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Reconciliation is the process of resolving disagreement between gene and species trees, by invoking gene duplications and losses to
explain topological incongruence. The resulting inferred duplication histories are a valuable source of information for a broad range
of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees.
Reconciliation for binary trees is a tractable and well studied problem. However, a striking proportion of species trees are non-binary.
For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees,
current algorithms overestimate the number of duplications because they cannot distinguish between duplication and deep coalescence.
We present the first formal algorithm for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony
model. Using a space efficient mapping from gene to species tree, our algorithm infers the minimum number of duplications and losses
in O(|VG| · (kS +hS)) time, where VG is the number of nodes in the gene tree, hS is the height of the species tree and kS is the width
of its largest multifurcation. We also present a dynamic programming algorithm for a combined loss model, in which losses in sibling
species may be represented as a single loss in the common ancestor. Our algorithms have been implemented in NOTUNG, a robust,
production quality tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated,
high-throughput analysis of large data sets.
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1. INTRODUCTION

Reconciliation is the process of constructing a mapping
between a gene family tree and a species tree. Under a
model of duplication-loss parsimony, this mapping can
be used to infer duplications and losses in the history of
the gene family, as well as the species lineages in which
these events occurred.

Reconciliation is an essential method in molecular
phylogenetics that is widely used in evolutionary appli-
cations in medicine, development biology and plant sci-
ence. Reconciliation, following phylogeny reconstruc-
tion, is the most reliable approach for identifying or-
thologs for use in function prediction, gene annotation,
planning experiments in model organisms, and identify-
ing drug targets (e.g., Refs. 5, 40). Reconciliation is used
to correlate specific duplications with the emergence of
novel cellular functions or morphological features, pro-
viding clues to the functions of newly discovered genes
(e.g., Refs. 8, 47). Minimizing duplications and losses
provides a basis for rooting an unrooted tree7 and for se-
lecting alternate gene or species tree topologies.5, 7, 10, 26

Reconciliation is also the kernel of a related, but more

complex, problem: inferring a species tree from many
gene trees.21 High throughput reconciliation tools are re-
quired for automated construction of databases of molec-
ular phylogenies.9, 19, 33, 37

Reconciliation of binary trees is a well-studied prob-
lem and a number of software packages for this problem
are available.9, 10, 28, 29, 37, 49, 50 However, standard recon-
ciliation will not produce correct results when applied
to a non-binary species tree. Discordance between a bi-
nary gene tree and a binary species tree is always evi-
dence of gene duplication. In contrast, when the species
tree is non-binary, two different processes can cause dis-
cordance between gene and species trees: gene duplica-
tion and incomplete lineage sorting. Since these are dif-
ferent biological phenomena with different consequences
for the interpretation of phylogenetic studies, it is essen-
tial to distinguish between discordances that must be due
to duplication (required duplications) and discordances
that could be due to either duplication or incomplete lin-
eage sorting (conditional duplications). Standard binary
reconciliation cannot make this distinction.

As the tree of life project gains momentum, it is
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becoming evident that this is not a minor problem rel-
egated to a few obscure species lineages. Rather, sixty
four percent of branch points in the NCBI taxonomy,46

one of the most widely used databases of species phy-
logenies, have more than two children. In addition, a
number of well documented analyses of simultaneous di-
vergences have been reported.15, 18, 24, 34, 39 Reconciliation
methods for non-binary trees are urgently needed. To
our knowledge, no formal algorithms for reconciliation
of non-binary species trees have been published.

Our contributions: To address this need, we present
novel algorithms to find the minimum number of dupli-
cations and losses when reconciling a binary gene tree,
TG = (VG, EG), with a non-binary species tree, TS =

(VS , ES). We construct a mapping from nodes in TG

to sets of nodes in TS that allows us to test efficiently
whether a discordance at a given node is a conditional
or required duplication. Our mapping is space efficient;
the maximum size of the set labeling any node in TG is
O(kS), where kS is the maximum outdegree in TS .

Using this mapping, we present an efficient algo-
rithm for reconciling a binary gene tree with a non-binary
species tree under duplication-loss parsimony. Our algo-
rithm infers all conditional and required duplications in
O(|VG| · (kS + hS)) time, where hS is the height of TS.

We also present algorithms to infer the minimum
number of gene losses. We estimate the time at which
each loss occurred by assigning it to an edge in TG. For
binary species trees, this assignment is unambiguously
determined by the reconciliation and is easily calculated.
However, the lack of resolution in a non-binary tree leads
to uncertainty about exactly when a loss occurred. Par-
simony provides a principled basis for reducing this un-
certainty: we assign losses in such a way that the total
number of losses is minimized.

We propose two minimization criteria and provide
algorithms to infer losses for each one. The first criterion
is based on the assumption that all losses were indepen-
dent events (explicit losses). We infer the minimum set of
explicit losses, again in O(|VG|·(kS+hS)) time. The sec-
ond criterion is motivated by the observation that, under
certain circumstances, losses in sibling species can be ex-
plained by a single loss in their common ancestor. Under
this assumption, we can reduce the number of losses by
combining losses that share a parent, whenever possible.
We present a dynamic program that minimizes the num-

ber of combined losses, by considering all combinations
of possible edge assignments for each loss to maximize
the opportunities to combine losses. The worst case time
complexity of this algorithm is exponential, but its per-
formance is good on real trees from typical data sets, as
we demonstrate empirically.

Our algorithms have been implemented in NOTUNG,
a software package that takes trees in the widely used
Newick format as input, permitting interoperability with
a wide range of phylogeny reconstruction packages.
The resulting reconciliation can be viewed and manip-
ulated using an interactive graphical user interface. A
batch processing interface for automated analysis of
large phylogenetic data sets is also available. Our
software is implemented in Java and runs on Win-
dows, Unix and Mac OS X. It is freely available at
http://www.cs.cmu.edu/˜durand/Notung.

Roadmap: In the next section, we introduce notation,
review the standard algorithm for reconciliation of binary
trees, and summarize previous work on binary reconcil-
iation. In Section 3, we review the relevant models of
non-binary gene and species trees in the molecular evolu-
tion literature and give formal definitions for required and
conditional duplications based on this foundation. Next
we present our non-binary reconciliation algorithms. Du-
plications are discussed in Section 4. In Section 5, we
present algorithms for inferring the minimum number of
explicit and combined losses and compare our work to re-
lated work by other authors. In Section 6, we demonstrate
the utility of our methods with analyses of real data sets
using our software. In the conclusion, we discuss prob-
abilistic approaches to reconciliation and describe direc-
tions for future work.

2. NOTATION AND BINARY
RECONCILIATION

In this section, we introduce notation and review the stan-
dard reconciliation algorithm for binary trees.

Let Ti = (Vi, Ei) be a rooted tree, where Vi is the set
of nodes in Ti, and Ei is the set of edges. L(Ti) is the leaf
set of Ti and L(v) refers to the leaf set of a subtree rooted
at v ∈ Vi. C(v) and p(v) refer to the children and parent
of v, respectively. If v is binary, r(v) and l(v) denote the
right and left children of v. A non-binary node in a tree is
referred to as an unresolved node or polytomy. A group of
taxa is monophyletic if it corresponds to an ancestor and
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all of its descendants. The root node of Ti is root(Ti). If
u ∈ Vi lies on the path from v to root(Ti), we say that
u ≥i v. We follow the computer science convention, in
which the root is at the top of the tree, the leaves are at the
bottom, and p(g) is above g. In tree figures, g s denotes
a gene that is sampled from species s.

The objective of reconciliation is to identify gene du-
plications and losses by fitting a gene tree to a species
tree.12, 30, 36 Let TG be a binary gene tree and TS be a
binary species tree such that the genes in L(TG) were
sampled from the species in L(TS). A mapping M(·)

is constructed from each node g ∈ VG to a target node
s ∈ VS . If g ∈ L(TG), M(g) is the species from
which g was sampled. Otherwise, M(g) is the least com-
mon ancestor (LCA) of the target nodes of its children,
i.e. M(g) = LCA(M(l(g)), M(r(g))). Using this map-
ping, g ∈ TG is a duplication if the children of g map
to the same lineage as g; i.e. if M(g) = M(l(g)) and/or
M(g) = M(r(g)). Otherwise, g is a speciation. A du-
plication at g indicates that a duplication occurred within
the lineage leading to the ancestral species, M(g), and
that two copies of the gene must have been present in
M(g). In Fig. 1, for example, although the gene tree
contains one gene sampled from each species, the topo-
logical disagreement between gene and species trees im-
plies a duplication. Both nodes 1 and 2 in the gene tree
map to α. Since M(1) = M(2), a duplication at node
1 is inferred. Losses can also be reconstructed from the
mapping, M(·), as described in Ref. 10. We refer to this
algorithm as LCA reconciliation in order to distinguish it
from the new reconciliation algorithms proposed for non-
binary species trees in the next section.

α

β

A B C

(a)

M(1)=α

M(2)=α

1

2

g1 A g2 B g2 C

(b)

Fig. 1. Least Common Ancestor reconciliation. (a) Binary species
tree. (b) Binary gene tree, reconciled with species tree (a). The black
square indicates a duplication.

Variants of LCA reconciliation have been proposed
by numerous authors, and several software packages for
analyzing gene duplication histories have been devel-

oped.9, 10, 28, 29, 37, 49, 50 A related problem, inferring the
optimal species tree from multiple conflicting gene trees,
has been studied extensively13, 14, 21, 25, 27, 42, 48 for various
optimization criteria11 and has been shown to be NP-
hard.21

3. MODELS FOR NON-BINARY SPECIES
TREES

Least Common Ancestor reconciliation is based on the
assumption that disagreement between a gene tree and
a species tree indicates that one or more gene duplica-
tions must have occurred. In this section, we show that
when the species tree is non-binary, this assumption is no
longer warranted.

A polytomy may represent the simultaneous diver-
gence of all descendants (a hard polytomy22). It may also
indicate that the true binary branching process cannot be
reconstructed (a soft polytomy22); this often occurs when
a sequence of binary divisions proceeds in close succes-
sion and the time between these events is insufficient to
accumulate informative variation.

Since the true branching pattern in a gene tree is al-
ways binary,16 a polytomy in TG can only represent un-
certainty. In contrast, since a species tree represents the
evolution of a population of organisms, a polytomy in
the species tree may represent either simultaneous diver-
gence or uncertainty. Simultaneous divergences of three
or more lineages may result from the isolation of subpop-
ulations within a widespread species by sudden meteo-
rological or geological events, or from rapid expansion
of the population into open territory, resulting in repro-
ductive isolation. Examples of simultaneous divergences
in nature include Anolis lizards,18 modern birds in the
order Neoaves,34 macaque monkeys,15, 24 auklets,45 and
African cichlid fishes.39

A B CA B C A B C

Fig. 2. Gene trees evolving within the same species polytomy can
have different binary topologies.

Because the species tree represents a population with
genetic diversity, gene trees with different binary branch-
ing processes can be consistent with a species poly-
tomy.20, 23 If k or more alleles are present in the popula-
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tion when k lineages separate, a different allele may fix in
each lineage. The resulting gene tree will be binary and
will reflect the order in which new alleles arose in the
ancestral population. This process is called incomplete
lineage sorting. When the time of separation of lineages
in TG predates the time of speciation, the divergence is
called a deep coalescence. As shown in Fig. 2, all possi-
ble binary gene trees with k leaves can occur in a k-tomy
in the species tree. Deep coalescence can also occur when
two or more binary speciation events occur in rapid suc-
cession. If the time between subsequent speciations is
shorter than the fixation time, more than one allele will
still be present at the time of the second speciation (see,
for example, Ref. 35). The probability of this occurring
increases with shorter branch lengths and larger effective
population sizes.16, 23, 31, 43, 44

When there is simultaneous or rapid divergence in
the species tree, the challenge is to determine whether
disagreement between a gene and specie tree indicates a
deep coalescence or a duplication. Some incongruences
can only be explained by a duplication. Obviously, a du-
plication must have occurred in any gene family that has
two or more members in the same species. Even when
no contemporary species contains more than one family
member, there are cases where topological disagreement
can only be explained by a duplication. For example, the
incongruence between the species tree in Fig. 3(a) and the
gene tree in Fig. 3(b) can only be explained by a duplica-
tion at node 2. This can be seen in Fig. 3(c), which shows
the gene tree embedded in the species tree. Two copies of
the gene are present in the ancestral species β, indicating
that a duplication must have occurred. We refer to cases
where a duplication must have occurred as required du-
plications. In other cases, it is not possible to determine
whether the disagreement is due to a deep coalescence or
duplication.41 For example, node 1 in Fig. 3(c) is asso-
ciated with a deep coalescence rather than a duplication;
however, it is possible that this node could also have been
a duplication. These instances will be referred to as con-
ditional duplications.

Next, we formally characterize the properties of gene
and species trees that determine when a duplication is
required. For each polytomy s ∈ VS , let H(s) be the
set of all possible binary subtrees whose leaves are the
children of s. Formally, given the k-tomy s ∈ VS ,
let H(s) = {Ti|L(Ti) = C(s)}. For example if
node s is the trichotomy α in Fig. 3(a), then H(s) =

{(A, (B, β)), (B, (A, β)), (β, (A, B))}. Let H∗(TS) be
the set of all possible binary trees obtained by replacing
each polytomy si ∈ VS with each tree Tij ∈ H(si). Note
that, for every T ′ ∈ H∗(TS), every node s ∈ TS corre-
sponds to a node in T ′; however, T ′ will also contain
nodes that do not correspond to any node in TS . The car-
dinality of H∗(TS) is

∏
∀si∈TS

|H(si)|, which is equiva-

lent to
∏

i ni, where ni = (2ki−3)!

2ki−2(ki−2)!
and ki = |C(si)|.

If TS is binary, then H∗(s) = {TS}.
We now use H∗(TS) to characterize formally the

properties of the gene and species tree that determine
when a duplication is required. When reconciling TG

with every T ′ ∈ H∗(s), if g ∈ VG is a duplication in ev-
ery reconciliation, then a duplication must have occurred.
If at least one, but not all reconciliations indicate a dupli-
cation at g, then a deep coalescence may have occurred.
Formally:

Definition 3.1. ∀T ′ ∈ H∗(TS), reconcile TG with T ′.
Given g ∈ VG \ root(TG)

p(g) is a required duplication if ∀T ′ ∈ H∗(TS), M(g) =

M(p(g)).
p(g) is a conditional duplication if ∃T ′ ∈ H∗(TS) s.t.

M(g) = M(p(g)) and p(g) is not a required dupli-
cation.

In the example in Fig. 3, H∗(TS) =

{(A, (B, (C, D))), (B, (A, (C, D))), ((A, B), (C, D))}.
From Definition 3.1, node 2 is a required duplication,
since for every T ′ ∈ H∗(TS), M(2) = M(3). Node 1

is a conditional duplication since there is a binary resolu-
tion in H∗(TS) — (A, (B, (C, D))) — that does not lead
to disagreement at 1.

4. IDENTIFYING DUPLICATIONS

The goal of reconciliation with non-binary species trees
is to determine whether a given node is a required dupli-
cation, a conditional duplication, or a speciation. Defini-
tion 3.1 provides a formal basis for such a test, but can-
not be the basis of an efficient algorithm, since H∗(TS)

grows superexponentially with the size and number of
polytomies in TS .

While LCA reconciliation is able to identify all con-
ditional and required duplications, it cannot distinguish
between the two. For example, in the gene tree in
Fig. 3(b), nodes 1, 2, and 3 are all mapped to α, indicat-
ing a duplication at nodes 1 and 2 under Least Common
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α

β

A B C D

(a)

g1_A g3_Cg3_B

3

1

g2_D

2

M(1)=α

M(2)=α

N̂ (2)={B, β}

M(3)=α

N̂ (3)={B, β}

N̂ (g1 A)={A} N̂ (g3 B)={B} N̂ (g3 C)={β} N̂ (g2 D)={β}

(b)

3

2

1

g1_A g3_Cg3_B g2_D

α

β

A B C D

(c)

Fig. 3. (a) A species tree with a polytomy at α. (b) A gene tree reconciled with species tree (a). (c) The gene tree (b) embedded in species tree (a).
Black squares indicate duplications. Losses are not represented in these trees.

Ancestor reconciliation. While this inference is correct
for node 2, it incorrectly infers a duplication at 1. Why
is Least Common Ancestor reconciliation unable to dis-
tinguish between required and conditional duplications?
M(g) = s implies that the ancestral gene g was present
in the ancestral population, s. If TS is binary, then the de-
scendants of g were also present in all descendantsa of s.
This, in turn, implies that when M(p(g)) = M(g), both
g and its parent were present in the same species, s, indi-
cating that a duplication occurred at p(g). This reasoning
is the basis of Least Common Ancestor reconciliation.

However, when TS is non-binary, it is not necessarily
true that the descendants of g were present in all descen-
dants of M(g). For example, in Fig. 3, M(2) = α, but
no descendant of 2 is present in species A, which is a
descendant of α. This is due to the deep coalescence at
node 1 in TG. As this example shows, M(·) does not con-
tain the information required to infer the set of nodes in
TS in which the descendants of g must have been present.
In order to distinguish between conditional and required
duplications, we need a new mapping from TG to TS that
allows us to determine when more than one descendant
of g was present in some descendant of M(g).

We propose a mapping in which nodes in TG are
mapped to sets of nodes in TS . A naı̈ve solution would be
to decorate each node in TG with all of the nodes in TS

in which the descendants of g were present; i.e., with all
nodes in the subtree rooted at M(g). However, this cre-
ates a problem of efficiency: The size of the sets labeling
the nodes in the gene tree grows with the height of the
tree and can contain as many as O(|VS |) elements. For-
tunately, it is sufficient to store the roots of the subtrees
in which descendants of g must have been present. The

mapping presented in Definition 4.1 is sufficiently infor-
mative to identify required and conditional duplications.
Moreover, the size of this mapping at any given node is
bounded by the size of the largest polytomy in TS .

Definition 4.1. Define N̂ : VG \ root(TG) → V +
S to

be N̂(g) = {M(g)} if M(p(g)) ∈ L(TS). Otherwise,
N̂(g) =

{h|h ∈ C(M(p(g))) ∧ ∃ v ∈ L(g) � h ≥S M(v)}

For a given gene, g, in species s = M(g), N̂(g) is the set
of species that are children of the parent of s in which de-
scendants of g must be present. For example, in Fig. 3(b),
N̂(3) = {B, β} because M(p(3)) = M(2) = α, and
descendants of 3 were present in B and β, which are in
C(α). Note that N̂ is defined on every node in TG ex-
cept the root. N̂ provides an efficient and accurate test
for required duplications:

Theorem 4.1. A node g is a required duplication iff
N̂(r(g)) ∩ N̂(l(g)) 	= ∅.

Proof.
→ If N̂(l(g)) and N̂(r(g)) intersect, then they share at
least one element, x. Thus, for all T ′ ∈ H∗(TS), both
M(l(g)) and M(r(g)) must be x or ancestors of x, and
thus both lie on the path from x to M(g). This requires
that either M(l(g)) = M(r(g)) or one is a descendant of
the other, and g meets the duplication criterion for binary
gene and species trees.
←We need to show that whenever N̂(r(g))∩ N̂ (l(g)) =

∅, there is always at least one element of H∗(TS) that
does not imply a duplication at g. Any T ′ ∈ H∗(TS) that
has all members of N̂(l(g)) in the left subtree of M(g)

aunless g was lost. However, in that case we would need to infer a loss in a descendant of s.
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and all members of N̂(r(g)) in the right subtree of M(g)

will meet this criterion.

Corollary 4.1. Node g ∈ VG is a conditional duplication
if g is not a required duplication and if M(g) = M(l(g))

and/or M(g) = M(r(g)).

Using Definition 4.1 we can correctly classify nodes
in Fig. 3(b). Since N̂(3) = {B, β} and N̂(g2 D) = {β},
their intersection is {β}, indicating the presence of two
genes in ancestral taxa β. Therefore, a duplication is
inferred at node 2. However, N̂(g1 A) = {A} and
N̂(2) = {B, β}. N̂(1) ∩ N̂(2) = ∅, correctly imply-
ing that no duplication is required at gene node 1.

N̂(g) is calculated easily with a postorder traversal
of TG and is a function of the union of N̂(l(g)) and
N̂(r(g)). An additional climbing step must be taken to
ensure that the set N̂(g) is composed only of children of
M(p(g)). The climb procedure, given in Alg. 5.1, also
prevents |N̂(·)| from growing larger than kS . Alg. 5.1
infers a required duplication at g if the intersection of
the sets N̂(l(g)) and N̂(r(g)) is non-empty. Conditional
duplications are inferred using Least Common Ancestor
reconciliation. N̂(·) can also be used to infer duplications
when the species tree is binary, and produces the same
results as Least Common Ancestor reconciliation. Pseu-
docode for this algorithm, which also calculates explicit
losses, is given in Alg. 5.1 in the next section.

Theorem 4.2. Equivalence with LCA Reconciliation
for Binary Species Trees. Let TG be a binary gene
tree reconciled with a binary species tree. N̂(r(g)) ∩

N̂(l(g)) 	= ∅ iff M(r(g)) = M(g) and/or M(l(g)) =

M(g)

Proof.
→ This follows directly from Theorem 4.1.
← Suppose that there exists h ∈ C(g), such that M(h) =

M(g), but N̂(r(g)) ∩ N̂(l(g)) = ∅. There are two cases:
either N̂(l(g)) and N̂(r(g)) are both equal to {M(g)} or
N̂(l(g)) and N̂(r(g)) both contain children of M(g). In
the former case, N̂(l(g)) and N̂(r(g)) are not disjoint,
leading to a contradiction. In the latter case, N̂(l(g)) and
N̂(r(g)) both contain children of M(g). Since M(g)

has only two children and the sets are disjoint, one set
must contain the right child of M(g) and the other the
left child. Then, M(r(g)) and M(l(g)) are not in the
same lineage and there is no child h ∈ C(g), such that
M(h) = M(g), leading to a contradiction.

5. IDENTIFYING LOSS NODES

In this section, we discuss how to infer gene losses when
reconciling with non-binary species trees. For a given
gene tree, TG, and species tree, TS , we report the to-
tal number of losses in TG and the timing of individual
losses. We designate the time period when a loss occurred
by assigning it to an edge in TG.

When binary gene trees are reconciled with binary
species trees under a parsimony model, the placement of
each loss is unambiguous, and can be determined effi-
ciently from M(·).7 For example, in the gene tree in
Fig. 4(b), three losses have occurred in the contempo-
rary species A, C and D. Note that the two losses in
C and D can be explained by the loss of a single ances-
tral gene in the ancestral species γ. In general, given a
set of monophyletic losses in a reconciled gene tree, it is
more parsimonious to infer a single loss at the root of the
corresponding clade in TS .

A

B

C D

α
β

γ

(a)

lost_g1_B

g1_C g1_D

g2_A

g2_B

lost_A

γ

(b)

Fig. 4. Losses in Least Common Ancestor reconciliation. (a) A binary
species tree. (b) A binary gene tree reconciled with species tree (a).

In contrast to the binary case, when the species
tree is non-binary, it is not always possible to deter-
mine exactly where a loss occurred. In Fig. 5(b), a
descendant of node 2 is present in A and D but ab-
sent from B and C. This suggests losses in the lin-
eages leading to the contemporary B and C species.
However, for each loss it is not possible to determine
whether the lost gene diverged before or after the diver-
gence at node 2 and, if the latter, whether it was more
closely related to g2 A or g2 D. For example, for the
gene lost in B, this leads to three possible loss scenar-
ios: (g2 A, (lost B, g2 D)), ((g2 A, lost B), g2 D), or
(lost B, (g2 A, g2 D)). Note that each placement of
lost B in this tree implies a different element of H(α).
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α

A B C D

(a)

g2_D g3_A g5_Dg5_Cg4_Bg2_A

1

2

3
4

5

(b)

Fig. 5. (a) A non-binary species tree. (b) A gene tree reconciled with
species tree (a). Losses are not shown.

For non-binary reconciliation, we combine any set of
losses that potentially form a monophyletic subtree; i.e.,
if a set of losses located on the same edge in TG corre-
sponds to a monophyletic subtree of some T ′ ∈ H∗(TS),
they can be replaced with the single loss of an ancestral
gene. A simple test is that if several lost genes (or roots
of lost subtrees) on the same edge all map to siblings of
the same polytomy, they can be combined.

Consider the losses in B and C in Fig. 5. If lost B

and lost C are placed on the same edge, we can infer a
single loss in their putative common ancestor. For ex-
ample, if both are placed on the edge between 1 and
2, then they correspond to the monophyletic subtree
((A, D), (B, C)) ∈ H∗(TS). Thus, the losses in B and
C can be combined, yielding a single loss for this recon-
ciliation. If the losses are placed on different edges, they
cannot be combined; two losses will be inferred.

In the parsimony context, our goal is to assign loss
nodes to edges in TG so as to minimize the total number
of inferred losses. Since only losses on the same edge can
be combined, the choice of placement influences the to-
tal number of losses. With this in mind, we propose two
minimization strategies. The first strategy assigns losses
to edges so as to minimize the total number of uncom-
bined (or explicit) losses, and then combines losses wher-
ever possible. The second strategy considers all possible
assignments of losses to edges in TG and selects the as-
signment that minimizes the number of combined losses.
Although each minimization strategy restricts the number
of possible placements, it is still possible to have more
than one optimal placement of losses. We present algo-
rithms for both minimization strategies, described below.

5.1. Minimizing Explicit Losses

Minimization of explicit losses is straightforward be-
cause each loss can be assigned to an edge in TG inde-
pendently. In addition to N̂(·), we introduce a second

mapping N(·) that allows us to infer losses by taking the
difference between N(·) and N̂(·).

Definition 5.1. Define N : VG → V +
S to be

N(g) = {M(g)} if M(g) ∈ L(TS). Otherwise, N(g) =

{h|(h ∈ C(M(g)) ∧ ∃ v ∈ L(g) � h ≥S M(v))}

N(g) is the set of children of M(g) such that the descen-
dants of g were present in the descendants of each ele-
ment in N(g). Just as N̂(g) is a subset of the children
of M(p(g)), N(g) is a subset of the children of M(g).
Unlike N̂(g), N(g) is defined for root(TG).

For a given edge e = (g, p(g)), we use N(p(g))

and N̂(g) to infer explicit losses on e. As described in
Alg. 5.1, we make a single postorder traversal of TG, in
which we calculate N(·) and N̂(·), and infer the explicit
losses associated with each edge by applying the follow-
ing four tests. Each test corresponds to one of the four
situations that can incur a loss on e.

(1) Binary Duplication Losses: A duplication node and
its children should be mapped to the same node in
the species tree; otherwise, a loss has occurred. For-
mally, if p(g) is a required duplication and M(p(g))

is binary, then if M(p(g)) 	= M(g), the species in
N(p(g))\N̂(g) are lost at e (lines 18-21 in Alg. 5.1).

(2) Skipped Species Losses: If a node and its parent
do not correspond to child and parent nodes in the
species tree, the intervening species must have been
lost. If M(g) 	= M(p(g)) and p(M(g)) 	= M(p(g)),
we climb in TS from M(g) to M(p(g)) and infer a
loss at every skipped species (lines 29-31 in Alg. 5.1).

(3) Polytomy Duplication Losses: This is analogous to
test (1). If M(p(g)) is a polytomy and p(g) is a
required duplication, then the species in N(p(g)) \

N̂(g) are lost at e (lines 18-21 in Alg. 5.1).
(4) Polytomy Speciation Losses: If a node g maps to

a polytomy and maps to a different species than its
parent, then all children of M(g) should contain a
descendant of g. Otherwise, a loss has occurred. For-
mally, if M(p(g)) 	= M(g) and M(g) is a polytomy,
the species in C(M(g)) \ N(g) are lost at e (lines
22-24 in Alg. 5.1).

We demonstrate these four tests on the right subtree of
Fig. 6(c), which has been labeled with the minimum num-
ber of explicit losses. (We do not discuss losses in the left
subtree.) The following losses occur in this subtree: On
the edge between nodes 1 and 3, a Binary Duplication
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Loss in N(1) \ N̂(3) = A and a Polytomy Speciation
Loss in C(β) \N(3) = B. On the edge between 3 and 4,
a Polytomy Duplication Loss in N(3) \ N̂(4) = D. On
the edge between nodes 4 and g4 E, a Skipped Species
Loss in F . On the edge between nodes 3 and 5, a Poly-
tomy Duplication Loss in C. Finally, on the edge between
5 and g5 F , a Skipped Species Loss in E.

The rules described above minimize explicit losses
by assigning each loss as close to root(TG) as possible.
Any other placement might move the loss below a du-
plication, which would require two losses, one in each
subtree of the duplication node. Once explicit losses
are identified, those losses which form a clade in some
T ′ ∈ H∗(TS) and are placed on the same edge in TG can
be combined.

Algorithm 5.1.

reconcile( g )
1 if ( g.isLeaf() )
2 M(g) = species of g

3 N(g) = {M(g)}
4 return
5 // INTERNAL NODE CASE
6 // descend first
7 reconcile(l(g)); reconcile(r(g))
8 M(g) = LCA(M(l(g)), M(r(g)))
9 calculateRequiredDuplication( g )
10 if ( g �= Required Duplication )
11 if ( M(g) == M(l(g)) ||M(g) == M(r(g)) )
12 g is Conditional Duplication

calculateRequiredDuplication( g )
13 N̂(l(g)) = climb(l(g), g)

14 N̂(r(g)) = climb(r(g), g)

15 N(g) = N̂(l(g)) ∪ N̂(r(g))

16 if ( N̂(l(g)) ∩ N̂(r(g)) �= ∅ )
17 g is Required Duplication
18 // duplication losses for left child
19 Losses(l(g)) += N(g) \ N̂(l(g))
20 // duplication losses for right child
21 Losses(r(g)) += N(g) \ N̂(r(g))

climb( c, g )
22 // polytomy speciation losses
23 if ( M(c) �∈ L(TS) && M(c) �= M(g) )
24 Losses(c) += C(M(c)) \ N(c)
25 SpeciesNode x ∈ N(c)
26 if ( x == M(g) || p(x) == M(g) )
27 return n

28 while ( p(x) �= M(g) )
29 // skipped losses
30 if ( p(x) �= M(c) )
31 Losses(c) += Siblings(x)
32 // climb
33 x = p(x)
34 return {x}

Theorem 5.1. Alg. 5.1 computes required and condi-
tional duplications in O(|VG| · (kS + hS)), where kS is
the outdegree of the largest polytomy in TS , and hS is the
height of TS .
Proof. At every internal node g ∈ VG, N(g) is initialized
with N̂(l(g)) ∪ N̂(r(g)). |N̂(·)| is bounded by kS . Us-
ing a suitable data structure, this step can be achieved in
O(log(kS)) time per node. The climb routine is applied
to every node in TG. For any given path from l ∈ L(TG)

to r = root(TG), we will climb in total from M(l) to
M(r). Thus the total cost of calls to climb is O(|VG|·hS).

Using fast Least Common Ancestor queries, M(·)

can be calculated in O(|VG|) time for the entire tree.3

Once M(·) has been calculated, testing for conditional
duplications takes constant time per node. Testing for
required duplication requires calculation of the intersec-
tion of N̂ (l(g)) and N̂ (r(g)). This operation takes O(kS)

per node. Combining these, the total running time is
O(|VG| · (kS + hS)).

5.2. Minimizing Combined Losses

In the previous section, we presented a low time complex-
ity algorithm to infer an optimal assignment of explicit
losses. Although there may be more than one minimum
cost assignment, Alg. 5.1 only finds one since it obtains
a minimum cost assignment by placing losses as close to
root(TG) as possible.

Next we present an algorithm that considers all pos-
sible loss assignments to obtain the minimum number of
combined losses, which is always less than or equal to the
minimum number of explicit losses. Unlike Alg. 5.1, this
algorithm can find all possible optimal assignments, but
with increased computational complexity: the worst case
running time is exponential in kS . However, the imple-
mentation is fast in practise because kS is typically small
and pathological cases rarely occur. Further speedups can
be obtained by memoization.

The basic approach to minimizing combined losses
is illustrated using Fig. 6(c). Only losses associated with
polytomies, that is losses inferred by rules 3 and 4 from
Section 5.1, can be associated with more than one edge
in the tree. Consider the polytomy losses lost B, lost C

and lost D in the right subtree. Because B, C and D

are siblings in Fig. 6(a), they can be combined if they
can be placed on the same edge in the gene tree. Note
that lost B can be moved below node 3, resulting in two
copies of lost B, one in each subtree of 3. One copy
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g4 C g4 E g5 D g5 F

(d)

Fig. 6. (a) A species tree with a polytomy, β. (b) A hypothetical gene tree that has been reconciled with the species tree in (a). This gene tree is
annotated with the mappings M(·), N̂(·) and N(·). Losses are not represented in this tree. (c) The gene tree (b) annotated with one possible optimal
placement of explicit losses. Losses in the left subtree are not displayed. (d) The gene tree (b) annotated with one possible optimal placement of
combined polytomy losses. Losses in the left subtree are not displayed.

of lost B can be combined with lost C, while the other
can be combined with lost D. This new placement of
losses reduces the number of inferred losses from six to
five, as shown in Fig. 6(d). These combined losses are
represented by lost D, B and lost C, B.

Each polytomy loss is associated with a particular
Polytomy Connected Component (PCC) in the gene tree,
defined as follows: A node v ∈ VG is the top node
of a distinct PCC if M(v) is a polytomy and (v =

root(TG) ∨ M(v) 	= M(p(v))). Let X be the set of
nodes that contains v and all g ∈ VG such that g <G v

and M(p(g)) = M(v). Then Y = {(x, (p(x))|x ∈

X \ root(TG)} is the PCC with top node v. Note that
Y is a contiguous set of edges in TG. If a loss is inferred
at some edge e ∈ Y , it can be placed on e or on any edge
below e in Y . For example, the gene tree in Fig. 6(b), has
one PCC. Its top node is node 3, and it contains the nodes
{3, 4, 5, g4 C, g4 E, g5 D, g5 F}.

Alg. 5.2 uses a dynamic program to find the optimal
placement for all polytomy losses in a PCC such that they
can be combined to minimize the number of losses in the
gene tree. To obtain the minimum number of combined
losses, we first use a modification of Alg. 5.1 to calculate
N̂(·) and N(·), and to infer binary losses with rules 1 and
2 (but not 3 and 4) from Section 5.1. Combined losses are
then inferred by calling Alg. 5.2 on the top node of each
PCC in the reconciled gene tree.

In Alg. 5.2, a postorder traversal of a PCC is used to
calculate minimum cost for any combination of species
which could be lost at or below a given node. This cost
is stored in a global variable Γ. The loss assignment as-
sociated with each cost entry in Γ is stored in Υ. For a
node at the bottom of a PCC, the cost is 1 if one or more

species must be lost, and 0 if no species are lost. The
cost at an internal node g is the sum of the costs for its
children, plus the potential cost of a loss at g.

After calculating Γ and Υ, an optimal loss assign-
ment is selected using a preorder traversal of the PCC.
Alg. 5.2 calculates a single optimal loss assignment for
one PCC. The general algorithm returns all optimal as-
signments. The worst case running time is O(|VG|23kS ).
The exponential term is due to the enumeration of the
power set of C(µ)\Ñ (g) in ProcessComponent followed
by the nested enumeration of two additional power sets in
CalculateCost. The running time on real data sets is rea-
sonable because these sets are typically small and enu-
merating the smallest elements of the power set first al-
lows reuse of intermediate results.

Algorithm 5.2.

CombinedLosses( g )
1 Global component root = g

2 // compute costs
3 ProcessComponent( g, M(g) )
4 // add losses using costs
5 AddCombinedLosses( g, C(M(g)) \ N(g) )

Ñ(g)
7 if ( g = component root ) return N(g)

8 else return N̂(g)

ProcessComponent( g, µ )
10 if ( g = component root || M(g) = M(p(g)) )
11 ProcessComponent( l(g), µ )
12 ProcessComponent( r(g), µ )
13 else
14 component leaf = true

15 foreach f ∈ Pow(C(µ) \ Ñ(g))
16 if ( component leaf && f = ∅ )
17 Γ(g, f) = 0
18 else if ( component leaf )
19 Γ(g, f) = 1
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20 else
21 Γ(g, f) = CalculateCost(g, f)

CalculateCost( g, fin )
23 k∗ = ∞
24 if ( g is a Required Duplication )
25 foreach x ∈ Pow(fin)

26 k =
P

c∈C(g)( Γ( c, (x ∪ Ñ(g)) \ Ñ(c) ) )

+ (1|fin �≡ x))
27 if ( k < k∗ )
28 k∗ = k; f∗ = x

29 Υl(g, fin) = (f∗ ∪ Ñ(g)) \ Ñ(l(g))

30 Υr(g, fin) = (f∗ ∪ Ñ(g)) \ Ñ(r(g))
31 else
32 foreach x ∈ Pow(fin)
33 foreach fleft ∈ Pow(x)
34 k = Γ( l(g), fleft )

+ Γ( r(g), x \ fleft )
+ (1|fin �≡ x))

35 if ( k < k∗ )
36 k∗ = k; f∗ = x; fleft

∗ = fleft

37 Υl(g, fin) = fleft
∗

38 Υr(g, fin) = (f∗ \ fleft
∗)

39 return k∗

AddCombinedLosses( g, fin )
41 // lose genes at the edge above g

42 if ( g = component root ||M(g) = M(p(g)) )
43 Losses(g) += fin \ (Υl(g, fin) ∪ Υr(g, fin))
44 AddCombinedLosses( l(g), Υl(g, fin) )
45 AddCombinedLosses( r(g), Υr(g, fin) )
46 else
47 Losses(g) += fin \ N̂(g)

5.3. Related work

To our knowledge, the results above are the first for-
mal algorithms for reconciliation with non-binary species
trees. Our approach is similar in flavor to a recent algo-
rithm to root and correct an unrooted gene tree, given a
rooted species tree,4 in that both algorithms use set-based
mappings. We propose two such mappings, N and N̂ , of
size bounded above by kS . The M -mapping in Ref. 4 is
equivalent to N . There is no equivalent to N̂ . Instead,
they use a set Z that is O(VS) and resembles the naı̈ve
solution proposed and rejected in Section 4. Although
the mappings in both papers are similar, the goals and the
algorithmic results differ.

6. EMPIRICAL RESULTS

We have implemented the algorithms described above in
a new version of our software tool, NOTUNG, and tested
it on several data sets.

First, we confirmed that our non-binary algorithms

perform identically to Least Common Ancestor recon-
ciliation when applied to binary trees. We tested the
new algorithms in NOTUNG on a benchmark of 15 well-
studied, binary trees5, 17, 32, 38 and verified that the results
were the same as those generated by the binary version of
NOTUNG, as well as those of the original authors.

Second, we considered performance. The worst case
running time of Alg. 5.2 is exponential in kS . The perfor-
mance of our preliminary implementation is reasonable
for species trees with kS ≤ 12. We tested NOTUNG on
full trees in TreeFam 3.019 with a species tree obtained
from the NCBI taxonomy.46 The time required to recon-
cile the 1173 gene trees that correspond to species trees
with kS ≤ 12 was 2’07” for the explicit loss model and
5’21” for the combined loss model on a 3.2ghz Opti-
Plex GX620 computer. One tree from this data set cor-
responded to a species tree with a polytomy of size 15
and was not included.

Finally, we reconciled binary gene trees with three
species trees that contain well-studied polytomies.18, 34, 45

All three studies applied statistical tests to verify that the
species tree of interest contained a true polytomy. We
constructed gene trees for sequence families drawn from
each species data set and reconciled them with the non-
binary species trees, which were transcribed directly from
the source articles. Table 1 shows the number of leaves
(l) in each tree, the size of the maximum polytomy (kS)
in each species tree, the number of duplications obtained
by binary reconciliation (B), the number of required du-
plications predicted by our algorithm (R), and the number
of combined losses. The globin tree has three equally par-
simonious loss assignments. All others have one. As pre-
dicted, binary reconciliation substantially overestimates
required duplications.

Table 1. Empirical Results

Gene family Tree Dupl.s Losses
l kS B R

Neoaves34 12 10 - - -
cytochrome B 9 - 4 0 0
globin 17 - 7 4 7

Auklets45 5 4 - - -
cox1 5 - 1 0 0
cytochrome B 5 - 2 0 0
NADH-6 5 - 2 0 0

Anolis18 50 6 - - -
NADH-2 50 - 13 7 17
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7. DISCUSSION

In this work, we have presented novel algorithms for
the reconciliation of binary gene trees with non-binary
species trees founded on current theories of deep coales-
cence and incomplete lineage sorting.16, 23, 31, 43, 44 Our al-
gorithms are both space and time efficient. They have
been implemented in a new version of our software tool,
NOTUNG. To our knowledge, these are the first formal
algorithms for non-binary trees.

Our algorithms are of immediate use to researchers
using phylogenetic analysis in a broad range of biolog-
ical endeavors and are promising for further algorith-
mic development. Our definitions of required and con-
ditional duplications and the mappings N and N̂ pro-
vide a foundation for probabilistic models of non-binary
reconciliation. Such models would complement the par-
simony framework presented here. Probabilistic ap-
proaches,1, 2 which assume homogeneous rates, are ap-
propriate for data sets in which duplication and loss are
neutral, stochastic processes. Parsimony is better suited
to data sets in which duplication and loss are rare due to
selective pressure. A probabilistic framework provides
a natural setting for incorporating sequence data directly
into the reconciliation process, but has the disadvantage
that it is both computation and data intensive. A complete
phylogenetic toolkit should include both approaches.

Several other problems remain for future work. Our
approach assumes that all binary resolutions of a poly-
tomy are equally likely. A more general approach would
include models that deviate from a uniform distribution.
In addition, non-binary tree models that include horizon-
tal gene transfer as well as gene duplication and loss are
needed. Finally, reconciliation of non-binary gene trees
with (1) binary and (2) non-binary species trees should
also be investigated. Solutions to the former have been
suggested;4, 6, 10 our solution10 also has been implemented
in NOTUNG. Berglund-Sonnhammer et al.4 proposed a
particular formulation of the latter problem and showed
that it leads to an NP-complete subproblem. The hard-
ness of the general problem remains open and formal al-
gorithms (or approximation algorithms) are needed.

With the availability of sequences from many closely
related genomes, it is increasingly apparent that the his-
tories of individual genes differ and that discordance be-
tween gene and species trees is common. Software tools
that are sufficiently flexible to handle this situation are
needed.35 The work presented here offers this flexibility.
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