
SUPERCOMPUTING WITH TOYS:

HARNESSING THE POWER OF NVIDIA 8800GTX AND PLAYSTATION 3

FOR BIOINFORMATICS PROBLEMS

Justin Wilson, Manhong Dai, Elvis Jakupovic, Stanley Watson and Fan Meng∗

Molecular and Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan,
Ann Arbor, MI 48109, United States of America

∗Email: mengf@umich.edu

Modern video cards and game consoles typically have much better performance to price ratios than that of general
purpose CPUs. The parallel processing capabilities of game hardware are well-suited for high throughput biomedical
data analysis. Our initial results suggest that game hardware is a cost-effective platform for some computationally
demanding bioinformatics problems.

1. INTRODUCTION

Biomedical data analysis, visualization and mining

demand more and more computing power in the

post-genome era. Computer clusters are the pre-

vailing solution for many bioinformatics laboratories

and centers for accelerated large-scale data analysis.

However, expanding the computing capacity of an

existing cluster by more than an order of magnitude

using traditional methods in a time of leveling-off

processor speeds is difficult and expensive.

State-of-the-art game consoles and graphics pro-

cessing units possess enormous computing power

that can be directed at a variety of data analy-

sis tasks1–4. However, the use of game hardware

in bioinformatics is still rare and limited to special

applications. The GPGPU website listed only one

bioinformatics-related application, which reported a

2.7-fold speedup of the most time-consuming loop

in the RAxML phylogenetic tree inference program

when using a GeForce FX 5700 LE graphics card

instead of a Pentium 4 3.2 GHz processor5. Most

recently, the famous Folding@Home project devel-

oped clients for both ATI graphics processing units

(GPU) and the Sony PlayStation 3 (PS3). In fact,

PS3 already exceeds all participating computers in

the number of TFLOPs contributed to the Fold-

ing@Home project6.

A major obstacle to the wide-spread deployment

of such promising game hardware was the lack of de-

velopment tools. Traditionally, a developer had to

learn a graphics API and cast their problem like a

graphics problem in order to use a GPU for gen-

eral computation. However, the recent release of the

Compute Unified Device Architecture (CUDA) by

NVIDIA has circumvented this problem and greatly

facilitated developing software for NVIDIA GPUs7.

In addition, the highly acclaimed Cell Broadband

Engine (CBE) in the PS3, can be programmed us-

ing C instead of assembly with the free IBM Cell

SDK8. Furthermore, third party vendors such as

PeakStream9 and RapidMind10 allow the same pro-

gram to be compiled and automatically optimized

without modification for different multi-core plat-

forms, thus greatly shortening the development cycle

for different parallel computing platforms.

The computationally-intense nature of high-

throughput data analysis led us to examine the possi-

bility of utilizing game hardware to speed-up several

common algorithms. Our results are very encour-

aging and we believe game hardware is an effective

platform for many bioinformatics problems.

2. MATERIALS AND METHODS

Single or multiple CPU tests were performed on an

8x Opteron 865 (dual core) sever with 64G PC2700

memory running Fedora Core 2. GPU tests were per-

formed on a 2x Opteron 275 (dual core) server with

4G of memory and a BFG GeForce 8800GTX with

a core frequency of 600 MHz. The PS3 used in this

project was a 60 GB version. The complier used

for single and multiple Opteron core implementa-

tions was GCC 3.3.3. CUDA 0.8 and IBM Cell SDK

∗Corresponding author.

387

2.0 were used for the 8800GTX and PS3 programs,

respectively. We used RapidMind version 2.0 beta

3 and followed their write-once and run-anywhere

paradigm for each platform. See our webpagea for

the details of our tests.

3. RESULTS

3.1. 8800GTX and CBE vs. 1x and 16x

CPU

Table 1 summarizes the performance of a single pre-

cision vector calculation when using the native de-

velopment environments for the 8800GTX and CBE

as well as the RapidMind platform. The calculation

is described by

�a

N∏
�b ��b

where � is an element-wise division operator, �a and �b

are vectors of 9437184 elements and N is the number

of repeated �b ��b calculations. The column headings

for table 1 are as follows: “I” is the number of times

the calculation was performed, “N” is the number of

repeated �b � �b calculations, “1x” represents a single

CPU, “16x” represents 16 CPUs, “GPU” represents

the 8800GTX, “PS3” represents the CBE, and “RM”

represents the designated hardware under the control

of RapidMind.

Table 1. Vector multiplication/division performance on dif-
ferent platforms (seconds)

I N 1x 16x GPU GPU PS3 PS3
RM RM

10 500 426.6 32.3 2.2 2.5 96.4
1 500 42.7 3.3 0.3 1.5 9.7

10 100 79.1 6.2 1.3 1.9 19.6 574.6
1 100 7.9 0.6 0.2 0.7 2.0 559.5

100 10 56.7 7.1 11.7 13.2 21.4 11.5
10 10 5.7 0.7 1.2 1.9 2.2 6.1

1000 1 59.7 30.6 116.2 127.9 41.3 21.0
100 1 6.0 4.1 11.7 13.4 4.4 2.6

1000 0 19.7 15.0 106.0 127.8 20.0 17.0
100 0 2.0 1.6 10.2 13.2 2.3 2.2

Due to the physical design, game hardware does

not provide an advantage for operations involving a

large number of memory reads and writes (lower half

of table 1). When a small number of memory opera-

tions (low iteration) are combined with CPU inten-

sive operations (high calculation), the PS3 is more

than 4 times the speed of a single Opteron 865 core.

Most strikingly, a single NVIDIA 8800GTX is about

200 times faster than a single Opteron 865 core and

more than 10 times faster than our 16-core (8x2)

server. These results should be interpreted with the

understanding that these numbers represent the up-

per limit of game hardware performance since the

entire problem resided in the main memory of each

device and there were no conditional statements.

Executables generated by RapidMind showed

similar performance improvements on the 8800GTX

when compared to executables generated using

CUDA. The version we tried lacked optimization

support for the CBE but RapidMind has promised

such optimization in future versions11. Regardless,

the ability to use the same source code for differ-

ent multicore platforms should significantly help the

adoption of game hardware.

3.2. Clustering Algorithms

Clustering is one of the most widely used approaches

in bioinformatics. However, clustering algorithms

are CPU intensive and a speedup would benefit prob-

lems ranging from gene expression analysis to docu-

ment mining. A full clustering algorithm usually has

two main components: determining the similarity of

various samples (vectors) through a distance mea-

sure and the classification of samples into different

groups through a clustering method12. We decided

to implement two distance calculation methods, Eu-

clidean and B-spline-based mutual information13,

and two clustering methods, single-link hierarchical

clustering and the centroid k-means clustering for an

8800GTX, and investigate their performance under

various conditions. The mentioned implementations

have been used to generate similarity matrices and

cluster documents from the MEDLINE database rep-

resented by MeSH term vectors and gene expression

values from U133A GeneChips.

GPUs are best suited for parallel data process-

ing with a high ratio of arithmetic to I/O and min-

imal amount of conditional instructions. Memory

reads and writes between the host computer and

GPU should be minimized. Data should be aligned

ahttp://wiki.mbni.med.umich.edu/wiki/index.php/Toycomputing

388

in memory and memory access patterns should be

sequential and regular. A good strategy for design

algorithms for the GPU is to examine the data de-

pendency between the stages of an algorithm and

have a kernel for each stage. Furthermore, having

each thread or each block compute one independent

element of the output of a stage automatically elim-

inates the need for synchronization between blocks.

Using these rules yields a distance matrix cal-

culation kernel where each element in the distance

matrix is computed by one block. First the vectors

are copied to the device and aligned in memory. Each

thread then computes the difference between two el-

ements of two vectors and accumulates the results

until both vectors are exhausted. Then, the shared

memory between the threads can be utilized to sum

up the contribution of each thread. Finally, the com-

puted value is written to the distance matrix.

Finding the minimum in a distance matrix and

updating values according to the Lance-Williams for-

mula are both activities in hierarchical clustering

that can be parallelized. Finding the minimum is

similar to computing a distance matrix only the lo-

cation of the minimum must be remembered. Up-

dating the distance matrix can also be performed in

parallel because only the rows and columns contain-

ing the two merged elements need to be updated.

Consequently, one thread can process each column

in the matrix.

The above techniques are also used in the k-

means algorithm. The only seemingly difficult is-

sue is adding up the vectors to calculate the new

cluster centers. Since the GPU lacks atomic opera-

tions, having different blocks update the centers at

the same time will not work correctly. However, by

having each thread compute one element of one new

cluster center, we circumvent the need for atomic op-

erations. We also minimize number of memory reads

by using the assignment matrix.

The computational speedup for calculating Eu-

clidean distance matrices and mutual information

matrices is presented in figure 1. The legend shows

the number of elements in each vector and the type

of calculation (“D” for distance, “B” for B-spline).

The B-spline mutual information algorithm was con-

figured to use 10 bins and spline order of 313. As

expected, the B-spline mutual information matrix

shows better GPU acceleration due to its higher

arithmetic to I/O ratio. The figure also shows that

it may not be worthwhile to perform small Euclidean

distance calculations with a GPU since most of the

processing time will be spent on memory operations.

 0

 5

 10

 15

 20

 25

 256 512 1024 2048 4096 8192

S
pe

ed
up

Number of Vectors

512D
2048D

8192D
512B

2048B
8192B

Fig. 1. Similarity Matrix Calculation Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 256 512 1024 2048 4096 8192

S
pe

ed
up

Number of Vectors

512H
2048H

8192H
512K

2048K
8192K

Fig. 2. Clustering Speedup

The computational speedup for hierarchical clus-

tering (“H”) (including the initial distance calcula-

tion) and k-means clustering (“K”) is presented in

figure 2. For k-means, the number of iterations was

389

fixed and the number of clusters was 4. As expected,

both figures show that the speedup is strongly related

to the dimensionality of the vectors to be classified

because the elements of a data point can usually be

operated on in parallel.

3.3. Monte Carlo Permutation

Permutation is widely used in statistical analysis but

is often the most time consuming step in genome-

wide data analysis. Table 2 compares the per-

formance of an efficient Monte Carlo permutation

procedure14 for correlation calculation on different

platforms using expression values from 4096 genes

from 7226 U133A GeneChips deposited in the NCBI

GEO database. It is obvious from the table that

the 8800GTX can drastically speed-up Monte Carlo

permutations without expanding an existing cluster

given an open PCIe slot and adequate power supply.

Table 2. Monte Carlo permutation on
game hardware (seconds)

Number CPU (1x) GPU PS3

1 258.77 11.12 57.33

2 517.50 21.99 114.36
4 1035.01 43.75 228.60

4. DISCUSSION

Although we just started developing with game hard-

ware, our results suggest that the NVIDIA GeForce

8800GTX is a very attractive co-processor capable

of increasing the single precision floating point cal-

culation speed by more than one order of magnitude

in clustering and Monte Carlo permutation proce-

dures. It is likely many other parallel data bioinfor-

matics algorithms, particularly those related to high

throughput genome-wide data analyses, will benefit

from a port to game hardware.

Acknowledgments

The authors are members of the Pritzker Neuropsy-

chiatric Disorders Research Consortium, which is

supported by the Pritzker Neuropsychiatric Disor-

ders Research Fund L.L.C. This work is also sup-

ported in part by the National Center for Inte-

grated Biomedical Informatics through NIH grant

1U54DA021519-01A1 to the University of Michigan.

References

1. Angel E, Baxter B, Bolz J, Buck I, Carr N, Coombe

et al. http://www.gpgpu.org/ 2007.

2. Buck I, Foley T, Horn D, Sugerman J, Fatahalian

K, Houston M, Hanrahan P. ACM Transactions on
Graphics 2004; 23(3): 777-786.

3. Owens JD, Luebke D, Govindaraju N, Harris M,

Krger J, Lefohn A E, Purcell TJ. Computer Graphics
Forum 2007; 26(1): 80-113.

4. Mueller, F.

http://moss.csc.ncsu.edu/ mueller/cluster/ps3/ 2007.

5. Charalambous M, Trancoso P, Stamatakis A. Proceed-
ings of the 10th Panhellenic Conference on Informat-
ics (PCI 2005), Springer LNCS 2005; 415-425.

6. Folding@Home. http://fah-web.stanford.edu/cgi-
bin/main.py?qtype=osstats 2007.

7. NVIDIA.

http://developer.nvidia.com/object/cuda.html 2007.

8. IBM. http://www.alphaworks.ibm.com/tech/cellsw
2006.

9. PeakStream.

http://www.peakstreaminc.com/product/overview/
2006.

10. RapidMind. http://www.rapidmind.net/ 2006.

11. RapidMind. http://www.rapidmind.net/
pdfs/RapidMindCellPorting.pdf 2006.

12. Wikipedia.

http://en.wikipedia.org/wiki/Data clustering 2007.

13. Daub CO, Steuer R, Selbig J, Kloska S. BMC Bioin-
formatics 2004; 5: 118.

14. Lin, DY. Bioinformatics 2005; 21(6): 781-787.

390

