. Visualizations for the pockets of the ”Bacteriochlorophyll A Protein” (3BCL). (a) and (b) show the big central pocket

(tunnel) extracted using our algorithm, with and without the protein surface. (c) is the visualization from CASTp [8].

Table 2. Pocket statistics of some sample proteins.

Protein name PDB # of largest percentage CAST largest

ID pockets pocket (Å
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