
ENHANCED PARTIAL ORDER CURVE COMPARISON OVER MULTIPLE PROTEIN FOLDING

TRAJECTORIES

Hong Sun∗, Hakan Ferhatosmanoglu, Motonori Ota†, Yusu Wang

Department of Computer Science and Engineering

The Ohio State University, Columbus,OH 43210
† Global Scientific Information and Computing Center

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Email: sunh,hakan,yusu@cse.ohio-state.edu, †mota@gsic.titech.ac.jp

Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current
computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing
need to be able to interpret and identify novel folding features from them. In this paper, we model each folding trajec-
tory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called
the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including
both successful and unsuccessful simulation runs. Our EPO algorithm addresses several new challenges presented by
comparing high dimensional curves coming from folding trajectories. A detailed case study of applying our algorithm
to a miniprotein Trp-cage 24 demonstrates that our algorithm can detect similarities at rather low level, and extract
biologically meaningful folding events.

keywords: EPO, trajectory, alignment, protein folding, high dimension.

1. INTRODUCTION

Proteins are the main agents in cells. From a chem-

ical point of view, a protein molecule is a linear se-

quence of amino acids. This linear sequence, under

appropriate physicochemical conditions, folds into a

unique native structure rapidly. Understanding fold-

ing process is of paramount importance, especially

since the outcome of it, namely the three dimensional

protein structure, to a large extent decides the func-

tionality of the molecule. Hence a lot of research has

been devoted to investigating the kinetics of protein

folding. In particular, modern (parallel) computa-

tion power makes it possible to perform large-scale

folding simulations. As a result, interpreting the

huge amount of simulation data obtained becomes a

crucial issue.

Given the highly stochastic nature of the protein

motion, the study of protein fold usually relies on an

ensemble of folding simulations including both suc-

cessful and unsuccessful runs, which are trajectories

that do or do not include a sequence of conformations

leading to a near native conformation. Given such a

diverse data set, scientists wish to answer questions

such as what causes the folding process falling into

different results, and what common properties are

shared by the successful runs, but not the unsuc-

cessful ones? To this end, it is highly desirable to

be able to compare multiple folding trajectories and

extract useful information from them.

In this paper, we model each protein folding trajec-

tory as a high dimensional curve, and then present

a novel multiple-curve comparison (MCC) algorithm

to identify critical information from a set of trajec-

tory curves in an automatic manner. In particular,

we focus on the geometry of protein chain confor-

mations throughout the folding process, and convert

each conformation into a high dimensional point.

The goal is to extract lists of ordered events com-

mon to successful runs but not to unsuccessful ones,

such as discovering that a conformation B is always

formed after A and followed by a conformation C

before reaching a successful folding conformation.

(Conformations A, B, and C may not be consecu-

tive.) To this end, we develop an effective new multi-

ple curves comparison algorithm called the enhanced

partial order (EPO) algorithm, to capture similari-

ties and dis-similarities between a set of input folding

trajectories. The EPO algorithm is developed over

the concept of POA (partial order alignment) algo-

rithm 9, 17, but is greatly improved and extended

∗Corresponding author.

299

in several aspects, especially in its sensitivity in de-

tecting low level of similarity and its capability of

handling high dimensional curves. Applying it to

the folding trajectories of a miniprotein Trp-cage 24

shows that our algorithm is able to automatically

detect important critical folding events which are

observed earlier 28 by biological methods. We re-

mark that the EPO algorithm is general, and can be

applied to multiple protein structure comparisons as

well.

2. RELATED AND NEW WORK

2.1. Related Work

Previously, folding simulations analysis is per-

formed mainly for testing various protein folding

models 2, 18, 33, such as the folding pathway model

and the funnel model; and/or for studying energetic

aspects of folding kinetics 1, 4, 5, 19. The geometric

shapes of the conformations involved in folding tra-

jectories have not been widely explored 6, 14, 28, de-

spite their important role in folding. A particularly

interesting work in this direction is by Ota et al. 28,

where they provide a quite detailed study of the

folding trajectories of a mini-protein Trp-cage using

phylogenic tree combined with expert knowledge.

However in general, an automatic tool to facilitate

the folding simulations analysis at large scales is still

missing. This paper provides an important step to-

wards this goal by modeling folding trajectories as

curves and using a new multiple curve comparison

(MCC) algorithm to detect critical folding events.

The closest relative of our MCC problem in compu-

tational biology is the multiple structure alignment

(MSTA) problem, which aims at aligning a family of

protein structures, each modeled as a three dimen-

sional polygonal curve to represent its backbone.

MSTA is a very hard problem. In fact, even the

pairwise comparison problem of aligning two struc-

tures A and B is believed to be NP-hard since

one has to optimize simultaneously both the cor-

respondence between A and B and the relative

transformation of one structure with respect to the

other. Numerous heuristic-based algorithms have

been developed in practice for this fundamental

problem 7, 8, 11, 12, 16, 30, 32. If we have a set of

k > 0 structures, then even the problem of aligning

them optimally without considering transformations

becomes intractable — it takes Ω(nk) time using the

standard dynamic programming algorithm, where n

is the size of each protein involved.

In practice, progressive methods are widely used to

attack the MSTA problem 21. For example, given a

set of structures, many approaches start with a seed

structure and then progressively align the remaining

structures onto it one by one 3, 10, 20, 25, 26, 29, 35.

A consensus or core structure is typically built

throughout, to maintain the common substructures

among the proteins that are already aligned. At each

round, only pairwise structure comparison is usually

performed to align the current consensus with a new

structure.

Obviously, the above progressive MSTA framework

is a greedy approach. Its performance depends on

the underlying pairwise comparison methods used,

the order of structures that are progressively aligned,

as well as the consensus structure maintained. Var-

ious heuristics have been exploited to find a good

order for the progressive alignments. Note that this

order can also be guided by a tree instead of a linear

sequence, which removes the need of choosing a seed

structure. The progressive procedure may also be

iterated several times to locally refine the multiple

structure alignments.

2.2. Our Results

There are two main differences between the MCC

problem we are interested in and the traditional

MSTA problem. In the case of protein structures, it

is usually explicitly or implicitly assumed that the

(majority of the) input proteins belong to one fam-

ilya, or at least share some relations. As such, one

can expect that some consensus of the family should

exist. However in our case, the set of curves are

from a set of simulations including both successful

and unsuccessful runs, and we wish to classify this

diverse set of curves, and capture common features

within as well as across its sub-families. Secondly

and more importantly, the level of similarity existing

in these folding trajectories is usually much lower

aHow to classify a set of input structures into different families is a related problem, and many such classifications exist 12, 22, 27.

300

(a) Linear Alignment (b) Partial Order Alignment

Fig. 1. Aligning five trajectories (IDs 1 to 5) using (a) a linear graph, and (b) a partial order graph. Symbols in the circles are
the node IDs and numbers on edges are trajectory IDs. Note that the linear alignment in (a) will not be able to record the partial
similarity between curves 3 and 4, which is maintained in (b) (i.e, node d).

than that in a family of related proteins. Hence we

aim at an algorithm with high sensitivity, which is

able to detect small-scaled partial similarity.

In this paper, we propose and develop a sensitive

MCC algorithm, called the EPO (enhanced partial

order) algorithm, to compare a set of diverse high

dimensional curves. Our algorithm follows a similar

framework as the POA algorithm 17, 35 to encode

the similarities of aligned curves in a partial order

graph, instead of in a linear structure used by many

traditional MSTA algorithms. This has the advan-

tage that other than similarities among all curves,

similarities among a subset of input curves can also

be encoded in this graph. See Figure 1 for an exam-

ple, where nodes in both graphs represent a group

of aligned points from input curves.

For the more important problem of sensitivity, we

observe that being a greedy approach, the progres-

sive MSTA framework tends to be inherently insen-

sitive to low level of similarities — if one early local

decision is wrong, it may completely miss a small-

scaled partial similarity. To improve this aspect of

the performance of the progressive framework, we

first propose a novel two-level scoring function to

measure similarity, which, together with a clustering

idea, greatly enhances the quality of the local pair-

wise alignment produced at each round. We then

develop an effective merging step to post-process the

obtained alignments. This step helps to reassemble

vertices from input curves that should be matched

together, but were scattered in several sub-clusters

in the alignments due to some earlier non-optimal

decisions. Both techniques are general and can be

used to improve the performance of many exist-

ing MSTA algorithms. Experimental results show

that our MCC algorithm is highly sensitive and able

to classify input curves. We also demonstrate the

power of our tool in mining critical events from pro-

tein folding trajectories using a detailed case study

of a miniprotein Trp-cage.

Although our EPO algorithm is developed for com-

paring folding trajectories, the algorithm is general

and can be applied to other domains as well, such

as protein structures or pedestrian trajectories ex-

tracted from surveillance videos 34. EPO fits espe-

cially well for those applications when the level of

similarity is low.

3. METHOD

In this section, we describe our EPO algorithm for

comparing a set of possibly high dimensional gen-

eral curves. If we are given a set of protein folding

data, we first convert each folding trajectory to a

high dimensional curve. In particular, a folding tra-

jectory is a sequence of conformations (structures) of

a protein chain, representing different states of this

protein during the simulation of its folding process.

We represent each conformation using the distance

map between its alpha-carbon atomsb so that it is

invariant under rigid transformations. For example,

if a protein contains n amino acids, then its distance

map is a n×n matrix M where M [i][j] equals the dis-

tance between the ith and jth alpha-carbon atoms

along the protein backbone. This matrix can then

be considered as a point in the n2 dimensions. This

bOne can also encode the side-chain information into the high dimensional curves, or map a substructure into a high dimensional
point.

301

way, we map each trajectory of m conformations to

a curve in R
n2

with m vertices. In the remaining

part of this paper, we use the terms trajectories and

curves interchangeably.

3.1. Notations and Algorithm Overview

Before we formally define the MCC problem, we in-

troduce some necessary notations. Given a set of el-

ements V = {v1, . . . , vl}, a relation ≺ over V is tran-

sitive if vi ≺ vj and vj ≺ vk imply that vi ≺ vk. In

this paper, we also refer to vi ≺ vj as a partial order

constraint. A partial order graph (POG) G = (V, E)

is a directed acyclic graph with V = {v1, . . . , vl},

where vi ≺ vj if there is an edge (vi, vj). Note that

by the transitivity of this relation, two nodes may

have a partial order constraint even when there is no

edge between them in G. Let R be the set of partial

order constraints induced by G. We say that V is a

partial order list w.r.t. G if for any vi ≺ vj ∈ R, we

have that i < j. In other words, the linear order in V

is a total order satisfying all partial order constraints

induced from G. See Figure 2 for an example.

Fig. 2. A POG G of 5 nodes. Note that there is a partial
order constraint a ≺ d even though there is no edge between
them. Both {a, b, c, d, e} and {a, c, b, d, e} are valid partial or-
der lists w.r.t. G.

Let T = {T1, . . . , TN} be a set of N trajectories in

R
d, where each trajectory Ti is an ordered sequence

of n points pi
1, . . . , p

i
n

c. The goal of the MCC algo-

rithm is to find aligned sub-sequences from T .

More formally, an aligned node o is a collection of

vertices from Tis, with at most one point from each

Ti. Given a 3-tuple (T , τ, ε), where τ and ε are input

thresholds, an alignment of T is a POG G with the

corresponding set of partial order constraints R and

a partial order list of aligned nodes O = {o1, . . . , oL}

such that the following three criteria are satisfied:

C1. |ok| ≥ τ , for any k ∈ [1, L];

C2. for any pi
j , p

i′

j′ ∈ ok, ||pi
j − pi′

j′ || ≤ ε;

C3. if pi
j ∈ ok1

and pi
j′ ∈ ok2

with ok1
≺ ok2

,

then j < j′.

(C1) indicates that the number of vertices of input

curves aligned to each aligned node is greater than

a size threshold τ , and (C2) requires that these

aligned points are tightly clustered together (i.e, the

diameter is bounded by a distance threshold ε).

(C3) enforces that points in different aligned nodes

still maintain their partial order along their respec-

tive trajectory. Our goal is to maximize L, the size

of such an alignment O. See Figure 3 (b) for an

example of an alignment graph.

Algorithm overview At a high level, the EPO algo-

rithm has two stages (see Figure 3): (S1) initial POG

construction stage and (S2) merging stage. The first

stage generates an initial alignment for T , encoded in

a POG G. The procedure has the same framework as

the POA algorithm, but its performance, especially

when the similarity is low, is significantly improved,

via the use of a clustering preprocessing step and a

new two-level scoring function. In the second stage,

we develop a novel and effective procedure to merge

nodes from G to produce aligned nodes with large

size, and output a better final alignment G∗. Below,

we describe each stage in detail.

3.2. Initial POG Construction

Standard dynamic programming (DP) 23, 31 is an

ideal method for pairwise comparison between se-

quences. It produces the optimal alignment between

two sequences with respect to a given scoring func-

tion. One can perform multiple sequences alignment

progressively based on this DP pairwise comparison

method. Roughly speaking, in the ith round of the

algorithm, the alignment of the first i−1 sequences is

represented in a consensus sequence. The algorithm

then update this consensus by aligning it with the

ith sequence Si using the standard DP algorithm.

Information from Si that is not aligned to the con-

sensus sequence is essentially lost. See Figure 1(a).

The partial order alignment (POA) algorithm 17

greatly alleviates this problem by encoding the

consensus in a POG instead of a linear sequence

cFor simplicity, we assume without loss of generality that all Tis have the same length n.

302

(a) Initial POG (b) POG before merging (c) POG after merging

Fig. 3. Symbols inside the circles are the node IDs. The table associated with each node encodes the set of points aligned to
it. In particular, each row represents a point with its trajectory ID (T column) and its index along the trajectory (S column).
In (a), a POG is initialized by the trajectory T1. An example of a POG after aligning a few trajectories is shown in (b). Note
that a new node/branch is created when a point cannot be aligned to any existing nodes. For example, node e is created when
p2
3

(i.e, the 3rd point of T2) is inserted. (c) shows the POG after merging point p1
2

from the node b to the node e constrained by
the distance threshold ε.

(see Figure 1(b)). In particular, the alignment of

S1, . . . , Si−1 is encoded in a partial order graph Gi,

which is then updated by aligning it with Si. The

alignment between Gi and Si can still be achieved by

a DP algorithm. The main difference is that in this

DP procedure, to find the optimal score of aligning

a node v ∈ Gi and an element s ∈ Si, one has to

inspect the alignment between all parents of v in

Gi and the parent of s in Si. The POA algorithm

reduces the influence of the order of the sequences

aligned, and is able to capture alignments between a

subset of sequences. More details of the POA algo-

rithm can be found in 17, 9.

In our case, each trajectory is mapped to an or-

dered sequence of points (i.e, a polygonal curve),

and a similar algorithm can be applied to our trajec-

tory data, where instead of the usual 1D sequences,

we now have dD sequencesd. Below we explain two

main differences between our EPO algorithm and

the POA algorithm.

3.2.1. Size of POG

The first problem with current POA algorithm is

that the size of the POG graph maintained expands

quickly when the level of similarity is low. For exam-

ple, suppose we are updating the current POG Gi to

Gi+1 by aligning it with a new curve Ti. If a point

p ∈ Ti cannot be aligned to any node in Gi, then it

will create a new node in Gi+1, as this node may po-

tentially be aligned later with the remaining curves.

Consequently, if the similarity is sparse, many new

nodes are created without producing significantly

aligned nodes later and the size of the POG graph

increases rapidly. This induces high computational

complexity.

To address this problem, our algorithm first pre-

processes all points from the input curves T by clus-

tering them into groups 13, the diameter of which is

smaller than a user defined threshold, which is fixed

as the distance threshold ε in our experiments. We

keep only those clusters whose size is greater than

a certain threshold (τ/2 in our experiments), and

collect their centers in C = {c1, . . . , cr}, which we

refer to as the set of canonical cluster centers. In-

tuitively, C provides a synopsis of the input curves

and represents potentially aligned nodes.

If, in the process of aligning Ti with Gi, a point

p ∈ Ti is not aligned to any node in Gi, then we

insert a new node in Gi+1 only if p is within ε away

from some canonical center from C. If p is far from

all the canonical cluster centers, then there is little

chance that p can form significant alignment with

points from later curves, as that would have implied

that p should belong to a dense cluster. The set of

canonical cluster centers will also contribute to the

scoring function described below.

3.2.2. Scoring Function

The choice of the scoring function when aligning

Gi = (Vi, Ei) with Ti, is in general a crucial aspect

of an alignment algorithm. Given a point p ∈ Ti and

a node o ∈ Gi, let δ(o, p) be the similarity between

p and o, the definition of which will be described

shortly. The score of aligning p with o is usually

dSince each point corresponds to the distance map of a conformation, no transformation is needed when comparing such curves.

303

defined as:

Score(o, p) =

max { max
(o′,o)∈Ei

(Score(o′, q) + δ(o, p)),

max
(o′,o)∈Ei

Score(o′, p), Score(o, q)},

where q is the predecessor (i.e, parent) of the point

p along Ti, and o′ ranges over all predecessors of o

in the POG Gi. It is easy to verify that such scores

can be computed by a dynamic programming proce-

dure due to the inherent order existing in both the

trajectory and the POG.

A common way to define δ(o, p), the similarity be-

tween o and p, is as follows. Assume that each node

o is associated with a node center ω(o) to represent

all the points aligned to this node. Then

δ(o, p) =

{
ε − ||p − ω(o)|| if||p − ω(o)|| < ε

0 otherwise
(1)

An alternative way to view this is that each node o

has an influence region of radius ε around its center.

A point p can be aligned to a node o only if it lies

within the influence region of o. In order to be able

to align as many points as possible, intuitively, it is

more desirable that the influence regions of nodes in

current POG cover as much space as possible.

Natural choices for the node center ω(o) of o include

using a canonical cluster center computed earlier, or

the center of the minimum enclosing ball of points

already aligned to this node (or some weighted vari-

ants of it). The advantage of the former is that

canonical cluster centers tend to spread apart, which

helps to increase coverage. Furthermore, the canoni-

cal cluster centers serve as good candidates for node

centers as we already know that there are many

points around them. The disadvantage is that it

does not consider the distribution of points aligned

to this node. See Figure 4, where without consider-

ing the distribution of points aligned to oa and ob,

the new point p will be aligned to ob even thought

oa is a better choice. Using the center of the mini-

mum enclosing ball alleviates this problem. However,

such centers depend heavily on the order of curves

aligned, and the influences regions of nodes produced

this way tend to overlap much more than using the

canonical cluster centers. We combine the advan-

tages of both approaches into the following two-level

scoring function for measuring similarities.

More specifically, for a node o, let q be the first

point aligned to this node. This means that at the

time we were examining q, q cannot be aligned to

any existing node in the POG. Let ck ∈ C be the

nearest canonical cluster center of q — recall that

the node o was created because ||q − ck|| ≤ ε. We

add ck as a point aligned to this node, and at any

time, the center of the minimum enclosing ball of

currently aligned points, including ck, will be used

as the node center ω(o). Now let

D(o) = max
q,q′∈o

||q − q′||

be the diameter of points currently aligned to o. We

define that:

δ(o, p) =

2ε if ||p − ω(o)|| < D(o)

ε else if ||p − ω(o)|| < ε

0 else

(2)

In other words, the new scoring function encourages

centering points around previously computed cluster

centers, thus tending to reduce overlaps between the

influence regions of different nodes. Furthermore, it

gives higher similarity score for points that are more

tightly grouped together with those already aligned

at current node, addressing the problem shown in

Figure 4. Our experimental tests have shown that

this two level scoring function significantly outper-

forms the ones using either only the canonical cen-

ters or only the centers of minimal enclosing balls.

We remark that it is possible to use variants of the

above two-level scoring function, such as making it

continuous (instead of being a step function). We

choose the current form for its simplicity. Further-

more, experiments show that there is only marginal

difference if we use the continuous version.

Fig. 4. Empty and solid points are aligned to the nodes oa

and ob, respectively. For a new point p (the star), although it
is closer to ω(ob), it is better grouped with points aligned to
oa. Hence ideally, it should be aligned to oa instead of to ob.

304

3.3. Merging Stage

In the first stage, we have applied a progressive

method to align each trajectory onto an alignment

graph one by one. In the ith iteration, a point from

Ti is either aligned to the best matched node in the

current POG Gi, or a new node is created containing

this point and the corresponding canonical cluster

center. After processing all of the N trajectories in

order, we return the final POG G = GN . In the

second stage of our EPO algorithm, we further im-

prove the quality of the alignment in G using a novel

merging process.

Given the greedy nature of the POA algorithm, the

alignment obtained in G is not optimal and depends

on the alignment order. Furthermore, given that the

influence regions of different nodes may overlap, no

matter how we improve the scoring function, some-

times it is simply ambiguous to decide locally where

to align a new point, and a wrong decision may have

grave consequence later.

Fig. 5. Empty and solid points are aligned to the nodes oa

and ob, respectively, while points in the dotted region should
be grouped together.

For example, see Figure 5, where the set of points

P (enclosed in the dotted circle) should have been

aligned to one node. However, suppose the nodes oa

and ob already exist before any point in P is inserted.

Then as points from P come in, it is rather likely

that they are distributed evenly into both oa and ob.

This problem becomes much more severe in higher

dimensions, where P can be distributed to several

nodes whose centers are well-separated around P ,

but whose influence regions still covers some points

from P (the number of such regions grows expo-

nentially w.r.t. the dimension d). Hence instead

of being captured in one heavily aligned node, P is

broken into several nodes of small size. Our exper-

imental tests confirm that this is happening rather

commonly in the POA algorithm.

To address this problem, we propose a novel post-

processing on G. The goal is to merge qualified

points from neighboring less-aligned nodes to aug-

ment more heavily loaded nodes. In particular, the

following two invariants are maintained during the

merging process:

(I1) At any time, the diameter of the target node is

still bounded by the distance threshold ε;

(I2) The partial order constraints induced by the

POG graph are always consistent with the order

of points along each trajectory.

The second criterion means that at any time in the

POG graph G′, if p ∈ o1, q ∈ o2, p, q ∈ Ti and p pre-

cedes q along the trajectory Ti, then either o1 ≺ o2,

or there is no partial order relation between them.

In other words, the resulting POG still corresponds

to a valid alignment of T with respect to the same

thresholds.

As an example, see Figure 3, where the point p1
2

(i.e, the second point of T1) in the node b in (b) is

moved to the node e in (c). Note that the graph is

also updated to reflect the change (the dashed edge

in (c)), in order to maintain the invariants (I1) and

(I2). When all points aligned a node o are merged

to other nodes (i.e, o becomes empty), we delete o,

and its successors in the POG will then become the

successors of its parent.

Algorithm 3.1: merging processing(

G = {o1, ..., om, ...}, | om |≥| om+1 |)

while significant progress

for each om ∈ G in increasing order of m

for each neighbor on, | on |<| om |

for each t′n

if mergeOK() == true

then merge t′n → om

\\ mergeOK() checks if the two invariants

\\ can be maintained if performing

\\ the candidate merging operation

Fig. 6. The merging algorithm.

305

A high level pseudocode of the merging process is

shown in Figure 6. It augments better aligned nodes

from the current POG G by processing first the nodes

with larger size. We perform this procedure a few

times till there is no significant increases in the qual-

ity of the resulting alignment. In practice, to speed

up the algorithm, we merge neighbors to a node o

only if its size is greater than some threshold, as oth-

erwise, there is low probability that o will become a

heavy node later.

4. EXPERIMENTAL RESULTS

In this section, we report a systematic performance

study on a biological dataset that contains 200

molecular dynamics simulations. The experiments

achieve the following goals: First, we show that the

quality of the alignments produced by our EPO al-

gorithm is significantly better than that of the orig-

inal POA algorithm. Second, we demonstrate the

effectiveness of our algorithm by applying it to real

protein simulation data and obtaining biologically

meaningful results that are consistent with previous

discoveries 28. The algorithm is implemented using

Java.

4.1. Background of Dataset

Our input dataset includes 200 simulated folding

trajectories for a particular protein called Trp-cage.

The dataset is provided by the Ota’s Lab 28. The

folding simulations were performed at 325 K by using

the AMBER99 force field with a small modification

and the generalized Born implicit solvent model.

Trp-cage (see Figure 7) is a mini-protein consisting

of 20 amino acids. It has been widely used for fold-

ing study because of its short, simple sequence and

its quick folding kinetics. Following the definition

from 15, a successful folding event has to satisfy the

following two criteria:

• The RMSD for a conformation from the native

NMR structure 24 is less than 2Å.

• A subsequence of such near-native conformations

holds for at least 200ps.

In 28, 58 successful folding trajectories reaching suc-

cessful folding events are identified, and each tra-

jectory includes 101 successive conformations sam-

pled at 20ps interval. Furthermore, there are two

crucial observations in 28 that we will exam in

the our experiment. First, before moving to the

native conformation, a “ring” sub-structure (see

Figure 7) has to be formed. Second, the distinction

of native and pseudonative confirmations heavily re-

lies on side-chain position of “ring” sub-structure. 28

obtained the above results by aligning each pair of

trajectories first and then applying a neighbor join-

ing method to group similar trajectories together.

However this semi-automatic approach requires ded-

icated expert knowledge. The following experiments

applied on the same dataset show that our EPO al-

gorithm can automatically detect the above folding

events with little prior knowledge.

Fig. 7. NMR structure of trp-cage protein 1l2y. Labels
on graph mark amino acids(AAs). AA2 to AA7 roughly
form an alpha-helix. AA2 to AA19 form a ring-type
structure. In particular, AA2 to AA5 and AA16 to AA19
form the “neck” of this ring.

4.2. Experimental Setting

In order to be consistent with the results from 28,

we select all 58 successful folding events, and call it

SuccData. We also randomly select 58 unsuccessful

folding trajectories, each containing 101 conforma-

tions, and collect them in a set called FailData. The

union of successful and unsuccessful data is referred

to as the MixData. We set the distance threshold

ε = 1Å, and τ = 40 in the following experiments,

unless specified otherwise.

4.3. Investigation on Entire Protein

Structure

In the first set of experiments, we convert each

conformation to a high dimensional point based on

the distance matrix between all of the alpha-carbon

atoms. Figure 8 compares the quality of the align-

ments of the SuccData by performing the POA algo-

rithm, our EPO algorithm without the merging pro-

cedure (EPO-NoMerge), and the EPO algorithm. It

306

shows the number of aligned nodes (y-axis) versus

the size of aligned nodes (x-axis). Note that EPO-

NoMerge is essentially POA with a clustering pre-

processing and the new two-level scoring function.

Fig. 8. Distribution of aligned nodes produced by the EPO
algorithm, EPO-NoMerge (i.e, first stage of the EPO algo-
rithm), and the traditional POA algorithm. The histogram is

the number of aligned nodes (y-axis) versus the size of aligned
nodes (x-axis).

The similarity level between these trajectories is low

(i.e, the number of aligned nodes with large size is

small). It is clear from this histogram that our EPO

algorithm significantly outperforms the other two

by producing more aligned nodes with large sizes.

The comparison between EPO and EPO-NoMerge

demonstrates the effectiveness of our merging pro-

cedure, and that EPO-NoMerge is better than POA

shows that the two-level scoring function as well

as the clustering preprocessing greatly enhances the

performance. We have also performed experiments

which show that compared to the POA algorithm,

EPO-NoMerge is much less sensitive to the order of

curves aligned, and we omit the results due to lack

of space. Comparisons of the three algorithms over

the MixData produces a similar result, and majority

of points aligned to heavy nodes (i.e, |o| ≥ 40) are

from successful runs.

We also observe that most of the heavily aligned

nodes are close to the end of the trajectories for the

SuccData. In fact, many aligned points have confor-

mation IDs around and greater than 90, which is in-

deed the time that the folding starts to get stabilized.

More specifically, consider the set of aligned nodes

of size greater than 40 for the SuccData. Among

all points aligned to these nodes, 67.2% has a con-

formation ID greater than 90, and 24.4% has an ID

between 80 and 90. This implies that our algorithm

has the potential to detect the stabilization of suc-

cessful folding events in an automatic manner.

This also implies that using the entire protein struc-

ture may be too coarse to detect critical folding

events, as they are usually induced by small key mo-

tifs. In what follows, we map only a substructure of

the input protein into a high dimensional point and

provide more detailed analysis of this folding data.

4.4. Investigation on Substructures

It is usually believed that certain critical motifs play

important roles which stabilize the whole structure

in the folding process 18, 33. We wish to have a tool

that can identify such critical motifs (substructures)

automatically. We define a candidate motif to be two

subchains of Trp-cage, each of length 4. These two

pieces induce a sub-window in the distance map of

each conformation of the protein. We further require

that the number of contacts in this subwindow w.r.t.

the distance map of the native structure is at least

4, where a contact corresponds to two alpha-carbon

atoms within distance 6Å.

For each conformation of a candidate motif, we con-

sider the distance matrix between its alpha-carbon

atoms as before, and convert the folding trajectory of

this motif into a curve in the 4× 4 = 16 dimensional

space. In order to be more discriminative, we also

introduce a side-chain weighting factor α, ranging

from 0 to 1, to include the side chain information

when comparing two high dimensional points e :

α = 0 means that side-chain information is com-

pletely ignored. We perform our EPO algorithm on

both the SuccData and the MixData, and there are

two motifs that especially stand out.

4.4.1. Alpha-Helix Substructure

The first one corresponds to an alpha-helix substruc-

ture. In Figure 7, five successive amino acids (No.2

-7) form an alpha-helix structure which is a simple,

self-contained secondary structure (SSE) 24. From

the results returned by our EPO algorithm, we note

eRoughly speaking, for every conformation, we record for each residue also the relative position of the centroid of its side-chain
with respect to its alpha-carbon atom. This provides another high dimensional point that we call a side-chain point. The distance
between two conformations will combine the distance between their side-chain points by the side-chain weighting factor.

307

that this alpha-helix is formed rather early consis-

tently in both successful and unsuccessful runs. Once

formed, it remains stable. This is consistent with the

common conception that due to its chemical prop-

erty, alpha-helix is a stable secondary structure, and

can be formed quickly. Hence the formation of alpha-

helix cannot be used to differentiate successful runs

from unsuccessful ones.

4.4.2. Ring-Substructure

The second motif corresponds to the neck of a ring

structure. In particular, it consists of the sub-chains

of No. 2 - 5 and No. 16 - 19 amino acids. The follow-

ing results demonstrate that EPO can automatically

not only find but also track the formation of such

fingerprint sub-structure(critical motif).

Table 1. EPO on ring Structure(MixData).
Column 1 – 3 shows the size of an aligned node
(i.e, the number of points aligned to this node)
from MixData, SuccData, and FailData, respec-
tively. Column 4 shows the diameter of this node
(note that the distance threshold ε = 1Å means
that the diameter of a node can be upto 2Å).

Classification
|oi| ≥ τ SuccData FailData D(o) Å

49 27 22 1.852
45 28 17 1.798
41 29 12 2.189
40 31 9 1.447
48 31 16 1.761
40 32 8 1.322
47 34 13 1.133
42 35 7 1.923
44 36 8 0.873
49 42 7 1.428
54 48 6 1.020
59 50 9 1.294
60 51 9 0.932
56 52 4 1.255
62 56 6 1.782
62 58 4 1.503

First, we observe from Table 1 that when apply-

ing the EPO algorithm to the MixData (with the

sidechain weight factor α = 0.9), significant align-

ments involve mainly trajectories from SuccData.

For example, the last row of Table 1 shows that

among the 62 points (from 62 trajectories) aligned

to a particular node, 58 are from SuccData, with

the remaining 4 from FailData. Hence this motif is

potentially critical to the success of the folding of

Trp-cage. It also suggests that we can automatically

classify the MixData into SuccData and FailData

with few false positives based on this ring-neck mo-

tif, while previously, the classification in the input

data was obtained by a few expert defined rules.

Second, when the side-chain weighting factor α =

0.9, we note that 49.6% of significant aligned nodes

are formed before the conformation ID 85 (compared

to results from Section 4.3). For example, there are

two aligned nodes from the successful runs, where

80% of points (i.e. trajectories) aligned to them has

a conformation ID between 75 − 85. This implies

that the complete formation of this ring-neck usually

immediately precedes the stabilization of the folding

structure (which is roughly at conformation ID 90

for successful trajectories).

If reducing the side-chain weighting factor α to 0.5,

naturally, we found more aligned nodes. In partic-

ular, other than the cluster with conformations of

IDs around 80, we observe more significant clusters

involving conformations with IDs from 50 − 70. By

comparing the conformations of the ring-neck mo-

tif in these clusters with those in the aligned nodes

around 80, we found that the backbone structures

are rather similar, but the side-chains are of differ-

ent orientations. In other words, the shape of the

ring-neck motif is first stabilized by the backbone

structure, and then the side-chains gradually move

into right position. There are a few trajectories

where the side-chains eventually move to the mirror

image of their correct positions, and lead to pseudo-

native conformations which can only be detected

when considering the side-chains.

The above results are consistent with the results

from 28, where such a ring-shaped substructure was

discovered semi-automatically by pairwise structure

comparisons together with expert knowledge.

4.5. Timing of EPO

The above experiments are implemented on a Win-

dows XP machine with 1.5GHz CPU and 512 MB

Memory. The running time of performing the ex-

periments on the entire protein structure is about 30

minutes, and that of the small motifs is about 20

minutes. We believe that the time complexity of the

current algorithm can be significantly improving by

optimizing our code. The merging stage is the most

308

time consuming component and takes about three

quarters of the total time.

5. CONCLUSIONS

In this paper we proposed and developed EPO, an

effective multiple curve comparison method, to an-

alyze protein folding trajectories. Our new method

greatly improved the performance of the POA algo-

rithm by using a clustering preprocessing, a more

discriminative two-level scoring function, as well as

a novel merging post-processing procedure. It can

detect low level of similarity among input curves.

We demonstrated the effectiveness of our method by

applying it to a set of simulated folding trajectories

of the miniprotein Trp-cage.

Currently, we have only experimented the EPO al-

gorithm with a mini-protein (Trp-cage). One imme-

diate question is to understand the scalability of the

EPO algorithm for larger proteins or longer trajec-

tories. In particular, a larger protein means a curve

of higher dimensions. Our EPO algorithm seems

to scale linearly with the dimension, from current

experiments. Furthermore, in practice, it is likely

that we only perform the algorithm on small motifs.

For longer trajectories, it seems that our algorithm

scales in a quadratic manner. However, further ex-

periments are necessary to investigate the scalability

issue.

There are some previous work that analyze protein

folding trajectories by collecting various statistics

on measures such as the contact number (i.e, the

number of native contacts) of each conformation

along a trajectory and the URMS distance between

a conformation and the native structure 14. One

way to view this is that a trajectory is mapped into

a time-series data representing the evolution of, say,

the number of native contacts, which can be con-

sidered as a one-dimensional curve. In this regard,

we can use our EPO algorithm to analyze a col-

lection of such curves induced by one measure. In

general, there may be multiple measures, geometric

or physio-chemical, that a user may wish to inspect.

Hence it is highly desirable to build a framework for

analyzing folding trajectories that can incorporate

these multiple measures, and that also enables the

addition of new properties easily. This is one impor-

tant future direction for us.

Finally, we remark that compared to other mul-

tiple curve alignment algorithms, our algorithm is

specifically effective at capturing low level of simi-

larities. As such, another important future direction

is to apply similar techniques to classifying protein

structures, as well as extracting structural motifs

from a family of proteins that may not share high

global similarity.

ACKNOWLEDGMENT

The work was supported in part by the Department

of Energy (DOE) under grant DE-FG02-06ER25735

and in part by National Science Foundation under

grant IIS-0546713.

References

1. V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich.
Specific nucleus as the trasition state for protein fold-
ing: evidence from the lattice model. Biochemistry,
33:10026–10036, 1994.

2. J. M. Borreguero, F. Ding, S. V. Buldyrev, H. E.
Stanley, and N. V. Dokholyan. Multiple Folding
Pathways of the SH3 Domain. ArXiv Physics e-

prints, 87, May 2003.
3. L. P. Chew and K. Kedem. Finding the Consensus

Shape for a Protein Family (Extended Abstract).
4. F. Chiti, N. Taddei, P. M. White, M. Bucciantini,

F. Magherini, M. Stefani, and C. M. Dobson. Muta-
tional analysis of acylphosphatase suggests the im-
portance of topology and contact order in protein
folding. Nature Struc. Biol., 6:1005–1009, 1999.

5. N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, and
E. I. Shakhnovich. Molecular dynamics studies of
folding of a protein-like model. Fold. Design, 3:577–
587, 1998.

6. R. Du, V. S. Pande, A. Y. Grosberg, T. Tanaka, and
E. Shakhnovich. On the role of conformational geom-
etry in protein folding. Journal of Chemical Physics,
111:10375–10380, Dec. 1999.

7. M. Gerstein and M. Levitt. Comprehensive assess-
ment of automatic structural alignment against a
manual standard, the scop classification of proteins.
Protein Science, 7:445–456, 1998.

8. J. F. Gibrat, T. Madej, and S. H. Bryant. Surpris-
ing similarities in structure comparison. Curr. Opin.

Struct. Biol., 6(3):377–385, 1996.
9. C. Grasso and C. Lee. Combining partial or-

der alignment and progressive multiple sequence
alignment increases alignment speed and scalability
to very large alignment problems. Bioinformatics,
20(10):1546–1556, June.

10. C. Guda, S. Lu, E. D. Scheeff, P. E. Bourne,
and L. N. Shindyalov. CE-MC: a multiple protein

309

structure alignment server. Nucleic Acids Research,
32:”W100–3”, 2004.

11. L. Holm and C. Sander. Protein structure compari-
son by alignment of distance matrices. J. Mol. Biol.,
233:123–138, September.

12. L. Holm and C. Sander. Dali/FSSP classification of
three-dimensional protein folds. Nucleic Acids Res,
25(1):231–234, 1997.

13. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: A review. ACM Comput. Surv., 31(3):264–
323, 1999.

14. K. Kedem, L. Chew, and R. Elber. Unit-Vector
RMS(URMS) as a Tool to Analyze Molecular Dy-
namics Trajectories. Proteins: Structure, Function

and Genetics, 37:554–564, 1999.
15. R. Koike, K.Kinoshita, and A. Kidera. Ring and Zip-

per formation is the key to understanding the struc-
tural variety in all-β proteins. FEBS Letters, 533:9–
13, 2003.

16. E. Krissinel and K. Henrick. Secondary-structure
matching (SSM), a new tool for fast protein struc-
ture alignment in three dimensions. Acta Cryst.,
D60:2256–2268, 2004.

17. C. Lee, C. Grasso, and M. Sharlow. Multiple se-
quence alignment using partial order graphs. Bioin-

formatics, 18(3):452–464, 2002.
18. C. Levinthal. Are there pathways for protein folding?

J.Chim.Phys., 65:44–45, 1968.
19. S. W. Lockless and R. Ranganathan. Evolutionar-

ily Conserved Pathways of Energetic Connectivity in
Protein Families. Science, 286(5438):295–299, Octo-
ber 1999.

20. D. Lupyan, A. Leo-Macias, and A. R. Ortiz. A new
progressive-iterative algorithm for multiple structure
alignment. Bioinformatics, 21(15):3255–3263, 2005.

21. M.J.Sutcliffe, I.Haneef, D.Carney, and T.L.Blundell.
Knowledge based moddelling of homologous pro-
teins, part I: three-dimensional frameworks derived
from the simultaneous superposition of multiple
structures. Protein Engineering, 1(5):377–384, 1987.

22. A. Murzin, S. E. Brenner, T. Hubbard, and
C. Chothia. SCOP: A structural classification of pro-
teins database for the investigation of sequences and
structures. J. Mol. Biol., 247:536–540, 1995.

23. S. B. Needleman and C. D. Wunsch. A general

method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol.,
48:443–453, 1970.

24. J. Neidigh, R. Fesinmeyer, and N. Andersen. PDB
ID:1L2Y Mini-proteins Trp the light fantastic.
Nat.Struct.Biol., 9(6):425–430, June 2002.

25. M. E. Ochagav́ıa and S. Wodak. Progressive com-
binatorial algorithm for multiple structural align-
ments:application to distantly related proteins. Pro-

teins, 55:436–454, 2004.
26. C. A. Orengo. CORA–Topological fingerprints for

protein structural families. Protein Science, 8:699–
715, 1999.

27. C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones,
M. B. Swindells, and J. M. Thornton. CATH- A hi-
erarchic classification of protein domain structures.
Structure, 5(8):1093 –1108, 1997.

28. M. Ota, M. Ikeguchi, and A. Kidera. Phylogeny of
protein-folding trajectories reveals a unique pathway
to native structure. PNAS, 101(51):17658–17663,
December 2004.

29. E. Sandelin. Extracting multiple structural align-
ments from pairwise alignments:a comparison of
a rigorous and heuristic approach. Bioinformatics,
21(7):1002–1009, 2005.

30. I. N. Shindyalov and P. E. Bourne. Protein struc-
ture alignment by incremental combinatorial exten-
sion (CE) of optimal path. Protein Engineering,
11(9):739–747, 1998.

31. T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

32. W. Taylor and C. Orengo. Ssap: sequential structure
alignment program for protein structure comparison.
Methods Enzymol, 266:617–35, 1996.

33. P. Wolynes, J. Onuchic, and D. Thirumalai. Nav-
igating the folding routes. Science, 267:1619–1920,
1995.

34. Y.Caspi and M.Irani. Spatio-temporal alignment.
Proc. IEEE Transactions On Pattern Analysis and

Machine Intelligence., pages 1409–1424, 2002.
35. Y. Ye and A. Godzik. Multiple flexible structure

alignment using partial order graphs. Bioinformat-

ics, 21(10):2362–2369, 2005.

310

