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As a protein evolves, not every part of the amino acid sequence has an equal probability of being deleted or for allowing
insertions, because not every amino acid plays an equally important role in maintaining the protein structure. However
the most prevalent models in fold recognition methods treat every amino acid deletion and insertion as equally probable
events. We have analyzed the alignment patterns for homologous and analogous sequences to determine patterns of

insertion and deletions, and used that information to determine the statistics of insertions and deletions for different
amino acids of a target sequence. We define these patterns as Insertion/Deletion (Indel) Frequency Arrays (IFA). By
applying IFA to the protein threading problem, we have been able to improve the alignment accuracy, especially for
proteins with low sequence identity. Contact: xyn@bmb.uga.edu

1. INTRODUCTION

Protein threading, a technique for sequence-

structure alignment, has played a key role in predict-

ing protein structures in the past decade. Most of the

details in a threading model deal with how well an

amino acid from a target sequence is aligned to a par-

ticular residue position on a known protein structure.

For example, the energy functions used in our thread-

ing program PROSPECT include mutation, single-

ton, secondary structure match, and two-body inter-

action energies9. These sets of energy function pri-

marily concentrate on the positive space of the align-

ment, i.e. rewarding amino acid alignment. Deletion

penalties, on the other hand, are a set of terms that

describe how to penalize an alignment when gaps are

introduced. There are two primary changes during

protein evolution: mutation and insertion/deletion.

A mutation event is the result of changing one amino

acid to another and is evaluated by mutation energy

matrices, such as PAM3 and Blosum 7.

Another event in protein evolution is the inser-

tion and deletion of amino acids. These evolution-

ary changes are evaluated with gap penalty mod-

els in protein threading algorithms. While several

gap penalty models have been proposed, the most

widely used model for gap penalty is the simple affine

model 17. In this model there is a large penalty

for opening a gap, or starting a deletion, and a

smaller constant penalty for continuing that inser-

tion/deletion. This can be viewed as a simple linear

function, G = Wopen + Wconst ∗ len, where len is the

length of the gap, Wopen is the penalty for opening

a gap, and every residue deleted is penalized by a

constant penalty Wconst.

This simple linear function can be easily im-

plemented in a dynamic programming based align-

ment program such as the Smith-Waterman method,

with a running time of O(NM) where N is the

length of the target sequence, and M is the length

of the structural template. In addition to this linear

penalty model, there are more sophisticated meth-

ods that have been used. These typically attempt to

formulate the penalty as non-linear functions 16, 6,

or use monotonic functions to avoid over-penalizing

large gaps 13. However, these non-linear gap func-

tions cannot be optimized using traditional Smith-

Waterman, and require more advanced algorithms

for sequence-structure alignment optimization 4, 11.

Nonetheless, within the framework of the Smith-

Waterman algorithm, it is possible to use a nonlinear

gap function, if the function is only dependent on lo-

cal sequence/structure alignments. The penalty of

a gap can be dependent on the probability of an

amino acid being deleted or being inserted. Given

these conditions a set of local optimal decisions can

still be aggregated to achieve the global optimality.

Therefore, dynamic programming can still be used.

To find useful statistical information about dele-

tion and insertion probabilities, we use a technique

similar to the one for generating Position Specific

Score Matrices (PSSM) 1. PSSMs have had a sig-

nificant impact on secondary structure prediction

and protein fold recognition 21. A PSSM is gen-

erated by finding homologous sequences in a non-
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redundant (NR) sequence database and aligning

those sequences. The amino acid mutation patterns

are used to create residue specific replacement scores.

The patterns of insertions and deletions can be

studied in a similar way. Using statistical analysis of

alignments from a ‘PsiBlast’ search against the NR

database, we can construct penalty functions that

are based on insertion/deletion patterns specific to

a protein family and the different portions of the

sequence. These scores are not simply based on a

global constant. For every residue, the percentage of

times that it is deleted, or has an insertion before or

after it can be measured against a known sequence

database. We call this information the Indel Fre-

quency Arrays (IFA). It should be pointed out that

this type of energy, unlike some of other previously

mentioned gap models, is only dependent on local

sequence alignment and thus can be run in the same

computational time as Smith Waterman algorithm.

There has been similar position specific gap penal-

ties suggested previously, such as the work by Lesk

at al. 10. However, their work was based on differ-

ent scoring values for differently assigned secondary

structure values, and was not specific to protein fam-

ilies.

2. METHODS

Alignment Strategy

We use our threading program, PROSPECT, as an

example, in which the optimal alignment is calcu-

lated by finding an alignment A with the total align-

ment score Etot defined as:

Etot = mint(WmutEmut(A) (1)

+ WsingletonEsingleton(A)

+ WsecstructEsecstruct(A)

+ WopenEopen(A)

+ WconstEconst(A))

where Emut is the mutation energy, Esingleton is the

Singleton energy, Esecstruct is secondary structure

match energy; Eopen and Econst represent the two

aspects of the affine gap function, the gap opening

penalty, and the constant deletion for each residue

removed; the set of W s represent the weight param-

eters.

Optimal alignments can be found with dynamic

programming by finding iterative solution of the val-

ues for Si,j , with i and j both going from zero to

the length of the target (l) and template (m) re-

spectively. Si,j is sub sequence alignment of the tar-

get residues from 0 − i and the template residues

from 0 − j. Thus the total alignment is expressed

as Etot = Sl,m. The value of Sl,m can be iteratively

calculated with the formula:

Si,j = min




Si−1,j−1 + Ei,j Match

Si−1,j + INS(i, j) Insertion, (i, j) ⇒ I

Si,j−1 + DEL(i, j) Deletion, (i, j) ⇒ D

(2)

The energy Ei,j for aligning a target position i

to a template position j is defined as:

Ei,j =WmutEmut(i, j) (3)

+ WsingletonEsingleton(i, j)

+ WsecstructEsecstruct(i, j)

In the original model, the INS and DEL values

where calculated as such:

INS(i, j) =




If (i − 1, j) ∈ I WconstEconst

If (i − 1, j) /∈ I WopenEopen

+ WconstEconst

(4)

DEL(i, j) =




If (i, j − 1) ∈ D WconstEconst

If (i, j − 1) /∈ D WopenEopen

+ WconstEconst

(5)

S0,0 = 0, (6)

where I is the set of insertion operations, and D is

the set of deletion operations. These equations re-

fer to operations on the template, i.e. an insertion

operation is an insertion on the template.

New Gap Energy Model

Deletion is the inverse operation of insertion. A dele-

tion in the target is equivalent to an insertion to the

template, and visa-versa. However, how these opera-

tions are handled is different. The deletion occurs at

a specific point, while an insertion occurs in between

two residues.

Our study has shown that deletion and insertion

probabilities are not equally distributed across the

entire sequence, and are unlikely to be similar for

different protein sequences. A sample distribution
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Fig. 1. IFA information associated with the SCOP identifier ‘d1qhoa2’. The top graph is the IFA information for deleting any
of the residues. The bottom graph represents the IFA information for having an insertion before a given residue. A value of zero
means that the indel can occur without penalty.

can be seen in Figure 1. The probability of deleting

a residue is not directly related to the probability

of inserting a residue immediately before or after it,

suggesting a simple deletion operation could actu-

ally encompass four different energies, insertion and

deletion for both sequences being aligned.

As a result, the penalty feature previously de-

scribed as Econst which was a constant penalty for

every insertion/deletion can be replaced with a set

of four features: Eq
ins, Eq

del, Et
ins, and Et

del, where t

stands for template, and q stands for query or target.

In order to maintain the W coefficients each of

the new penalty values needs to be scaled between 0

and 1, and multiplied by Wconst.

Under this model we redefine the INS(i, j) and

DEL(i, j) functions as 7 and 8.

Calculating Indel Profiles

The insertion/deletion profiles used to create the IFA

are derived from alignments using ‘PsiBlast’ against

the NR database. Deletion energies are determined

by observing the number of times a residue is deleted,

or a residue being inserted before it.

In order to easily access indel information, we

translate the standard two line text alignment re-

turned back by ‘PsiBlast’ into a number array as

shown in Figure 2. In this format array a represents

the indices of the aligned subject sequence for each

amino acid in the target sequence. If a[i] = j then

the ith amino acid in the target sequence is aligned to

the jth amino acid in the template. Positions that

are not aligned to any residue are represented by

‘−1’. After the above conversion, finding the inser-

tions/deletions becomes a matter of referring to one

array, rather than parsing two text arrays. To find

the deletions, one simply scans the a array looking

for the ‘−1’ entries, which represent the non-aligned

residues. To find the insertions, one looks at all the

non ‘−1’ entries in the array. For the ith residue

that is followed by the next non ‘−1’ residue j, if

a[i] + 1 �= a[j] then there is a gap. If the first non

‘−1’ entry is not ‘1’, there is a pre-sequence insertion.

Similarly, if the last non ‘−1’ entry is not aligned

to the last residue of the subject, there is a post-

sequence insertion. This information is then summed

for each individual residue position, and devided by

the number of aligned sequences. This provides the

percentage of times a residue is deleteted or allows an

insertion. These arrays of percentages are referred to

as Bins and Bdel. They are then formulated as en-

ergy functions as such: Eins(i) = 1 − Bins(i) and

Edel(i) = 1 − Bdel(i).

Fig. 2. This example shows the conversion from the sequence
based model used to represent alignments, typically as out-
putted by Blast. The bottom shows the same alignment in an
easier to use hash table format. Each position represents the
number of the position of the aligned residue in the opposite
sequence. Deletions are represented as a −1.

337



INS(i, j) =

{
If (i − 1, j) ∈ I Wconst(E

t
ins(i − 1) + Eq

del(j))

If (i − 1, j) /∈ I WopenEopen + WconstE
t
ins(i − 1) + Eq

del(j))
(7)

DEL(i, j) =

{
If (i, j − 1) ∈ D Wconst(E

t
del(i) + Eq

ins(j − 1))

If (i, j − 1) /∈ D WopenEopen + Wconst(E
t
del(i) + Eq

ins(j − 1))
(8)

Training and Testing

We use two methods in order to evaluate the

alignment performance inprovements that the IFA

method provies. First, we compared the align-

ment results with the output from FAST 22, a

structural comparison program. We chose FAST

because of its efficient and accurate performance.

FAST can correctly align 96% of the residue pairs

in aligned regions of the 1033 protein alignments in

the HOMESTRAD database12, 22. As a common

practice alignment is considered to be correct if the

residue was aligned within 4 residues of the FAST-

based structure-structure alignment position18. The

reported percentage accuracy is the percentage of

residues placed within 4 residues of the correct pos-

tion out of the total possible residue placements.

The next method of evaluation is the MAMMOTH

program15. MAMMOTH determines the statistical

significance of the backbone structure created by pre-

dictive tools against the actual backbone structure of

the target. We report the −ln(E) score, for which a

value greater then 4 is statistically significant.

Our training set is comprised of 300 SCOP 14 do-

main entries from the ASTRAL 25 list 2, in which no

entries would have higher than 25% sequence iden-

tity. Based on the results from FAST, the average se-

quence identity for the aligned pairs of this dataset is

9.5%. Using the SCOP identifiers, we then compiled

a list of all proteins that occurred in the same fold,

super families and families. To find the optimal set

of weights for each of the gap penalty permutation,

we have applied 10 cycles of the Violated Inequality

Minimization (VIM) 23 method of optimization. The

training set is used to find a set of optimal weights

for our original threading approach which uses tra-

ditional affine gap penalty. The same set of weights

was used in the variable deletion model.

For the testing we used a set comprised of 724

proteins also derived from ASTRAL 25 that did not

overlap with the original training set. We used the

same SCOP table to determine relationship, how

ever this time, relationship were filterd by the FAST

SN score. The SN score determines significance

of the structural alignment created by FAST. Pairs

with scores lower then 2 were removed so that bad

alignments would not create noise when analyzing

the performance of threading results against the

structural alignments. This left a testing set com-

prised of 3058 pair relationships. This set was made

of 344 family, 1265 super family and 1449 fold level

relationships.

Statistical Analysis

We describe our statistical model related to com-

parison of two methods as an experiment with

multinomial distribution having 3 possible outcomes:

Method 1 (IFA method) is better than Method 2

(original method) (probability P+1), the two Meth-

ods are equal in their power (probability P0), and

Method 2 is better than Method 1 (probability P
−1),

P0 +P
−1 +P+1 = 1. Our goal is to check hypothesis

H0 : P+1 = P
−1 against the alternative H1 : P+1 >

P
−1. For hypothesis checking we use Pearson’s χ2

test, i.e. χ2 = (K+1/N−P+1)
2

P 2
+1

+ (K
−1/N−P

−1)2

P 2
−1

+

(K0/N−P0)2

P 2
0

, where N is the number of comparisons,

K+1 the number of times Method 1 worked better,

and K
−1 the number of times Method 2 worked bet-

ter. If H0 is true then P+1 = P
−1 = 0.5∗(1−P0), and

replacing P0 with its maximum likelihood estimator

K0/N , we get χ2 = (K+1/N−p)2

p2 + (K
−1/N−p)2

p2 , p =

0.5 ∗ (1 − P0). The asymptotic distribution of the

χ2 in our case is a chi-square distribution with one

degree of freedom.

3. RESULTS

Comparison with Constant Gap Penalty

The overall average improvement for alignment accu-

racy is shown at different alignment levels in Table 1.

The more distant two proteins are evolutionarily, the
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Table 1. A comparison using different gap function.

Fast MAMMOTH

SCOP Alignment Original IFA Increase Original IFA Increase Set Size

Fold 42.6 46.2 8.5% 11.5 13.2 14.8% 1449

SuperFamily 55.3 57.1 3.3% 13.9 15.2 9.4% 1265

Family 70.6 71.4 1.1% 14.5 15.5 6.9% 344

Fast MAMMOTH

Sequence Identity Original IFA Increase Original IFA Increase Set Size

0% – 5% 36.2 38.3 5.8% 13.4 15.3 14.2% 909

5% – 10% 51.8 55.2 6.6% 12.5 14.0 12% 1527

10% – 15% 68.4 70.4 2.9% 12.6 13.5 7.1% 487

15% – 20% 76.4 80.1 4.8% 11.8 12.5 5.9% 107

20% – 100% 91.4 93.9 2.7% 13.4 13.7 2.2% 28

bigger improvement of the IFA method. At the fold

level, alignment accuracy increase from 50% to 55%.

Once two proteins are in the same family, the amount

of improvement decreases to 2.5%. A similar trend

is observed if we seperate protein pairs by their per-

centage of aligned amino acids. The lower the iden-

tity, the larger improvement that the IFA model pro-

vides. This trend can also be seen in Figure 3. The

top section of the figure represents binned averages

across different levels of sequence identity. The bot-

tom section represents a segmented linear regression.
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Fig. 3. The binned averages and multi-segment linear regres-
sions of alignment accuracy for the two methods. The dotted
line represent the IFA model. As the sequence identity of
the aligned structures decreases, the contribution of the IFA
model become more valueable.

A specific example for alignment improvement

shown in Figure 4 demonstrates the potential ben-

efits of this information source. Both proteins

were classified as ‘winged helix’ DNA-binding do-

mains. The original model over compensated for

C-terminal deletions. This caused the second helix

to be aligned to the location where the first helix

should be aligned. This cascaded into a series of

mid sequence deletions that smeared two helices to-

gether. Our model increases the alignment accuracy

from 26.5% to 73%.

In order to show that these improvements in

alignment accuracy were not the product of ran-

dom statistical fluctuations we have also analyzed

the comparative performance of the two methods on

the same alignment pairs. We counted the number

of times the new model has led to an improvement in

alignment accuracy, shown in Table 2 . We have also

calculated the statistical significance of these num-

bers. Using the statistical analysis described in the

Methods section, we can calculate the p-value of the

hypothesis that improvements are random. For the

testing set with FAST based alignemnts, we get the

values K+1 = 1464, K0 = 882, and K
−1 = 712,

which for the first statistical testing method leads to

the p-value=3.55 × 10−111. This shows that the dif-

ference in performance of two methods can not be

explained by pure chance, indicating the superiority

of Method 1, our new IFA method.

Improving Fold Recognition

In many studies fold recognition techniques are

trained to achieve the optimal alignment accuracy.

This is based on the assumption that the closer two

proteins are in terms of their fold families, the more

amino acids that are likely to be correctly aligned.

Therefore, the better the predicted alignment accu-

racy, the better the fold recognition method is likely

to be. When training machine learning techniques
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Fig. 4. This example is for the alignment between SCOP domains ‘d1f1za1’ and ‘d1ucra ’. Each block represents an assigned
secondary structure element.

Table 2. The side by side comparison. The number of times each method had a better score, and
the statistical significance of that ratio. The p-value is the probability that the improvement is caused
by chance, the lower the better.

Level IFA Original Tie Test 1 Test 2 Test 3

FAST

All 1464 712 882 3.55 × 10−111 1.58 × 10−113 6.22 × 10−26

Fold 667 362 420 5.00 × 10−38 1.29 × 10−38 7.62 × 10−10

SuperFamily 647 281 337 2.97 × 10−61 5.60 × 10−63 5.63 × 10−15

Family 150 69 125 3.02 × 10−12 1.5 × 10−12 4.61 × 10−04

MAMMOTH

All 2383 282 393 0 0 1.03 × 10−157

Fold 1170 138 141 0 0 2.57 × 10−78

SuperFamily 973 118 174 6.72 × 10−289 0 1.05 × 10−64

Family 240 26 78 2.94 × 10−73 1.29 × 10−84 1.29 × 10−17

Table 3. The Correlation coefficients of
the gap energies, as applied to the two
threading method results.

Feature Constant Deletion IFA

Eopen -0.29 -0.29

Econst -0.18 -0.11

E
t
del

-0.12 -0.15

E
t
ins -0.10 -0.14

E
q

del
-0.11 -0.13

E
q
ins -0.10 -0.16

Evar -0.17 -0.27

previous research has used a vector to represent a

set of features from an alignment, such as the values

from the different energy terms, and trained them for

fold recognition using the alignment accuracy as a

measure. Previous research have used machine learn-

ing techniques such as neural networks 20, SVMs 18,

and gradient boosting 8 based functions. For these

techniques, the more correlated a given feature is to

the alignment accuracy, the easier it will be to train

the regression function. Therefore, we can predict

the benefit to fold recognition a feature will have by

measuring its correlation with the alignment accu-

racy. We test our new energy functions by compar-

ing the correlation coefficients of: Econst, Et
del, Eq

del,

Et
ins, Eq

ins with the alignment accuracy.

We compared the correlation coefficients for each

of the energies in two different threading sets in

Table 3. The combined energy is Evar = Et
del +

Et
ins + Eq

del + Eq
ins. The variable deletion energies,

once combined, are very well correlated to align-

ment accuracy, indicating a good ability to distin-

guish correct alignments. The ability increases even

more once they are used to optimize the alignment,

as in the variable deletion threading set. First, the

threading set comprised of alignments created with

Econst and next, the set of alignments optimized us-

ing the set of variable gap penalties. As we can see

in Table 3, individually each of the separate vari-

able deletion penalties is not as correlated as Econst.

However, once they are summed together, and used

to optimize the alignment, their correlation increases

greatly. This makes sense, because each of the vari-

able deletion penalties is only 1/4th of the total dele-

tion energy. The increase in correlation from −0.18,

using the original model for alignment and fold recog-

nition, to −0.27, for using the new model, should cor-

respond to a greater ability to correctly differentiate

correct fold from incorrect fold.
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4. DISCUSSION

We have demonstrated our new deletion model in

the context of protein threading. This new en-

ergy seems to work best in the context of distantly-

related threading models. The variable gap penalty

by Madhusudhan et al 11 concentrated on the per-

formance improvements of variable gap penalties for

protein alignments with sequence identity spanning

the range of 20-40%. Our profile-based variable dele-

tion energy has its best improvements in the low

homology range, from 2-15% sequence identity, the

so called ‘twilight zone’ where both fold recognition

and threading alignment accuracies are in desperate

needs for improvements. As seen in Figure 3, the

lower the sequence idenity, the more the IFA can im-

prove the accuracy of sequence alignment. But at

higher sequence identity levels, where the variable

deletion penalty starts to lose some of its advantage,

it does not cause an increase in false positive. So it

can be used safely, regardless of the level of homol-

ogy. We have shown that our energy fits within the

Smith-Waterman alignment framework, but it is also

theortically possible to incorporate it into the algo-

rithmic methods suggested by Madhusudhan et al11.

Not only did Indel Frequency Arrays improve the

alignment accuracy, we also have shown that it is a

statistically significant improvement. Further study,

with the application of SVMs, neural networks, or

gradient boosting methods will be needed to see if the

increased alignment accuracy correlation coefficient

we detected translates to better fold recognition.

5. CONCLUSION

We have shown there is large amount of informa-

tion inherent in the insertions and deletions during

protein evolution. This information can be deter-

mined by analyzing sequence alignments with homol-

ogous sequences. Once applied, this technique can

improve protein threading alignment accuracy. We

have shown that this information can be applied to

the Smith-Waterman sequence alignment algorithm

without added complexity. These energies can also

be added to more complex methods, such as integer

programming 19, 5.
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