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Methods that can screen large databases to retrieve a structurally diverse set of compounds with desirable bioactivity
properties are critical in the drug discovery and development process. This paper presents a set of such methods,
which are designed to find compounds that are structurally different to a certain query compound while retaining its
bioactivity properties (scaffold hops). These methods utilize various indirect ways of measuring the similarity between
the query and a compound that take into account additional information beyond their structure-based similarities.

Two sets of techniques are presented that capture these indirect similarities using approaches based on automatic

relevance feedback and on analyzing the similarity network formed by the query and the database compounds. Ex-
perimental evaluation shows that many of these methods substantially outperform previously developed approaches
both in terms of their ability to identify structurally diverse active compounds as well as active compounds in general.

1. INTRODUCTION

Discovery, design, and development of new drugs is
an expensive and challenging process. Any new drug
should not only produce the desired response to the
disease but should do so with minimal side effects.
One of the key steps in the drug design process is the
identification of the chemical compounds (hit com-
pounds or just hits) that display the desired and re-
producible activity against the specific biomolecular
target23. This represents a significant hurdle in the
early stages of drug discovery.

A popular approach for finding these hits is to
use a compound, known to possess some of the de-
sired activity properties, as a reference and identify
other compounds from a large compound database
that have a similar structure. This is nothing more
than a ranked-retrieval using the reference com-
pound as a query. This approach relies on the well-
known fact that compounds sharing key structural
features will most likely have similar activity against
a biomolecular target. This is referred to as the
structure activity relationship (SAR) 9. The simi-
larity between the compounds is usually computed

by first representing their molecular graph as a vec-
tor in a particular descriptor-space and then using
a variety of vector-based methods to compute their
similarity 8, 9.

However, the task of identifying hit compounds
is complicated by the fact that the query might have
undesirable properties such as toxicity, bad ADME
(absorption, distribution, metabolism and excretion)
properties, or may be promiscuous 17, 26. These
properties will also be shared by most of the highest
ranked compounds as they will correspond to very
similar structures. In order to overcome this prob-
lem, it is important to rank high as many chemi-
cal compounds as possible that not only show the
desired activity for the biomolecular target but also
have different structures (come from diverse chemical
classes or chemotypes). Finding novel chemotype us-
ing the information of already known bioactive small
molecules is termed as scaffold-hopping 17, 32, 27.

In this paper we address the problem of scaffold-
hopping by developing a set of techniques that mea-
sure the similarity between the query and a com-
pound that take into account additional information
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beyond their structure-based similarities. These in-

direct ways of measuring similarity enables the re-

trieval of compounds that are structurally different

from the query but at the same time possess the de-

sired bioactivity properties. We present two sets of

techniques to capture such indirect similarities. The

first set, contains techniques that are based on au-

tomatic relevance feedback, whereas the second set,

derives the indirect similarities by analyzing the sim-

ilarity network formed by the query and the database

compounds. Both of these sets of techniques op-

erate on the descriptor-space representation of the

compounds and are independent of the of selected

descriptor-space.

We experimentally evaluate the performance of

these methods using three different descriptor-spaces

and six different datasets. Our results show that

most of these methods are quite effective in im-

proving the scaffold-hopping performance over stan-

dard ranked-retrieval. Among them, the methods

based on the similarity-network perform the best

and substantially outperform previously developed

scaffold-hopping schemes. Moreover, even though

these methods were created to improve the scaffold-

hopping performance, our results show that many

of them are quite effective in improving the ranked-

retrieval performance as well.

The rest of the paper is organized as follows.

Section 2 describes the problems addressed in this

paper. Section 3 introduces the definitions and no-

tations used in this paper. Section 4 introduces the

various descriptor-spaces for this problem. Section 5

describes the methods developed in this paper. Sec-

tion 6 gives an overview of the related work in this

field. Section 7 describes the materials used in our

experimental methodology. Section 8 compares and

discusses the results obtained. Finally, Section 8.2

summarizes the results of this paper.

2. PROBLEM STATEMENT AND

MOTIVATION

The ranked-retrieval and the scaffold-hopping prob-

lems that we consider in this paper are defined as

follows:

Definition 2.1 (Ranked-Retrieval Problem) Given a

query compound, rank the compounds in the database

based on how similar they are to the query in terms

of their bioactivity.

Definition 2.2 (Scaffold-Hopping Problem) Given a

query compound and a parameter k, retrieve the

k compounds that are similar to the query in terms

of their bioactivity but their structure is as dissimilar

as possible to that of the query.

The solution to the ranked-retrieval problem re-

lies on the well known fact that chemical structure of

a compound relates to its activity (SAR) 9. As such,

effective solutions can be devised that rank the com-

pounds on the database based on how structurally

similar they are to the query.

However, for scaffold-hopping, the compounds

retrieved must be structurally sufficiently similar to

possess similar bioactivity but at the same time

must be structurally dissimilar enough to be a novel

chemotype. This is a much harder problem than

simple ranked-retrieval as it has the additional con-

straint of maximizing dissimilarity that runs counter

to SAR.

Methods that have the ability to rank higher

the compounds that are structurally different (dif-

ferent chemotypes) have advantages over methods

that do not. They improve the odds of being able

to find a compound that is not only active for a

biomolecular target but also has all the other de-

sired properties (non-toxicity, good ADME proper-

ties, target specificity, etc. 8, 17) that the refer-

ence structure and compounds with similar struc-

tures might not possess. One of such compounds

is then more likely to become a true drug candi-

date. Furthermore, scaffold-hopping is also impor-

tant from the point of view of un-patented chem-

ical space. Many important lead compounds and

drug candidates have been already patented. In or-

der to find new therapies and offer alternative treat-

ments it is important for a pharmaceutical com-

pany to discovery novel leads away from the exist-

ing patented chemical space. Methods that perform

scaffold-hopping can achieve those objectives.

3. DEFINITIONS AND NOTATIONS

Throughout the paper we will use D to denote a

database of chemical compounds, q to denote a query

compound, and c to denote a chemical compound

present in the database.

Given two compounds ci and cj , we will use

sim(ci, cj) to denote their (direct) similarity which
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is computed with respect to their descriptor-space

representation by a suitable similarity measure.

Given a compound ci and a set of compounds A,

we will use sim(ci, A) to denote the average pairwise

similarity between ci and all the compounds in A.

Given a query compound q, a database D, and a

parameter k, we define top-k to be the k compounds

in D that are most similar to q.

Given a compound c, a set of compounds A, and

a similarity measure, its k-nearest-neighbor list con-

tains the k compounds in A that are most similar to

c.

Finally, throughout the paper we will refer to

the task of retrieving active compounds as ranked-

retrieval and the task of retrieving scaffold-hops as

scaffold-hopping.

4. DESCRIPTOR SPACES FOR

RANKED-RETRIEVAL

The similarity between chemical compounds is usu-

ally computed by first transforming them into a suit-

able descriptor-space representation 8, 9. A number

of different approaches have been developed to rep-

resent each compound by a set of descriptors. These

descriptors can be based on physiochemical proper-

ties as well as topological and geometric substruc-

tures (fragments) 31, 1, 3, 12, 25, 18, 29.

In this study we use three descriptor-spaces that

have been shown to be very effective in the context

of ranked-retrieval and/or scaffold-hopping. These

descriptor-spaces are the graph fragments (GF) 29,

extended connectivity fingerprints (ECFP) 25, 18,

and the extended reduced graph (ErG) descrip-

tors 27.

GF is a 2D topology-based descriptor-space 29

that is based on all the graph fragments of a molec-

ular graph up to a predefined size. ECFP is also a

2D topological descriptor-space and many flavors of

these descriptors have been described by several au-

thors 25, 18. The idea behind this descriptor-space

is to capture the topology around each atom in the

form of shells whose radius (number of bonds) ranges

from 1 to l, where l is a user defined parameter. We

use the ECZ3 variation of ECFP in which each atom

is assigned a label corresponding to its atomic num-

ber and the maximum shell radius is set to three.

Both extended connectivity fingerprints (ECFP) and

GF have been shown to be highly effective for the

ranked-retrieval of chemical compounds 18, 29.

Extended reduced graph descriptors (ErG) is

a pharmacophoric descriptor-space. A pharma-

cophore is defined as a critical 3D or 2D arrange-

ment of molecular fragments forming a necessary

but not sufficient condition for biological activity.

The descriptors that rely only on 2D information are

called 2D pharmacophoric descriptors whereas de-

scriptors that utilize 3D information are called 3D

pharmacophoric descriptors. ErG is a 2D pharma-

cophoric descriptor-space that combines the reduced

graphs 15, 14 and binding property pairs 22 to gener-

ate pharmacophoric descriptor-space. A detailed de-

scription on the generation of these pharmacophoric

descriptors can be found in 27.

5. METHODS

In order to improve the scaffold-hopping perfor-

mance we developed a set of techniques that mea-

sure the similarity between the query and a com-

pound by taking into account additional information

beyond their descriptor-space-based representation.

These methods are motivated by the observation

that if a query compound q is structurally similar to

a database compound ci and ci is structurally simi-

lar to another database compound cj , then q and cj

could be considered as being similar or related even

though they may have zero or very low direct similar-

ity. This indirect way of measuring similarity can en-

able the retrieval of compounds that are structurally

different from the query but at the same time, due to

associativity, possess the same bioactivity properties

with the query.

We developed two sets of techniques to capture

such indirect similarities that were inspired by re-

search in the fields of information retrieval and social

network analysis. The first set, contains techniques

that use various forms of automatic relevance feed-

back to identify a set of compounds to be used for

creating an indirect similarity measure, whereas the

second set, derives the indirect similarities by ana-

lyzing the network formed by a k-nearest-neighbor

graph representation of the query and the database

compounds. Both of these sets of techniques op-

erate on the descriptor-space representation of the

compounds and are independent of the of selected

descriptor-space.
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5.1. Relevance-Feedback-based Methods

5.1.1. Top-k Weighting

This approach, which is based on the Rochio 24

scheme for automatic relevance feedback, first re-

trieves the top-k compounds for a given query q and

then uses these compounds to derive an indirect sim-

ilarity between q and each of the compounds in the

database. Specifically, if A is the initial set of top-k

compounds, the new similarity, simA(q, c), between

q and a compound c is given by

simA(q, c) = α sim(q, c) + (1 − α) sim(c, A), (1)

where 0 ≤ α ≤ 1 is a user-specified parameter that

controls the degree to which the new similarity is af-

fected by the compounds in A. We will refer to this

method as TopKAvg.

The motivation behind this approach is that for

reasonably small values of k, the set A will contain a

relatively large number of active compounds. Thus,

by modifying the similarity between q and a com-

pound c to also include how similar c is to the com-

pounds in A, we obtain a similarity measure that is

re-enforced by A’s active compounds. This enables

the retrieval of active compounds that are similar to

the compounds present in A even if their similarity

to the query is not very high; thus, enabling scaffold-

hopping

5.1.2. Cluster Weighting

This method is similar in spirit to TopKAvg, but

employs a clustering-based approach to identify the

set of compounds to use for automatic relevance feed-

back. We will refer to this scheme as ClustWt and

consists of the following four steps. First, it finds

the top-k most similar compounds to a query q. Sec-

ond, it clusters these compounds into l = k/m sets

{S1, . . . , Sl} each of size m (assuming that k is a mul-

tiple of m). Third, it selects among these sets, the

set S∗ that has the highest similarity to the query.

Fourth, it uses Equation 1 to re-rank all the com-

pounds in the database using S∗ as the relevance

feedback set (i.e., A = S∗).

The clustering is computed using a fixed-

capacity heuristic min-cut partitioning algorithm on

the complete weighted graph whose nodes are the

k compounds and the edge-weights are the similar-

ities between them 21, 20. Consequently, the inter-

cluster compound-to-compound similarities are ex-

plicitly minimized leading to clusters in which the

intra-cluster similarities are implicitly maximized

(i.e., each cluster will end-up containing similar com-

pounds).

By using for relevance feedback the set S∗, which

contains compounds that are most similar to the

query, ClustWt selects the cluster that will most

likely have a large number of active compounds. This

is similar in spirit to the method that TopKAvg uses

to select its own relevance feedback set A. However,

since S∗ contains compounds that are also very sim-

ilar to each-other, the number of active compounds

that it contains will tend to be higher than that con-

tained in A (assuming that both A and S∗ have the

same size). In fact, S∗ has already incorporated some

form of automatic relevance feedback, since all pair-

wise similarities between its compounds were taken

into account during the clustering process. The fact

that objects that are relevant to a query tend to clus-

ter together is well-known within the document re-

trieval community and is usually referred to as the

clustering hypothesis 16.

5.1.3. Sum-based Search

The performance of TopKAvg and ClustWt de-

pends on selecting a reasonable value for the size

of the set used to provide automatic relevance feed-

back. If that set is too small, it may not incorporate

a sufficiently large number of active compounds and

thus lead to limited (if any) performance improve-

ments, whereas if the set is too large, it may degrade

the performance by incorporating a relatively large

number of inactive compounds. Unfortunately, our

initial experiments showed that the right size of the

relevance feedback set is dataset dependent.

Motivated by this observation we developed a

scheme for automatic relevance feedback, which in-

stead of using a fixed number of compounds, it does

so in a progressive fashion. Specifically, if A is the set

of compounds that have been retrieved thus far, then

the compound selected next, cnext, is the one that

has the highest average similarity to the set A∪{q}.

That is,

cnext = argmax
ci∈D−A

{sim(ci, A ∪ {q})}. (2)

This compound is added in A and the overall process

is repeated until the desired number of compounds

is retrieved or all the compounds in D have been
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ranked. Thus, in this scheme, as soon as a compound

is retrieved it is used to expand the set of compounds

used to provide relevance feedback. We will refer to

this method as BestSumDescSim.

5.1.4. Max-based Search

A common characteristic to the three schemes de-

scribed so far is that the final ranking of each com-

pound is computed by taking into account all the

similarities between the compound and the com-

pounds in the relevance feedback set. Since the com-

pounds in the relevance feedback set will tend to be

structurally similar to the query compound (with the

ClustWt potentially being an exception), this ap-

proach is rather conservative in its attempt to iden-

tify active compounds that are structurally different

from the query (i.e., scaffold-hops).

To overcome this problem, we developed a best-

search scheme that is based on the BestSumDesc-

Sim approach but instead of selecting the next com-

pound based on its average similarity to A ∪ {q},

it selects the compound that is the most similar to

one of the compounds in A ∪ {q}. That is, the next

compound is given by

cnext = arg max
ci∈D−A

{ max
cj∈A∪{q}

sim(ci, cj)}. (3)

In this approach, if a compound cj other than

q has the highest similarity to some compound ci in

the database, ci is chosen as cnext and added to A

irrespective of its similarity to q. Thus, the query-

to-compound similarity is not necessarily included

in every iteration as in the other schemes, allowing

BestMaxDescSim to identify compounds that are

structurally different from the query. We will refer

to this schemes as BestMaxDescSim.

5.2. Nearest-Neighbor Graph-based

Methods

These methods, motivated by the field of social (re-

lational) network analysis, determine the similarity

between a pair of compounds by taking into account

any other compounds that are very similar to either

or both of them. Thus, the similarity depends on the

structure of the network formed by all highly similar

pairs of compounds.

The network linking the database compounds

with each other and with the query is determined

by using a k-nearest-neighbor (NG) and a k-mutual-

nearest-neighbor (MG) graph. Both of these graphs

contain a node for each of the compounds as well

as a node for the query. However, they differ on

the set of edges that they contain. In the k-nearest-

neighbor graph there is an edge between a pair of

nodes corresponding to compounds ci and cj , if ci is

in the k-nearest-neighbor list of cj or vice-versa. In

the k-mutual-nearest-neighbor graph, an edge exists

only when ci is in the k-nearest-neighbor list of cj

and cj is in the k-nearest-neighbor list of ci. As a

result of these definitions, each node in NG will be

connected to at least k other nodes (assuming that

each compound has a non-zero similarity to at least

k other compounds), whereas in MG, each node will

be connected to at most k other nodes.

Since the neighbors of each compound in these

graphs correspond to some of its most structurally

similar compounds and due to the relation between

structure and activity, each pair of adjacent com-

pounds will tend to have similar activity. Thus, these

graphs can be considered as the network structures

for capturing bioactivity relations.

A number of different approaches have been

developed for determining the similarity between

nodes in social networks that take into account

various topological characteristics of the underlying

graphs 28, 13. In our work, we determine the simi-

larity between a pair of nodes as a function of the

intersection of their adjacency lists, which takes into

account all two-edge paths connecting these nodes.

Specifically, the similarity between ci and cj with re-

spect to graph G is given by

simG(ci, cj) =
adjG(ci) ∩ adjG(cj)

adjG(ci) ∪ adjG(cj)
, (4)

where adjG(ci) and adjG(cj) are the adjacency lists

of ci and cj in G, respectively. This measure assigns

a high similarity value to a pair of compounds if both

are very similar to a large set of common compounds.

Since a pair of active compounds will be more simi-

lar to other active compounds than an active-inactive

pair, their similarity according to Equation 4 will be

high. Also, since Equation 4 can potentially assign

a high similarity value to a pair of compounds even

if their direct similarity is very low (as long as they

have a large number of common neighbors), it facil-

itates scaffold-hopping.

For each of the NG and MG graphs we devel-

407



oped two retrieval schemes that use Equation 4 as

the similarity measure in the sum- and max-based

search strategies represented in Equations 2 and 3.

For example, in the case of the NG graph and the

sum-based search strategy, the next compound cnext

to be retrieved is given by

cnext = argmax
ci∈D−A

{simNG(ci, A ∪ {q})}, (5)

where simNG(ci, A∪{q}) is the average pairwise sim-

ilarity between ci and the compounds in A computed

using Equation 4 for the NG graph. The equations

for the other schemes are derived in a similar fashion.

We will refer to these four schemes as BestSumNG,

BestMaxNG, BestSumMG, and BestMaxMG,

respectively.

6. RELATED WORK

Many methods have been proposed for ranked-

retrieval and scaffold-hopping. These can be divided

into two groups. The first contains methods that rely

on better designed descriptor-space representations,

whereas the second contains methods that are not

specific to any descriptor-space representation but

utilize different search strategies to improve the over-

all performance.

Among the first set of methods, 2D descrip-

tors such as path-based fingerprints 4, 1, dictionary

based keys 3, 2 and more recently Extended Con-

nectivity fingerprints (ECFP)18, Graph Fragments

(GF) 29 have all been successfully applied for the

retrieval problem. Pharmacophore based descrip-

tors such as ErG 27 have been shown to outperform

simple 2D topology based descriptors for scaffold-

hopping 27, 33. Lastly, descriptors based on 3D struc-

ture or conformations of the molecule have also been

applied successfully for scaffold-hopping 33, 26.

The second set of methods include the turbo

search schemes (TurboSumFusion and Turbo-

MaxFusion) 17 and the structural unit analysis

based techniques 32 all of which utilize relevance feed-

back 6 ideas. These have been shown to be effective

for both scaffold-hopping and ranked-retrieval. The

turbo search techniques operate as follows. Given

a query q, they start by retrieving the top-k com-

pounds from the database. Let A be the (k + 1)-size

set that contains q and the top-k compounds. For

each compound c ∈ A, all the compounds in the

database are ranked in decreasing order based on

their similarity to c, leading to k + 1 ranked lists.

These lists are used to obtain the final similarity of

each compound with respect to the initial query. In

particular, in TurboMaxFusion, the similarity be-

tween q and a compound c is equal to the similarity

corresponding to the maximum ranking of c in the

k + 1 lists, whereas in TurboSumFusion, the sim-

ilarity is equal to the sum of all the similarities in

these rankings. Similar methods based on consensus

scoring, rank averaging, and voting have been inves-

tigated in 33.

The TurboSumFusion approach is similar to

that of the TopKAvg described in Section 5.1.1 as

it utilizes relevance feedback mechanism to re-rank

a database with respect to a query. However, the

TurboSumFusion approach treats every compound

in the top-k set as equally important along with the

query, whereas in TopKAvg, each compound in A

is given a weight of (1 − α)(1/|A|α) relative to q.

7. MATERIALS

7.1. Datasets

We used datasets that contain compounds that bind

to six different biomolecular targets: COX2 (cy-

clooxygenase 2), CDK2 (cyclin-dependent kinase 2),

FXa (coagulation factor Xa), PDE5 (phosphodi-

esterase 5), A1A (alpha-1A adrenoceptor), and MAO

(Monoamineoxidase). Each of these sets represent a

different activity class.

The datasets for the first five targets are ob-

tained from 5, 19. The entire set consists of 2142

compounds and there are 50 active compounds for

each one of the targets (250 in total). The rest

of the compounds are “decoys” (inactive) obtained

from the National Cancer Institute diversity set. For

each target, we constructed a dataset that contains

its 50 active compounds and all the decoys. These

datasets are termed as COX2, CDK2, PDE5, FXa

and A1A.

The dataset of the sixth target was derived

from 11, 29 and after removing compounds with im-

possible Kekule forms and valence errors it contains

1458 compounds. The compounds in this dataset

have been categorized into four different classes, 0,

1, 2, and 3 based on their levels of activity, with 0

indicating no activity. For our experiments we treat

all the compounds that have non-zero activity level

(268 compounds) as active.
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7.2. Definition of Scaffold-Hopping

Compounds

Molecular scaffold is a widely cited concept and is

used to evaluate the performance of a method with

respect to its scaffold-hopping ability. However the

definition of a scaffold-hop is highly subjective with

numerous papers using different criteria to define

what constitutes a scaffold-hop 17, 32, 33, 10.

In this paper we use an objective way of defin-

ing which compounds can be considered as scaffold-

hops by using an approach that directly relies on the

scaffold-hopping problem definition (Section 3). In

particular, for a given query q, the active compounds

are ranked based on their structural similarity to q,

and the lowest 50% of them are defined to be the

scaffold-hops for q. Thus, this approach identifies a

set of scaffold-hopping compounds that are specific

to each query and represent the 50% most dissimilar

active compounds to the query. We use the 2048-

bit path-based fingerprint generated by Chemaxon’s

screen program 4 for measuring the structural sim-

ilarity between a query and an active compound.

These fingerprints are well-designed to capture struc-

tural similarity between two compounds 27.

7.3. Experimental Methodology

All the experiments were performed on dual core

AMD Opterons with 4 GB of memory. We used

the descriptor-spaces GF, ECZ3, and ErG (described

in Section 4) for the evaluating the methods in-

troduced in this paper. Each method is tested

against six datasets (Section 7.1) using three differ-

ent descriptor-spaces (Section 4) leading to a total of

18 different combinations of datasets and descriptor-

spaces. We will refer to them as 18 different prob-

lems.

We use the Tanimoto similarity 8, 30, 31 for all

direct similarity calculations. The Tanimoto similar-

ity function is given by

sim(ci, cj) =

n∑

k=1

cikcjk

n∑

k=1

(cik)2 +
n∑

k=1

(cjk)2 −
n∑

k=1

cikcjk

,

(6)

where cik and cjk are the values for the kth dimension

in the n-dimensional descriptor-space representation

for the compounds ci and cj , respectively. This

similarity function was selected because it has been

shown to be an effective way of measuring the simi-

larity between chemical compounds 30, 31 for ranked-

retrieval and is the most widely-used similarity func-

tion in cheminformatics.

For each dataset we used each of its active com-

pounds as a query and evaluated the extent to which

the various methods lead to effective retrieval of

the other active compounds and scaffold-hops. For

ClustWt we used hMETIS 21, 20 to perform the

clustering into fixed sized clusters.

We varied the parameter values for the methods

described in Section 5 and obtained results by av-

eraging over four different sets of values. For Top-

KAvg, which depends on the number of compounds

k used in relevance feedback, we used k = 5, 10, 15,

and 20. For ClustWt, which depends on the clus-

ter size m and the number of compounds k on which

the clustering was performed, we used m = 25 and

40 and k = 200 and 400. For ClustWt and Top-

KAvg that have α as a parameter, we use a value of

0.5. These parameter values were selected because

they gave the best results in our experiments. For

the nearest-neighbor methods which depend on the

number of neighbors, we used k = 4, 6, 8, and 10

for the BestSumNG and BestMaxNG, and k =

12, 16, 20, and 24 for the BestSumMG and Best-

MaxMG schemes. These values were chosen because

they gave good results. Moreover, for NG the value

of k less than 4 leads to graphs with many connected

components whereas for MG this value is 12. Hence,

we decided not to use values below these thresholds.

Note that the threshold for NG is less than that of

MG because the criterion for an edge to exist be-

tween two nodes of the neighborhood graph is stricter

for MG as opposed to NG (Section 5.2).

We also compared our schemes against Turbo-

MaxFusion and TurboSumFusion
17. For both

these methods, we used k = 5, 10, 15, and 20. These

values gave the best results and the results degraded

as k was further increased.

7.4. Standard Retrieval

For each problem, we obtain a baseline perfor-

mance by ranking all the compounds with respect

to each active compound using the Tanimoto simi-

larity 8, 30, 31. We call this Standard Retrieval and

denote it by StdRet.
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7.5. Performance Assessment Measures

We measure ranked-retrieval and scaffold-hopping

performance using uninterpolated precision 16. This

is calculated as follows. For each active that ap-

pears in the top 50 retrieved compounds we com-

pute the precision value. For ranked-retrieval this

is defined as the ratio of the number of actives re-

trieved over the number of compounds retrieved thus

far. For scaffold-hopping it is defined as the number

of scaffold-hops retrieved over the number of com-

pounds retrieved thus far. For both ranked-retrieval

and scaffold-hopping we sum all their precision val-

ues and normalized them by dividing them with 50.

This is called the total uninterpolated precision for a

query. Similar values are obtained for all the queries

for a dataset and the total uninterpolated precision

is the average of all these values. Note that the to-

tal uninterpolated precision captures the number of

active compounds (scaffold-hops) for each query as

well as the position (rank) information of the actives

(scaffold-hops).

To compare the ranked-retrieval or scaffold-

hopping performance of two methods, we evaluate

their relative performance over all the 18 problems.

This is achieved as follows. Let ri and qi represent

the ranked-retrieval or scaffold-hopping performance

achieved by methods r and q on the ith problem re-

spectively. We calculate the log-ratio, log2(ri/qi), for

every problem and take the average of these values.

We call this quantity the Average Relative Perfor-

mance or ARP of r with respect to q. On the aver-

age, if the ARP is less than zero, r performs worse

than q whereas if the ARP is greater than zero, r

performs better than q. Note that the reason that

we use log-ratios as opposed to simply the ratios is

that the distribution of the ratios of two random vari-

ables is not symmetric whereas the distribution of

their log-ratios is normally distributed. This allows

us to compute their average and compare them in an

unbiased way. We also assess whether the ARP for a

given pair of methods is statistically significant using

the student’s t-test 7, which is well-suited to assess

statistical significance of a sample of values drawn

out of a normal distribution. The null hypothesis

being tested here is that the log-ratios are centered

around a mean of zero.

8. RESULTS

8.1. Overall Performance Assessment

Tables 1 and 2 compare the performance of all the

methods in a pairwise fashion for scaffold-hopping

and ranked-retrieval, respectively. In each of these

tables we present two statistics. The first is the ARP

of the row method (r) with respect to the column

method (q) as described in Section 7.5. The second

statistic, shown immediately below the ARP value

in parenthesis, is its p-value obtained from the stu-

dent’s t-test. Note that for the remainder of this

section we will define the ARP of the two methods

to be statistically significant if p ≤ 0.01.

The rest of this section highlights some of the

key observations that can be made by analyzing the

results in these tables.

8.1.1. Performance of Relevance Feedback

Methods

Comparing the performance of the four relevance-

feedback-based methods described in Section 5.1

against StdRet, we see that all of them lead to

better scaffold-hopping results. Among them, the re-

sults achieved by ClustWt and BestSumDescSim

are 63% and 94% better than StdRet, respectively

and also these improvements are statistically signif-

icant. However, all four of these methods achieve

somewhat worse ranked-retrieval performance (3%

to 15%). Moreover, these differences are statisti-

cally significant for BestSumDescSim and Best-

MaxDescSim.

Comparing the four methods against Turbo-

SumFusion and TurboMaxFusion, we observe

that the relative performance of most of these meth-

ods varies, with some methods doing better for

scaffold-hopping and others doing better for ranked-

retrieval. However, with the exception of TopKAvg,

which is statistically better than the two fusion-based

scheme for ranked-retrieval, all other differences are

not statistically significant.

Comparing the four relevance-feedback-based

methods against each other we see that most of

them perform the same for both scaffold-hopping and

ranked-retrieval and whatever differences that exist

are not statistically significant. Despite of this, the

average performance of BestSumDescSim is better

than BestMaxDescSim, indicating that the sum-

based search strategy leads to better results. The
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results also show that the ClustWt is better than

TopKAvg for scaffold-hopping and that this differ-

ence is statistically significant.

8.1.2. Performance of Nearest-Neighbor

Graph-Based Methods

Comparing the performance of the nearest-neighbor

methods, we observe that all of these schemes show

good performance for scaffold-hopping as well as

ranked-retrieval. Among them, the best perform-

ing method is BestSumNG. It achieves the best

balance between the ranked-retrieval and scaffold-

hopping performance. Furthermore, similar to the

relevance feedback-based methods, the sum-based

search methods outperform the corresponding max-

based methods. However, these differences are not

statistically significant.

The results also show that the nearest-neighbor

methods performs significantly better than all the

other methods for scaffold-hopping and most of these

differences are statistically significant (BestSumDe-

scSim and BestMaxDescSim are the two excep-

tions). In particular, the performance of the nearest-

neighbor methods are 62% to 300% better than the

StdRet and the fusion-based methods and 46%

to 244% better than the relevance-feedback-based

methods.

The nearest-neighbor methods also achieve bet-

ter performance than all of the methods for ranked-

retrieval, although most of these differences are not

statistically significant. BestSumNG is a clear ex-

ception as its ranked-retrieval performance is also

significantly and statistically better than all the

other non graph-based techniques. For example,

compared to the fusion-based techniques its ranked-

retrieval performance is 62% to 209% better.

8.2. Performance of Descriptor-Spaces and

Datasets

Our discussion so far focused on evaluating the av-

erage performance of the different methods across

the various descriptor-space representations and

datasets. In this section we analyze the perfor-

mance of the methods on the individual descriptor-

spaces and datasets. We limit our evaluation to only

the ClustWt and the BestSumNG methods as

these methods achieve the best scaffold-hopping and

ranked-retrieval performance among the relevance-

feedback- and graph-based methods, respectively.

The results of these evaluations are shown in

Figures 1 and 2, which compare the performance of

StdRet against ClustWt and BestSumNG, re-

spectively. In these figures, the left Y-axis represents

uninterpolated precision values for ranked-retrieval,

whereas the right Y-axis represents uninterpolated

precision values for scaffold-hopping. For ClustWt

and BestSumNG we also show error bars that cor-

respond to the standard deviation of the results ob-

tained for the four sets of parameter values used for

these schemes.

These results show that for scaffold-hopping,

ClustWt outperforms StdRet in most dataset

and descriptor-space combinations. However, the ac-

tual performance gains are dataset and descriptor-

space dependent. For example, ClustWt achieves

significant gains on the A1A and FXa datasets for

the ErG and ECZ3 descriptor-spaces, whereas the

gains for the other datasets and/or descriptor-spaces

are not as dramatic. In terms of ranked-retrieval

performance, these results show that in the case of

the GF descriptor-space, ClustWt performs consis-

tently better than StdRet across all datasets. How-

ever, ClustWt’s ranked-retrieval performance for

the other two descriptor-spaces is somewhat mixed.

Finally, the results in Figure 2 show that

for scaffold-hopping, BestSumNG performs consis-

tently better than StdRet for all the descriptor-

space and dataset combinations. However, simi-

larly to ClustWt, the actual gains are dataset and

descriptor-space dependent. For example, the gains

are particularly high for the FXa, A1A, and COX2

datasets and for the ErG descriptor space. Simi-

lar trends can be observed with the ranked-retrieval

results, with BestSumNG outperforming StdRet.

Moreover, the performance gains achieved on some

problems by BestSumNG are usually much higher

than the performance degradations in others.

CONCLUSION

In this paper we introduced a number of methods

based on relevance feedback and social (relational)

network analysis to improve scaffold-hopping and

ranked-retrieval. Our results showed that among

these methods, the ones based on social network

analysis consistently and substantially outperform

the standard retrieval as well as previously intro-

duced methods for these problems.
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Table 1.: Performance for Scaffold-Hopping.
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StdRet -0.44 -0.82 -0.31 -0.71 -0.96 -0.89 -1.51 -1.52 -1.6 -1.59
(0.031) (0.006) (0.127) (0.007) (0.002) (0.024) (0.000) (0.000) (0.000) (0.000)

TurboSumFusion 0.44 -0.38 0.13 -0.26 -0.52 -0.44 -1.07 -1.07 -1.16 -1.15
(0.031) (0.073) (0.024) (0.029) (0.068) (0.298) (0.000) (0.000) (0.000) (0.000)

TurboMaxFusion 0.82 0.38 0.51 0.11 -0.14 -0.07 -0.69 -0.7 -0.78 -0.77
(0.006) (0.073) (0.013) (0.467) (0.547) (0.835) (0.002) (0.005) (0.001) (0.000)

TopKAvg 0.31 -0.13 -0.51 -0.4 -0.65 -0.57 -1.2 -1.2 -1.29 -1.28
(0.127) (0.024) (0.013) (0.001) (0.032) (0.177) (0.000) (0.000) (0.000) (0.000)

ClustWt 0.71 0.26 -0.11 0.4 -0.25 -0.18 -0.8 -0.81 -0.9 -0.88
(0.007) (0.029) (0.467) (0.001) (0.316) (0.645) (0.000) (0.000) (0.000) (0.000)

BestSumDescSim 0.96 0.52 0.14 0.65 0.25 0.07 -0.55 -0.56 -0.65 -0.63
(0.002) (0.068) (0.547) (0.032) (0.316) (0.754) (0.038) (0.064) (0.039) (0.038)

BestMaxDescSim 0.89 0.44 0.07 0.57 0.18 -0.07 -0.62 -0.63 -0.72 -0.7
(0.024) (0.298) (0.835) (0.177) (0.645) (0.754) (0.109) (0.140) (0.053) (0.071)

BestSumNG 1.51 1.07 0.69 1.2 0.8 0.55 0.62 -0.01 -0.1 -0.08
(0.000) (0.000) (0.002) (0.000) (0.000) (0.038) (0.109) (0.947) (0.577) (0.579)

BestMaxNG 1.52 1.07 0.7 1.2 0.81 0.56 0.63 0.01 -0.09 -0.08
(0.000) (0.000) (0.005) (0.000) (0.000) (0.064) (0.140) (0.947) (0.620) (0.614)

BestSumMG 1.6 1.16 0.78 1.29 0.9 0.65 0.72 0.1 0.09 0.01
(0.000) (0.000) (0.001) (0.000) (0.000) (0.039) (0.053) (0.577) (0.620) (0.886)

BestMaxMG 1.59 1.15 0.77 1.28 0.88 0.63 0.7 0.08 0.08 -0.01
(0.000) (0.000) (0.000) (0.000) (0.000) (0.038) (0.071) (0.579) (0.614) (0.886)

The top entry in each cell corresponds to the average of the log
2

ratios of the uninterpolated precision of the row method to
the column method for the 18 problems. The number below this entry, in parenthesis, corresponds to the p-value obtained from
the student’s t-test for that entry.
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Fig. 1.: StdRet versus ClustWt.
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Table 2.: Performance for Ranked-Retrieval.
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StdRet 0.14 0.21 0.04 0.06 0.17 0.27 -0.25 -0.12 -0.18 -0.08
(0.019) (0.001) (0.332) (0.415) (0.009) (0.002) (0.015) (0.179) (0.151) (0.434)

TurboSumFusion -0.14 0.07 -0.1 -0.08 0.03 0.13 -0.39 -0.26 -0.32 -0.22
(0.019) (0.156) (0.001) (0.113) (0.502) (0.137) (0.001) (0.003) (0.016) (0.037)

TurboMaxFusion -0.21 -0.07 -0.17 -0.15 -0.04 0.06 -0.46 -0.33 -0.39 -0.29
(0.002) (0.156) (0.001) (0.101) (0.426) (0.419) (0.001) (0.002) (0.013) (0.028)

TopKAvg -0.04 0.1 0.17 0.02 0.13 0.23 -0.29 -0.16 -0.22 -0.12
(0.332) (0.001) (0.001) (0.725) (0.017) (0.016) (0.004) (0.054) (0.080) (0.226)

ClustWt -0.06 0.08 0.15 -0.02 0.11 0.21 -0.31 -0.18 -0.24 -0.14
(0.415) (0.113) (0.101) (0.725) (0.168) (0.071) (0.009) (0.027) (0.047) (0.158)

BestSumDescSim -0.17 -0.03 0.04 -0.13 -0.11 0.1 -0.42 -0.29 -0.35 -0.25
(0.009) (0.502) (0.426) (0.017) (0.168) (0.121) (0.001) (0.004) (0.021) (0.051)

BestMaxDescSim -0.27 -0.13 -0.06 -0.23 -0.21 -0.1 -0.52 -0.39 -0.45 -0.35
(0.002) (0.137) (0.419) (0.016) (0.071) (0.121) (0.001) (0.002) (0.008) (0.019)

BestSumNG 0.25 0.39 0.46 0.29 0.31 0.42 0.52 0.13 0.07 0.17
(0.015) (0.001) (0.001) (0.004) (0.009) (0.001) (0.001) (0.148) (0.519) (0.079)

BestMaxNG 0.12 0.26 0.33 0.16 0.18 0.29 0.39 -0.13 -0.06 0.04
(0.179) (0.003) (0.002) (0.054) (0.027) (0.004) (0.002) (0.148) (0.484) (0.591)

BestSumMG 0.18 0.32 0.39 0.22 0.24 0.35 0.45 -0.07 0.06 0.1
(0.151) (0.016) (0.013) (0.080) (0.047) (0.021) (0.008) (0.517) (0.484) (0.036)

BestMaxMG 0.08 0.22 0.29 0.12 0.14 0.25 0.35 -0.17 -0.04 -0.1
(0.434) (0.037) (0.028) (0.226) (0.158) (0.051) (0.019) (0.079) (0.591) (0.036)

The top entry in each cell corresponds to the average of the log
2

ratios of the uninterpolated precision of the row method to
the column method for the 18 problems. The number below this entry, in parenthesis, corresponds to the p-value obtained from
the student’s t-test for that entry.
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Fig. 2.: StdRet versus BestSumNG.
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