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Protein inter-residue contacts are of great use for protein structure determination or prediction. Recent CASP

events have shown that a few accurately predicted contacts can help improve both computational efficiency and

prediction accuracy of the ab inito folding methods. This paper develops an integer linear programming (ILP)
method for consensus-based contact prediction. In contrast to the simple “majority voting” method assuming that

all the individual servers are equal and independent, our method evaluates their correlations using the maximum

likelihood method and constructs some latent independent servers using the principal component analysis technique.
Then, we use an integer linear programming model to assign weights to these latent servers in order to maximize the

deviation between the correct contacts and incorrect ones; our consensus prediction server is the weighted combination
of these latent servers. In addition to the consensus information, our method also uses server-independent correlated

mutation (CM) as one of the prediction features. Experimental results demonstrate that our contact prediction server

performs better than the “majority voting” method. The accuracy of our method for the top L/5 contacts on CASP7
targets is 73.41%, which is much higher than previously reported studies. On the 16 free modeling (FM) targets, our

method achieves an accuracy of 37.21%.

Keywords: residue-reside contact prediction, consensus, principal component analysis, integer linear program-
ming, latent server.

1. INTRODUCTION

Computational protein structure prediction has
made great progress in the last three decades 1, 2.
Recent CASPs (Critical Assessment of Structure
Prediction) 3–8 have demonstrated that accurately
predicted contacts can provide very important in-
formation for protein structure prediction methods.
Rosetta 9–11 performs impressively on recent CASPs.
Misura et al. 12 further modified the Rosetta free
modeling protocol to encode residue-residue contact
information. Experimental results demonstrate that
by using spatial constraints extracted from homolo-
gous structures, not only the running time is short-
ened, but also the prediction accuracy is improved.
For some concrete cases, the models built by Rosetta
are more accurate than their templates on aligned re-
gions, which is rarely seen before. Zhang-server, a re-
fined version of TASSER 13, ranked number 1 among
all the automatic servers in CASP7. CASP7 evalu-

ation shows that iteratively running TASSER sim-
ulation for two rounds by using contact constraints
at the second round greatly improves the prediction
accuracy.

For a protein of length L. The contact map of
this protein is an L × L matrix A, in which A[i][j]
is set to 1 if residue i and j are in contact, and 0
otherwise. Commonly, two residues are considered
to be in physical contact if the spatial distance be-
tween their Cβ atoms (Cα atom for Glycine) is less
than some threshold value.

1.1. Related Work

There are four commonly acknowledged contact pre-
diction assessment criteria: accuracy, coverage, im-
provement over random, and Xd

7, 8, 14. Among
them, accuracy is the most important measurement.

Protein residue-residue contact map was first
studied by 15–18 to calculate mean force potentials.
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Göbel et al. 19 formally proposed the problem of
residue-residue contact prediction, and showed that
correlated mutation (CM) is useful information to
predict inter-residue contacts. Different correlated
mutation calculation methods have been carefully
studied since then 20–23.

While CM performs well with local contact pre-
diction, which is usually considered to be two in-
contact residues within 6 amino acids from each
other on protein sequence, it usually fails on non-
local contacts. Therefore, other information such as
evolutionary information and secondary structure in-
formation, has been applied to improve the perfor-
mance of contact prediction methods 24–30. In 24,
Fariselli et al. encoded four kinds of features into
a neural network based server (CORNET): 1) CM,
2) evolutionary information, 3) sequence conserva-
tion, and 4) predicted secondary structure. They
defined two residues to be in contact if the Euclidean
distance between the coordinates of their Cβ atoms
(Cα atom for Glycine) is smaller than 8Å. To fairly
test the performance of CORNET, they further re-
quired that the sequence separation between residues
is at least 7, which can eliminate the influence of lo-
cal α-helical residue-residue contacts. CORNET has
an average accuracy of 0.21, which is higher than
any previously reported result. Other features have
been well studied since then 26, 28. However, the re-
ported accuracy has not been improved too much.
PROFcon 30, one of the top three contact prediction
servers in CASP6 7, encodes alignment information
into their neural network model, such as solvent ac-
cessibility and secondary structure over regions be-
tween two residues, as well as the average properties
of the entire protein. PROFcon performs impres-
sively on short proteins or alpha/beta proteins, on
which the accuracy is over 30%.

Different from those machine learning based
methods, which encode CM information and other
sequence-related and alignment-related information,
there are some studies trying to predict residue-
residue contacts from other perspectives. Bystroff
and his colleagues 31, 32 took folding pathway into
consideration, and predicted residue contacts by
HMMSTR 33, a hidden Markov model for local
sequence-structure correlation. MacCallum 34 first
pre-processed the sequence profile generated by PSI-
BLAST 35. Then Self-Organizing Maps (SOMs) were
applied to reduce the high dimension of the pro-

file data to 3D SOM grids. When converting into
RGB code, contacted β-strands usually have corre-
lated colors.

To sum up, previous studies have drawn the fol-
lowing conclusions: 1) Correlated mutation infor-
mation is an influential factor in contact prediction,
while solely encoding CM is not good enough for pre-
dicting contacts; 2) Other information, such as sec-
ondary structure, and solvent accessibility can help
improve the accuracy; 3) Contacts predicted by top
protein structure prediction servers are comparable
or even a bit better than those predicted by contact
predictors.

1.2. Our Contributions

To take advantage of useful information from the
above conclusions, we propose a consensus residue-
residue contact prediction method. Our consensus
method assigns a confidence score to each contact
from all contacts predicted by individual protein
structure prediction servers, while also taking CM
information into consideration. The intuition behind
our method is that top models generated by protein
structure prediction servers are usually the results of
optimization on global energy and structures. Thus,
encoding such information can help to select con-
served contacts and long-ranged contacts. Different
from traditional consensus methods which are widely
used in protein fold recognition, our method aims to
be able to identify correctly predicted contacts even
if the majority of servers votes against them.

We have observed from recent CASP results that
correlation exists among different servers on contacts
determined by predicted 3D models because of sim-
ilar tools used by these servers, such as PSI-BLAST
and PSIPRED 36. The correlated servers sometimes
make a native contact to receive less supports than
some incorrect ones. Our consensus method aims to
reduce the impact caused by server correlation. The
outline of our consensus method is as follows:

• A maximum likelihood (ML) method is ap-
plied to measure correlation coefficient be-
tween any two servers.

• Principal component analysis (PCA) tech-
nique is employed to extract new indepen-
dent latent servers.

• An integer linear programming(ILP)
method is then used to assign a weight
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to each latent server, by maximizing the
confidence score difference between native
contacts and incorrect ones. CM is also con-
sidered to be a latent server which assigns a
probability to each contact. This results in
a consensus contact predictor to accurately
assign confidence scores for all contacts ex-
tracted from the initial models.

The rest of this paper is organized as follows:
Section 2 presents some preliminaries. In Section 3,
we describe our new consensus method. Section 4
shows and analyzes experimental results on CASP7
data set. In Section 5, we discuss the potential appli-
cations and the future development of our method.
Finally, Section 6 draws some conclusions.

2. PRELIMINARIES

In this paper, a model refers to a protein structure
outputted by a protein structure prediction server.
In contrast to human expert, a server refers to an
automated system which predicts a set of structures
for a given amino acid sequence, known as the tar-
get. Two residues are in contact if their Cβ atoms
(Cα atom for Glycine) is smaller than 8Å and they
are at least 6 residues apart in the sequence. We call
a contact native contact if the two residues are indeed
in contact in the native structure of the target.

Given a model and a target, the contact accu-
racy of this model is calculated as the number of na-
tive contacts extracted from this model divided by
the total number of contacts of this model, while the
contact coverage of this model is defined to be the
number of native contacts extracted from this model
divided by the total number of native contacts. Since
contacts extracted from protein structure prediction
servers do not have confidence scores, we randomly
choose a number of contacts to do statistics, for ex-
ample, L, L/5 or all, where L is the length of the
target protein.

Given a target tl, 1 ≤ l ≤ �, a server Si,
1 ≤ i ≤ u, outputs a set of models. The con-
tacts determined by these models are extracted and
considered as contact candidates, denoted as Ci,l =
{ci,l,q|1 ≤ q ≤ ni,l}, where ni,l is the number of
contacts produced by server Si for target tl. The
set of contact candidates for target tl is denoted as
Cl =

⋃
i Ci,l. A consensus server aims to assign a

confidence score to each candidate.

This paper is based on the following two assump-
tions:

• Server Si generates its predictions based on
a confidence measure. That is, for each con-
tact c ∈ Cl, Si has a confidence si,c,l that
c appears in the native structure. Since
the initial confidence score is unavailable,
we simply approximate it by the number of
models containing this contact divided by
the total number of models generated by the
server on this target.

• There are some implicit latent independent
servers Hj , 1 ≤ j ≤ v, dominating the ex-
plicit servers Si. Given a target tl, Hj as-
signs a value hj,c,l, c ∈ Cl, as the confidence
that c is a native contact.

Identifying the latent independent servers is es-
sential to reduce the negative effects of server corre-
lations and to reduce the dimensionality of the search
space, as the number of latent servers is expected to
be smaller than the number of original servers. Af-
ter deriving the latent servers, we can design a new
and more accurate prediction server S∗, by an opti-
mal linear combination of the latent servers, which
for each target tl assigns a confidence score to each
contact candidate c ∈ Cl as follows:

s∗l,c =
v∑

j=1

λ∗
jhj,c,l (1)

where λ∗
j is the weight of latent server Hj .

3. METHODS

The basic idea of our method is to reduce the neg-
ative effects caused by the correlations among pre-
diction servers. We first employ the maximum like-
lihood technique to estimate the server correlations;
then adopt the factor analysis technique to uncover
the latent servers; and finally design a mixed integer
linear programming method to derive the optimal
weights for the latent independent servers.

3.1. Maximum Likelihood Estimation of

Server Correlations

Let Oi,j,l denote the overlap set of Ci,l and Cj,l, i.e.,
Oi,j,l = Ci,l∩Cj,l, and let oi,j,l = |Oi,j,l|. For a given
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target, let pi,j be the probability that a contact re-
turned by Si is the same to that returned by server
Sj . Under a reasonable assumption that targets tl,
1 ≤ l ≤ � are mutually independent, the likelihood
that server Si, 1 ≤ i ≤ u generates contacts ci,l,q,
1 ≤ q ≤ ni,l is:

L(pi,j) =
�∏

l=1

(
ni,l

oi,j,l

)
p

oi,j,l

i,j (1 − pi,j)ni,l−oi,j,l (2)

Therefore, the maximum likelihood estimation
of pi,j can be calculated as follows:

pi,j =
∑�

l=1 oi,j,l∑�
l=1 ni,l

(3)

In the rest of this paper, we use P to denote the
matrix P = [pi,j ]u×u.

3.2. Uncovering the Latent Servers

For a target tl, let si,c,l and hj,c,l be the confidence
that contact c is chosen as one of the prediction re-
sults by server Si and Hj , respectively. Since the
latent servers are mutually independent, it is reason-
able to assume that si,k,l is a linear combination of
hj,k,l, 1 ≤ j ≤ v:

−→si,l =
v∑

j=1

λi,j
−→
hj,l,

v∑
j=1

λi,j = 1, 1 ≤ i ≤ u.

(4)
where −→si,l =< si,1,l, si,2,l, . . . , si,|Cl|,l >, 1 ≤ i ≤

u, and
−→
hj,l =< hj,1,l, hj,2,l, . . . , hj,|Cl|,l >, 1 ≤ j ≤ v.

Here, λi,j is the weight, and a larger λi,j implies a
higher chance that server Si adopts contacts reported
by Hj .

From the correlation matrix of prediction servers
Si, factor analysis technique is employed to derive
λi,j and

−→
hj,l; that is,

−→
hj,l can be represented to be a

linear combination of −→si,l as follows:

−→
hj,l =

u∑
i=1

ωj,i
−−→sj,i,l, 1 ≤ j ≤ v, 1 ≤ l ≤ �

(5)
where < ωj,1, ωj,2, · · · , ωj,n > is an eigenvector of
PT P .

3.3. ILP Model to Weigh Latent Servers

After deriving the latent servers Hj(1 ≤ j ≤ v) , we
can construct a new server S∗, as an optimal linear

combination of the latent servers. For each target tl,
it assigns each contact candidate c ∈ Cl with a score
as in Eq 1.

To determine a reasonable setting of coefficient
λ∗

k, a training process is conducted on a training data
set D = {< tl, C

+
l , C−

l >, 1 ≤ l ≤ |D|}, where tl ∈ T

is a target, C+
l ⊆ Cl denotes the set consisting of

native contacts, and C−
l ⊆ Cl denotes the incor-

rect contact set. The learning process attempts to
maximize the number of contacts that are correctly
identified by S∗.

More specifically, for each target tl in the train-
ing data set, a score is assigned for each contact
candidate by S∗. A good contact predictor should
assign native contacts higher scores than incorrect
ones. The larger the gap between scores of native
contacts and incorrect ones, the more robust this new
prediction approach is. In practice, “soft margin”
idea is adopted to take outliers into accounts; that
is, allowing errors on some samples, we maximize the
number of native contacts with a score higher than
incorrect ones by at least a threshold.

In our integer linear programming formulation,
we employ two types of indicator variables. Let xp,q

be an integer variable such that xp,q = 0 if and only
if contact p is given score higher than q by at least ε.
Here, ε is a parameter used as the lower bound of gap
between the score of a native contact and incorrect
ones. Similarly, let yp,l denote whether p has a score
greater than all the incorrect contacts in C−

l .
Formally, the learning techniques can be formu-

lated into an ILP problem as follows:

max

|D|∑
l=1

∑
p∈C+

l

yp,l (6)

subj. to
v∑

j=1

λ∗
jHj,p,l −

v∑
j=1

λ∗
jH

∗
j,q,l − ε ≥ xp,q − 1

p ∈ C+
l q ∈ C−

l , 1 ≤ l ≤ |D| (7)

1
|C−

l |
∑

q∈C−
l

xp,q ≥ yp,l p ∈ C+
l , 1 ≤ l ≤ |D| (8)

v∑
j=1

λ∗
j = 1, λj ≥ 0 1 ≤ j ≤ v (9)
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xp,q ∈ {0, 1} yp,l ∈ {0, 1} (10)

For constraint 7, it is easy to see that∑v
j=1 λ∗

jHj,p,l−
∑v

j=1 λ∗
jH

∗
j,q,l ≥ −1. Thus, this con-

straint forces xp,q to be 0 if the difference between
the scores assigned to p and q is smaller than ε. If
p has a score not higher than all the incorrect con-
tacts, constraint 8 will force yp,l to be 0. Constraint
9 normalizes the coefficient settings, and constraint
10 restrict xp,q and yp,l to be either 0 or 1. The
objective function is the number of native contacts
with score higher than all the incorrect contacts.

3.4. A New Prediction Server

Now, we wrap up everything to obtain a new pre-
diction server. Given a target t∗, each server Si

produces a set of contact candidates, C∗
i . The set

of all candidates is denoted as C∗ =
⋃

i C∗
i . For

each contact candidate c ∈ C∗, the latent probabil-
ity h∗

j,c =
∑u

i=1 ωj,is
∗
i,c, 1 ≤ j ≤ v, is derived from

Eq. 5. Then, the consensus server produces a score
for each contact candidate based on Eq. 1, and picks
up the top scored ones as the final predictions.

4. EXPERIMENTAL RESULTS

4.1. Data Set

Server Selection. To fairly evaluate the per-
formance of our consensus method, we chose six
automatically individual protein structure predic-
tion servers, each of which is comparative model-
ing method. These servers are FOLDpro 37, mGen-
Threader 38, 39, RAPTOR 40, 41, FUGUE3 42, SAM-
T02 43, and SPARK3 44. Although there are some
fragment assembly based servers with higher overall
performance on protein 3D structure prediction than
these six servers, such as Rosetta and Zhang-server,
we didn’t choose them because their assembling pro-
cess directly uses the results of some contact predic-
tion methods.
Training and Test Data. The biennial CASP has
provided us a comprehensive and objective data set.
We chose CASP7 targets and models generated by
those six servers as our training and test data. For
each server on a target, top 5 models are considered.
All server models are downloaded from CASP7 web-
site, except for mGenThreader, which did not par-
ticipate CASP7. We submitted CASP7 targets to

mGenThreader web server and downloaded models
from there. Eighty-nine CASP7 target proteins have
their native structures published after the CASP7
while 104 protein sequences were released as targets.
We removed redundancy at 40% sequence identity
level using CD-HIT 45, which results in a data set
with 88 target proteins. Only T0346 is removed be-
cause it shares 71% sequence identity with T0290.
We further removed three targets (T0287, T0334,
and T0385) from our data set because there are some
errors in models generated by some of the six indi-
vidual servers. To do cross validation, we randomly
divided the 85 target proteins into four sets with size
22, 21, 20, and 22, respectively. If one target belongs
to a set, then all of its models and contacts are in
this set.
Data Set Statistics. We compared the perfor-
mance of the six individual servers from the contact
prediction accuracy and coverage point of view. The
prediction accuracy of a server is calculated as the
number of correctly predicted contacts divided by
the total number of predicted contacts by this server,
while the coverage of a server is calculated as the
number of correctly predicted contacts divided by
the total number of real contacts in the native struc-
ture. For each server on each target, the best model
among the top 5 models generated by this server in
terms of contact accuracy is chosen. If the number
of contacts generated by a model is less than L/5,
both the accuracy and the coverage for this model
are set to 0. As shown in Table 1, the average ac-
curacy among all contacts determined by the best
model ranges from 43% to 53%, while the SAM-T02
server has the highest accuracy. The server “Over-
all” in Table 1 means the server which contains all
contacts determined by the best six models gener-
ated by those six servers. The average accuracy of
server “Overall” is very low (12.30%) comparing to
the average accuracy of any individual server. Recall
the way to calculate the accuracy, the server “Over-
all” always contains much more correctly predicted
contacts than any individual server does. Therefore,
the low accuracy of server “Overall” implies the in-
correctly predicted contacts generated by these indi-
vidual servers are different from each other for most
cases, which means consensus method can probably
be applied to differentiate correctly predicted con-
tacts and incorrectly predicted ones.

It can also be seen that the average coverage
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of these six servers ranges from 36% to 51%, while

RAPTOR has the highest coverage. However, when

combining these six servers together, the average

coverage for server “Overall” is very high (about

80%). This means some correctly predicted contacts

are only supported by a small number of individual

servers while different servers can predict a common

subset of correctly predicted contacts.

Note that to fairly evaluate the contact predic-

tion ability of a protein structure prediction server,

both accuracy and coverage should be combined. For

example, SAM-T02 generates the highest accuracy

among the six individual servers. However, the cov-

erage is low (37.1%). This reveals that SAM-T02

tends to generate protein structure models which

contain only a small number of contacts, most of

which are conserved contacts.

Table 1. The average and deviation of contact accuracy and
coverage of the best model among the top 5 models generated by
different individual servers on CASP7 targets.

Server AveAccu DevAccu AveCov DevCov

FOLDpro 0.4511 0.0818 0.4836 0.0928
mGenThreader 0.4317 0.0659 0.4480 0.0851

RAPTOR 0.4843 0.0664 0.5221 0.0697
FUGUE3 0.4630 0.0793 0.3667 0.0554
SAM-T02 0.5331 0.0651 0.3710 0.0551
SPARK3 0.4793 0.0731 0.5118 0.0764

Overall 0.1230 0.0072 0.8028 0.0233

4.2. Server Correlations and Latent Servers

We further studied the correlations among the six in-

dividual servers, and derived the relationship among

the individual servers and the latent ones.

Table 2 shows the correlations among the six in-

dividual servers, which is calculated according to Eq.

3. Note that the matrix is not symmetric because

oi,j,l is not always equal to oj,i,l. As shown in Table

2, the correlation between two servers ranges from

0.25 to 0.59, which implies that some servers are

more closely correlated than others in terms of con-

tact prediction. Thus, traditional linear-regression-

based consensus methods, which simply apply “ma-

jority voting” rule and assume the error is under a

normal distribution, will fail when correct contacts

are not supported by majority of individual servers.

Table 2. Correlations among the six individual servers. FDP:
FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG:
FUGUE3, SAM: SAM-T02, SPK: SPARK3.

Server FDP MGTH RAP FUG SAM SPK

FDP 1 0.344 0.426 0.250 0.296 0.410

MGTH 0.347 1 0.418 0.263 0.295 0.413

RAP 0.428 0.414 1 0.296 0.346 0.514

FUG 0.345 0.348 0.402 1 0.365 0.398

SAM 0.502 0.500 0.593 0.466 1 0.593

SPK 0.403 0.407 0.500 0.293 0.336 1

We then derived the relationship between the la-

tent servers and the individual ones. As shown in Ta-

ble 3, different latent independent servers represent

different individual servers; for example, H1 repre-

sents the common characteristics shared by these in-

dividual servers because the weights of H1 on these

individual servers are about the same; H2 differ-

entiate FUGUE3 from other servers; H3 represents

FOLDpro by a large positive weight, and represents

mGenThreader by a large negative weight. Based on

the eigenvalues, H4 was eliminated since the eigen-

value for H4 is much smaller than others. Thus, H4

can be considered as random noise.

Table 3. Relationship among the six individual servers and la-
tent servers. FDP: FOLDpro, MGTH: mGenThreader, RAP: RAP-
TOR, FUG: FUGUE3, SAM: SAM-T02, SPK: SPARK3.

Server H1 H2 H3 H4 H5 H6

FDP 0.371 -0.351 0.655 -0.549 0.014 -0.081

MGTH 0.372 -0.258 -0.752 -0.477 -0.004 -0.016

RAP 0.418 -0.225 0.035 0.364 0.265 0.755

FUG 0.373 0.821 0.039 -0.218 0.369 0.012

SAM 0.490 0.202 0.034 0.227 -0.814 -0.036

SPK 0.410 -0.207 -0.023 0.487 0.359 -0.649

We derived the optimal weights for the latent

servers by cross validation on the four sets. Cor-

related mutation is considered to be another inde-

pendent latent server, because it provides a target

sequence-related probability for each contact can-

didate. CM is calculated as previously described

in 19, 23. Each time we trained our ILP model on

three of these four sets, and got a set of optimal

weights, based on which a new prediction server is

derived, named as S∗
1 , S∗

2 , S∗
3 , and S∗

4 , respectively.

In this paper, by saying server S∗, we mean server S∗
i

on test set i (i = 1, 2, 3, 4). Table 4 shows the linear

combination representation of S∗ on the individual

servers and correlated mutation. We can see the four

sets of weights are very similar. Note here, a negative
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weight implies that the corresponding server’s contri-
bution has been over-expressed by other individual
servers which have correlation with it.

Table 4. The linear combination representation of S∗ on six

individual servers and correlated mutation. FDP: FOLDpro,
MGTH: mGenThreader, RAP: RAPTOR, FUG: FUGUE3, SAM:

SAM-T02, SPK: SPARK3.

S FDP MGTH RAP FUG SAM SPK CM

S∗
1 0.292 -0.283 1.272 1.470 0.230 0.618 0.300

S∗
2 0.305 -0.274 1.346 1.346 0.217 0.578 0.370

S∗
3 0.383 -0.290 1.373 1.357 0.141 0.650 0.280

S∗
4 0.287 -0.440 1.292 1.386 0.123 0.558 0.230

4.3. CASP7 Evaluation

We first assessed our consensus server S∗ by Re-
ceiver Operating Characteristic (ROC) plots. ROC
curves can provide an intuitionistic way to exam-
ine the tradeoff between the ability of a classifier to
correctly identify positive cases and the number of
negative cases that are incorrectly classified. Fig 1
shows the performance comparison in terms of con-
tact prediction for server S∗ and the six individual
servers on the four test sets determined by our cross
validation.

As shown in Fig 1, server S∗ performs better
than any individual server on all the four test sets.
For each server, the performance of this server on test
set 1 is slightly better than that on the other three
test sets, which means test set 1 is the easiest test set
among those four. RAPTOR performs better than
other individual servers on the first three test sets,
while SPARK3 has the best performance on test set
4. There are clear performance differences between
server S∗ and the best individual server on test set
1, 2, and 4 when the false positive rate is below 0.3.
However, the difference is not obvious on those three
test sets when false positive rate is larger than 0.3.
For test set 3, the hardest test set, the performance
of S∗ is much better than any individual server all
the time. It is also noticeable that the curve of S∗ is
much smoother than individual servers.

We further evaluated the performance of S∗ from
average accuracy point of view. Table 5 shows the
average accuracy and deviation of S∗ and “majority
voting” server on the four test sets when different
numbers of top contacts are considered. Recall S∗

generates a confidence score for each contact can-
didate, we can easily take the top contacts for each
target after sorting all candidates by their confidence

scores. We implemented “majority voting” server as
follows: For each contact candidate of a target gener-
ated by the best models of the six individual servers,
the best model of each individual server votes “Yes”
(denoted as 1) or “No” (denoted as 0) to this candi-
date. The number of supporting servers for all can-
didates are then calculated and sorted, and different
numbers of top candidates are taken. The accuracy
is calculated on the top candidate sets.

As shown in Table 5, the average accuracy in-
creases when the number of top contacts decreases,
except for server S∗ on test set 1, on which the accu-
racy for top L/10 contacts is slightly lower than that
for top L/5 contacts. This is possible because L/10 is
usually a small number (20-30 for most cases), and a
few incorrectly predicted top contacts will influence
the total accuracy significantly. The overall accu-
racy of S∗ on all four test sets is at least 62%, and
is always higher than “majority voting” server. For
the top L/5 contacts, the accuracy of S∗ is 73.41%,
which is about 5% higher than “majority voting”.

We drew Fig 2 to examine the prediction accu-
racy for the top L/5 contacts of S∗ on each CASP7
target. It can be seen that the accuracy is higher
than 80% on most targets. In fact, among the to-
tal 85 targets, S∗ has accuracy 100% on 13 targets,
above 90% on 38 targets, and above 80% on 57 tar-
gets, while the accuracy is below 40% for only 16
targets. Note that there are two targets, T0309 (free
modeling target) and T0335 (template based model-
ing target), on which S∗ has accuracy 0. We carefully
looked into these two targets. Both targets are very
short. The target sequences published by CASP7 for
T0309 and T0335 have length 76 and 85, respectively.
However, the experimentally determined length used
by CASP7 to evaluate these two targets are only 62
and 36, respectively, which means some parts of the
targets are not experimentally determinable or not
accurate enough. Thus, L/5 is only 12 and 7 for these
two targets. Besides, all six individual servers did
poorly on contact prediction on them, which means
we only have a few correct candidates among a large
number of incorrect ones. This can explain the fail-
ure of S∗ on T0309 and T0335.

To evaluate more carefully how much our consen-
sus method can improve upon individual servers and
the simple “majority voting” method, we divided all
targets into three categories: easy (high accuracy),
medium (template based modeling), and hard (free
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Fig. 1. Performance comparison using ROC plots in terms of contact prediction for S∗ (thick solid line), FOLDpro (thick dotted
line), mGenThreader (thin dashdot line), RAPTOR (thin dotted line), FUGUE3 (thick dashed line), SAM-T02 (thin solid line),
and SPARK3 (thin dashed line).

Table 5. Average accuracy and deviation of the top contacts predicted by S∗ on different test sets, and the accuracy of server
“majority voting”.

# Contacts Test Set 1 Test Set 2 Test Set 3 Test Set 4 Overall Majority Voting
Accu. Dev. Accu. Dev. Accu. Dev. Accu. Dev. Accu. Dev. Accu. Dev.

L 0.6850 0.0815 0.6042 0.1116 0.5665 0.0860 0.6516 0.1239 0.6267 0.0986 0.6093 0.1064

L/2 0.7536 0.0857 0.6655 0.1080 0.6396 0.0964 0.7148 0.1310 0.6932 0.1029 0.6600 0.1122

L/5 0.8015 0.0843 0.7264 0.0909 0.6690 0.1081 0.7396 0.1240 0.7341 0.1001 0.6872 0.1130

L/10 0.7927 0.0965 0.7431 0.0799 0.6850 0.1083 0.7583 0.1218 0.7445 0.0994 0.7048 0.1149

modeling), according to Zhang’s assessment 46. The

numbers of easy, medium and hard targets are 23,

46, and 16, respectively. Table 6 shows the aver-

age accuracy and deviation of S∗, individual servers,

and “majority voting” method. As shown in Ta-

ble 6, for easy and medium targets, the accuracy

of S∗ on top L/5 contacts is 93.71% and 75.85%,

respectively, and much higher than the best individ-

ual server, where the improvement is at least 17%

for each case. However, for hard targets, the accu-

racy of S∗ is only 3% higher than SAM-T02, while

at least 19% higher than the best of the rest servers.

We examined the models generated by SAM-T02.

They are sometimes much shorter than target pro-

teins, and usually contain a very small set of con-

tacts. However, the percentage of native contacts in

this set is usually high. On the other hand, server

S∗ always performs better than “majority voting”

server on easy, medium, and hard targets, while the

improvements are about 2%, 4%, and 12%, respec-

tively. This makes sense because for easy targets,

individual servers usually do well, which means for a

contact candidate, the more servers support it, the

more likely it is correct. However, this rule doesn’t

always work on medium and hard targets. Thus, our

consensus method does much better than “majority
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Fig. 2. Prediction accuracy for the top L/5 contacts of S∗ on each CASP7 target.

Table 6. Average accuracy and deviation of S∗, individual servers, and “majority voting”
server on easy, medium, and hard target sets

Server Name Easy Targets Medium Targets Hard Targets
Accu. Dev. Accu. Dev. Accu. Dev.

Top L of S∗ 0.8957 0.0117 0.6378 0.0695 0.2083 0.0286
Top L/2 of S∗ 0.9359 0.0060 0.7130 0.0776 0.2873 0.0675
Top L/5 of S∗ 0.9371 0.0044 0.7585 0.0848 0.3721 0.0950

Top L/10 of S∗ 0.9564 0.0059 0.7639 0.0891 0.4128 0.1057

FOLDpro 0.7697 0.0105 0.4401 0.0539 0.1358 0.0171
mGenThreader 0.6783 0.0379 0.4300 0.0440 0.1826 0.0245

RAPTOR 0.7534 0.0132 0.5000 0.0387 0.1607 0.0083
FUGUE3 0.7481 0.0067 0.4731 0.0616 0.1353 0.0127
SAM-T02 0.7538 0.0132 0.5403 0.0522 0.3419 0.0824
SPARK3 0.7621 0.0144 0.4843 0.0471 0.1707 0.0209

Top L/5 of Majority Voting 0.9240 0.0070 0.7174 0.0808 0.2590 0.0953

voting” on harder targets.

5. DISCUSSIONS

The experimental results have demonstrated that by

encoding global energy and structure information

from another perspective, consensus methods can

identify native contacts well. We did not directly

compare our method to other contact predictors on

exactly the same data set and the same contact def-

inition, since such data is not available. It is widely

acknowledged that CASP data set is objective and

comprehensive. Thus, it can be expected that our

method performs much better than other predictors

on the same data set because our method achieves

an average accuracy of 73.41% on CASP7 data set,

comparing to generally 30% accuracy of other pre-

dictors on data sets with similar difficulty levels to

CASP.

One drawback of our method is that it is a

selection-only consensus method. If all individual

servers generate models with very few native con-

tacts, our method will fail simply because there is

nothing correct to select. We tried to avoid this

drawback by using a server independent feature, CM,

to introduce some contact candidates which are not

predicted by any individual server. However, CM

itself is not strong enough to find native contacts.

Thus, future work will be combining more server in-

dependent features to introduce native contact can-

didates even if all individual servers fail to do so. On

the other hand, a possibly better measure for con-

sensus contact prediction methods is to require the

methods to predict all the native contacts inside the

input candidate set instead of predicting a fixed-size

contact set. In this way, if all individual servers fail

to predict any native contacts, and the consensus
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method also returns 0 contacts, the accuracy will be
100%, which makes more sense than 0% under the
current evaluation criteria.

A potential application of our contact prediction
method is to provide highly conserved constraints
for protein structure prediction or refinement meth-
ods. Recent CASPs show that fragment assembly
based methods usually perform better than tradi-
tional comparative modeling methods, because in-
stead of assuming there are known templates in the
database which have similar structures to the targets,
fragment assembly based methods only require some
substructures with similar structures to some regions
in templates. However, fragment assembly based
methods usually suffer from huge search spaces. Our
consensus method has an average accuracy 73.41%
on top L/5 contacts, while for most cases, the accu-
racy is higher than 80%. Thus, our method can pro-
vide a reasonable number of highly conserved con-
tacts for assembly step to significantly reduce the
search space.

On the other hand, if all the individual servers
we used predict the structure for a target protein
extremely well or poorly, our consensus method will
probably be able to only improve the assembly speed,
rather than the accuracy. In the former case, since
almost all contact candidates provided by these in-
dividual servers are correct ones, our method can
only reduce the total number of well-conserved con-
tacts and thus improve the speed for assembly step.
In the latter case, since there are almost no correct
contact candidates for our method to choose, the as-
sembly accuracy can hardly benefit from our results.
However, in any other cases, contacts provided by
our method will greatly help assembly process. The
reason is that our method can generate a small num-
ber of highly conserved contacts. Considering only
a small number of contacts will reduce the assembly
search space, and thus increase the speed. More-
over, experimental results have demonstrated that
our method can generate contacts with higher accu-
racy than both contact predictors and protein struc-
ture prediction methods. This can reduce the risk
of generating models with incorrect contacts, which
will reduce the risk of selecting incorrect models from
the final assembly decoy set, and thus will greatly in-
crease the overall assembly accuracy.

6. CONCLUSIONS

In this paper, we proposed a linear programming
based consensus contact prediction method. Experi-
mental results show that this method preforms well,
especially on easy and medium targets. The accu-
racy of our method is higher than any previously
reported studies.
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