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Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression 
data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering 
algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel hierarchical 
clustering (CKHC) method in the subspace generated by the PG-NMF. It integrates convergence-soundness parts-based learning, 
subspace and kernel space clustering in the microarray and proteomics data classification. We first integrated subspace methods and 
kernel methods by following our framework of the input space, subspace and kernel space clustering. We demonstrate more effective 
classification results from our algorithm by comparison with those of the classic NMF, sparse-NMF classifications and supervised 
classifications (KNN and SVM) for the four benchmark cancer datasets. Our algorithm can generate a family of classification 
algorithms in machine learning by selecting different transforms to generate subspaces and different kernel clustering algorithms to 
cluster data. 

1.   INTRODUCTION 

With the development of genomics and proteomics, 
Molecular diagnostics has appeared as a new tool to 
diagnose cancers. It picks a patient’s tissues or blood 
samples and uses DNA microarray or mass spectrometry 
(MS) based proteomics techniques to generate their gene 
expressions or protein expressions. The gene/protein 
expressions reflect gene/protein activity patterns in 
different types of cancerous or precancerous cells. They 
are molecular patterns or molecular signatures of 
cancers. Different cancers will have different molecular 
patterns and the molecular patterns of a normal cell will 
be different from those of a cancer cell. Clinicians 
identify the potential biomarkers by analyzing the 
gene/protein patterns. However, robustly classifying 
cancer molecular patterns is still a challenge for 
clinicians and bioiformaticans. 

Many classification methods from statistical and 
machine learning are proposed for cancer molecular 
pattern classification. These methods can be generally 
classified as supervised classification methods, such as 
k-nearest neighborhood (kNN), linear discriminant 
anayalsis (LDA), neural networks (NN), support vector 
machines (SVM);1-3 unsupervised classification 
(clustering) methods, such as hierarchical clustering 

(HC), self-organizing maps (SOM), principal 
component analysis (PCA); and their variants, such as 
particle swarm optimization support vector machines 
(PSO-SVM), kernel principal component analysis 
(KPCA) etc. 4-7 We are particularly interested in the 
unsupervised molecular pattern discovery algorithms, 
because they do not need or have prior knowledge about 
data. They also have potentials to explore the latent 
structure of data. However, the traditional clustering 
algorithms: HC and SOM were already proved unstable 
for gene and protein expression data although they are 
widely used in the cancer molecular pattern discovery 
community.  4,8,15   

Actually, the characteristics of gene and protein 
expression data are challenging the traditional 
unsupervised classification algorithms. These high 
dimensional data can be represented by anmn× matrix 
after preprocessing. The row data in the matrix are the 
expression levels of a gene across different experiments 
or intensity values of a measured data point in different 
samples (observations) corresponding to an m/z ratio. 
The column data are the gene expression levels of a 
genome under an experiment or intensity values of all 
measured data points in a sample corresponding to m/z 
ratios. Usually, mn >> ; that is, the number of variables 
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in a dataset is much greater than the number of 
observations/experiments. For the gene expression data, 
the column number in the matrix is <100 and the row 
number > 5000 usually; for the proteomics data, the 
matrix column number is < 200 and the matrix row 
number is in the order of 65 10~10  generally. These data 
are not noise free data because their raw data have noise 
and preprocessing algorithms can’t remove them 
completely. Although there are a large number of 
variables in these data, only a small set of variables 
account for most of data variations. 

1.1.     

It is obvious that dimension reduction / feature selection 
should be conducted to reduce data to a much lower 
dimension before classification. Several well-known 
global feature selection methods, such as principal 
component analysis (PCA), singular value 
decomposition (SVD), and independent component 
analysis (ICA) have been applied in the cancer 
molecular pattern classifications. 9,10,11,12 However, the 
holistic feature selection mechanism from these methods 
prevents from the alternative local feature selection. For 
example, PCA can only capture the global 
characteristics of data and each principal component 
(PC) contains information from all input variables. This 
leads to the hard time to interpret PCs intuitively. Data 
representation in PCA is not “purely additive”. Each PC 
has both positive and negative entries, which are likely 
to cancel each other partly in the feature selection.  

On the other hand, there is a local feature selection 
algorithm: nonnegative matrix factorization (NMF) with 
parts-based learning mechanism.13  In contrast to the 
global feature selection algorithms, NMF can capture 
variables contributing to local characteristics of data 
with obvious interpretations. It makes the global 
characteristics as the simple “addition/combinations” of 
the local characteristics. In fact, data representation in 
NMF is purely additive is because of the nonnegative 
constraints in the NMF. 

Given an nonnegative matrix mnRX ×∈  and a rank 
),min( mnr < , NMF is an nonlinear programming 

problem to find two optimal nonnegative matrices 
rnRW ×∈ and mrRH ×∈  that minimize the reconstruction 

error, which can be measured by a distance metric, 
between the matricesX and WH : WHXHWE −=),( ; 
that is, WHX ~ . We name W as a basis matrix and 

H as a feature matrix. The columns of W  (a set of 
bases) set up a new coordinate system and all elements 
of H  are the coordinates of X  in this new coordinate 
system. The feature matrixH is the prototype dataset of 
X  after the feature selection, where each column is the 
prototype of an observation. After NMF, each column 
(observation) of X  can be represented as a linear 
combination of r  bases iW , ri L,2,1=  approximately, 
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That is, each observation is expressed as the product of 
the basis matrix and its corresponding prototype after 
feature selection. 

The objective function WHXHWE −=),(  can be 
expressed as Euclidean distance or Kullback-Leibler (K-
L) divergence between X  and WH . For example, the 
Euclidean distance objective function is defined as 
follows. 
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Lee and Seung gave a multiplicative update algorithm 
for NMF by conducting a dynamic step based gradient 
descent learning with respect to W andH .13 The 
iteration schemes for the Euclidean distance objective 
function are as follows (The iteration schemes for the K-
L divergence are similar).  In the iteration, W and H are 
initialized randomly. 
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The multiplicative update algorithm works well 
experimentally. However, there is no guarantee that it 
can converge to local minimum points of the objective 
function, because the limit of the non-increasing 
sequence },{ ){)( kk HW generated from the multiplicative 
update algorithm may not be a stationary point; 14  that 
is, it lacks “convergence-soundness”. 

Brunet et al. used NMF to classify cancer molecular 
patterns by conducting NMF based clustering for gene 
expression data.15  Their NMF clustering consists of 
three steps. First, decompose gene expression dataX  

Nonnegative matrix factorization 
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under a rank r  by the multiplicative update algorithm, 
i.e. each observation is represented as the linear 
combination of bases by Eq. (1), where ijh  is the i-th 
element of the jH , which is the prototype of the j-th 
observation jX after feature selection. Second, clustering 
is conducted by the following query asked by each 
sample: ‘which basis has the largest expression level in 
my prototype? I will belong to the cluster associative 
with that basis’. For example, supposeijh is the largest 
value in jH , then sample jX will be assigned to the 
cluster i  because the thi basis has the largest expression 
level in its prototype jH . The number of clusters is just 
the decomposition rankr . Finally, the rank leading to 
the most meaningful clustering is decided by a Monte 
Carlo based model selection mechanism by finding a 
rank with the maximum cophenetic correlation 
coefficient in the hierarchical clustering. The cophenetic 
correlation coefficient is a measure to evaluate the 
stability of hierarchical clustering. It is the correlation 
between the pairwise distance and linkage distance in 
the hierarchical clustering. A large cophenetic 
correlation coefficient value will indicate the high 
stability of a hierarchical clustering. 

Brunet et al proved this method was superior to HC 
and SOM methods for three benchmark cancer 
datasets.15  Inspired by this work, Gao and Church 
developed a sparse nonnegative matrix factorization to 
cluster the cancer samples by adding sparseness control 
in the basic NMF formulation (sparse-NMF).16, 17  They 
demonstrated the sparse-NMF based clustering was 
superior to the basic NMF clustering method for the 
same datasets.  

However, Brunet et al ‘s NMF based clustering 
method has following weak points. 1. The multiplicative 
update algorithm in the NMF lacks the convergence 
soundness. The model selection mechanism in the NMF 
clustering is expensive, because it requires to compute 
cophenetic correlation coefficients for the hierarchical 
clustering conducted at all possible ranks to decide the 
final optimal decomposition rank.  

1.2.   Contributions 

In this study, we describe a subspace consensus kernel 
clustering technique based on the projected gradient 
nonnegative matrix factorization (PG-NMF), which was 
developed by Lin,14  to conduct cancer molecular pattern 
classification for microarray and proteomics data. The 
projected gradient nonnegative matrix factorization (PG-

NMF) has sound convergence and converges faster than 
the basic NMF.14 In addition, we present the ideas of 
input space, subspace and kernel space clustering before 
elaborating on our PG-NMF based classification method 
under the framework of subspace and kernel space 
clustering.  

The idea of our method is to transform a 
gene/protein expression data set nX ℜ∈  into a subspace 

nS ℜ⊂ by using the PG-NMF algorithm. Then, a 
consensus kernel hierarchical clustering algorithm 
(CKHC) is developed to cluster the projections of a 
datasetX  in the subspaceS  to infer the latent structure 
of the data. We have showed that the PG-NMF based 
subspace kernel clustering (PG-NMF-CKHC) is 
superior to the basic NMF, sparse-NMF clustering and 
supervised clustering (KNN and SVM) in the cancer 
molecular pattern discovery for four benchmark cancer 
datasets. 

This paper is organized as follows. Section 2 
presents the concepts of input space, subspace and 
kernel space clustering before introducing our PG-NMF 
based consensus kernel hierarchical clustering in the 
section 3. Section 4 shows the experimental results of 
our algorithm. Finally, we discuss the possible algorithm 
generalizations and draw conclusions. 

2.   INPUT SPACE, SUBSPACE AND 
KERNEL CLUSTERING 

For a given data set mnT
nxxxX ×ℜ∈= ),,( 21 K , 

clustering is to find an implicit classification function 
Γ→Xf : that maps each data sample ix , to its target 

function value jy  (label) in a set Γ according to some 
dissimilarity metric ( ||2,1 Γ= Lj ). Data samples with a 
same target function value (label) after classification 
will claim to share a same cluster.  

We classify clustering as the input space, subspace 
and kernel space clustering according to where the 
implicit classification functionf is computed.  In the 
input space clustering, the implicit classification 
function f is computed in the input space mn×ℜ of the 
dataset. Hierarchical clustering (HC), K-means 
clustering and expectation maximization (EM) 
clustering all belong to the input space clustering.  In the 
kernel space clustering, the classification function f is 
computed in a kernel space Ω  of the input space, which 
is a high dimensional Hilbert space generated by a 
feature map function Ω→Φ X: , )dim()dim( X>>Ω . 
That is, the clustering is conducted for the high 
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dimensional data )(XΦ . On the other hand, in the 
subspace clustering, the classification functionf is 
computed in a subspaceS of the input space, generated 
by a linear or nonlinear transformφ , )dim()dim( XS ≤ . 
Generally, almost all input-space clustering methods can 
be used in the subspace clustering to cluster the feature 
data in the subspace. However, not all input space 
clustering algorithms can have corresponding kernel 
space clustering algorithms. In the following work, we 
use the HC as an example to demonstrate the input 
space, subspace and kernel space clustering. 

2.1.   Subspace clustering  

A subspaceS is generated from a linear or nonlinear 
transform mrmn XX ×× ℜ∈→ℜ∈ *:φ and clustering is 
conducted through the transformed data*X . For 
example, SOM and PCA based clustering are typical 
subspace clustering approaches. Most likely, the 
subspace has the lower dimensionality than the original 
dataset, i.e. )dim()dim( XS < . Each transformφ  applied 
to X can be represented as *XTX = , where T  is the 
matrix representation of transformφ . Writing it as a 
matrix decomposition form ofX , we have *WXX = , 
where the matrix W is the inverse or pseudo-inverse of 
the matrix T.  We still call W  as a basis matrix and *X  
as a feature matrix.  

The columns of the basis matrix span the 
subspace: ),,( 21 rWWWspanS K= . Dependent on the 
properties of the transformφ , the basis matrix may not 
be unique and the corresponding matrix decomposition 
may not be unique also. Geometrically, each column 
of *X is the coordinates of each observation/column of 
X  in the subspace S , which can be viewed as a new 
coordinate system.   

Self-organizing map clustering can be viewed as a 
simple subspace clustering, where the target function 
value of each sample is determinated by the location of 
its corresponding reference vector of the best matching 
unit (BMU) on the SOM plane. In the nonlinear 
transform conducted by a self-organizing map (SOM), 
the feature matrix *X  is called the prototype data 
including all reference vectors on the SOM plane.  The 
subspace bases ),,( 21 rWWW K can be obtained by 
solving r  least square problems, where r  is the number 
of neurons on the SOM plane.  

Actually, the transformφ can be implemented by 
any linear or nonlinear feature selection methods, such 

as principal component analysis (PCA), independent 
component analysis (ICA), self-organizing map (SOM) 
and nonnegative matrix factorization (NMF). The 
spectral analysis methods like fast Fourier transform, 
wavelet transform can also implementφ . That is, any 
input space clustering algorithms can be employed to 
cluster the feature data*X . For example, clustering the 
data principal components (PCA clustering) by HC or 
other input space clustering methods is a typical 
subspace clustering, where the subspace generated by 
the PCA transform is an orthogonal space.18  Similarly 
are the hierarchical clustering of the independent 
components of data (ICA clustering) and the FFT 
coefficients of data (FFT clustering). 19    

2.2.   Kernel space clustering:   conduct 
clustering in a high dimension 
space with kernel tricks 

Kernel space clustering conducts clustering in the 
kernel/feature spaceΩ of a data set nmX ×ℜ∈ . The 
motivation to conduct kernel space clustering is because 
classification/learning in a high dimensional space can 
have desirable results. We use the kernel tricks to avoid 
the huge computing complexity from clustering in the 
feature spaceΩ . To apply the kernel tricks in clustering, 
we need to formulate an input space clustering algorithm 
into inner product forms at first. Then a kernel function 

))()((),( yxyxk Φ•Φ=  is employed to evaluate all the 
inner products. The kernel function has to satisfy the 
mercer theorem.20 Through the kernel tricks, 
classification/clustering can be conducted in a high 
dimensional space by only paying input space level 
computing complexity, and the feature map Φ  is 
unnecessary to be explicit.  Although several input-
space clustering methods have their corresponding 
kernel extensions, we give the kernelization of the 
hierarchical clustering (HC) in this work. Qin et al 
mentioned the applications of the kernel hierarchical 
clustering in the gene expression data. 21   However, they 
only gave an approximation based kernel extension 
rather than a rigorous kernel extension of the classic 
hierarchical clustering.  

Kernelization of the general hierarchical clustering 
algorithm consists of two steps: kernelize pairwise 
distance and linkage computing. In the kernelization of 
the pairwise distances, we focus on the Euclidean and 
correlation distances because they are mostly used 
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dissimilarity metrics in HC. The Euclidean distance 
between samplesix  and jx  in the kernel space can be 
which can be kernalized as: 

           2/1)2())(),(( jjijiiji KKKxxd +−=ΦΦ             (5) 

where ))()(((),( jijiij xxxxKK Φ•Φ== .  
In the kernelization of the correlation distance 

between samplesix  and jx , we assume the mapped 
vectors )(),( ji xx ΦΦ are zero mean data in the kernel 
space Ω , then the correlation distance between )( ixΦ  
and )( jxΦ  can be formulated as the following inner 
product form in Eq. (6), where ))(),(( jiij xxcc ΦΦ= .  
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However, we shall drop this assumption in the kernel 
space for more general practice. We use the expectation 
of all feature data to center each feature data, 
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Then the corresponding correlation distance can be 
formulated as the similar form as in the Eq. (6). 
Let ))()(('

jiij xxK Φ•Φ= , then we have the following 
result:                                   
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Since the kernel matrix K is a semi-positive definite 
matrix, summarizing previous results, we have the 
correlation distance in the kernel space between )( ixΦ  
and )( jxΦ  can be computed as  
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The extension of the single, complete and average 
linkage in the kernel space is trivial but not for the 
centroid linkage. The centroid linkage between two 
clusters is defined as the Euclidean distance between the 
centroid of two clusters. We give the centroid linkage 

rsd  between the clusters rC and sC  in the Eq. (10).  
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Where )(r
ix  is the thi  sample in the cluster rC ; The 
|||,| sr CC  are the number of samples in the clusters 
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2.3.   What‘s the ideal unsupervised 
classification algorithm for the 
high dimensional gene/protein 
expression data?   

We believe that an ideal unsupervised classification or 
clustering algorithm for the high dimensional gene and 
protein data should satisfy following criteria. 1. Some 
feature selection methods ought to be applied to reduce 
data dimensions such that data are “clean and compact”. 
2. The feature selection method employed should have 
the part-base learning property to maintain the data 
locality well; that is, the feature selection method can 
conduct local feature selection. 3. Kernel tricks are 
desirable to be applied in the clustering of the data after 
feature selection to achieve better classification results 
in a kernel space.   

According to the criteria, we give our subspace 
consensus kernel classification algorithm based on the 
projected gradient NMF (PG-NMF). The basic idea is to 
apply a convergent soundness local feature algorithm: 
PG-NMF to the gene/protein expression datasetX , 
which is equivalent to project the dataset X  into the 
subspaceS generated by the PG-NMF: WHX ~ , where 
W is the basis matrix generating the subspace. Then 
kernel hierarchical clustering is applied to column data 
the feature matrixH , which are the prototype data of 
the original data. Since the basis matrix and feature 
matrix are not unique in the NMF. We develop the 
consensus kernel hierarchical clustering algorithm 
(CKHC) to get the final classification. 

3.   PG-NMF SUBSPACE KERNEL 
HIERARCHICAL CLASSIFICATION  

PG-NMF based subspace kernel classification is to 
conduct consensus kernel hierarchical clustering 
(CKHC) to each feature matrixH in a subspaceS  
generated by the PG-NMF. The CKHC is an algorithm 
to run the kernel hierarchical clustering in a Monte 
Carlo simulation approach and compute the final 
classification by building a consensus tree. It consists of 
two general steps. 1. Build a consensus tree for the 
expression datasetX  at each rank by conducting CKHC 
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to feature matricesH from the PG-NMF. 2. Then the 
best consensus tree, which is the final classification, is 
selected by our novel model selection method. The 
following algorithm describes the consensus kernel 
hierarchical clustering (CKHC) at rank r. 
 
Algorithm 1  Consensus kernel hierarchical clustering at  rank r 

Input:  nonnegative matrix X (n×m), rank r,  

            PG-NMF running times N>=100, 

            Kernel function ),( yxk , linkage metric l  

Output: the consensus tree T at rank r 

 

// Run PG-NMF X~WH to do feature selection at rank r N times 

1. For run=1:N 

2.      Initialize W and H randomly  

3.      Compute X~WH, mrrn RHRW ×× ∈∈ ,  by PG-NMF 

4.      Compute the kernel pairwise distances 

                    between columns of feature matrix H  

                    in the kernel space by  Eq. (5)/(9)  

5.       Record the kernel pairwise distances in  

                   an m(m-1)/2 ×1  vector: d 

6.       Concatenate all such kernel distance vectors for N 

                  feature matrices in a matrix D: D=[D, d]; 

7. End 

8. Compute a consensus kernel distance vector  consensusd    

             by weighting the ratios of the sum of each column in 

             D over the sum of the elements  of matrix D 
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9. Build the consensus tree T from the consensus 

                 kernel  distance vector under the linkage metric l  

10. Return T 

 
We still need to answer the following question: 

‘What is the model selection method to find the most 
robust consensus tree (classification)?’ To avoid the 
exhaustive search on all possible ranks, we give a 
singular-value based rank selection method to find an 
optimal rank search interval ],2[ *r . The idea can be 
described as follows.  

Given a threshold ε ( )1,90.0[∈ε ), we compute the 
importance ratio of first *r singular values such that the 
important ration >= the threshold. The importance ratio 
of first *r singular values is defined as the ratio of the 

sum of the first *r singular values over the sum of all 
singular values (Eq.11). 
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That is, PG-NMF is only conducted in the optimal rank 
search interval ],2[ *r  and we only search the best 
consensus tree from the r* consensus trees.  
       The most robust consensus tree will be from which 
rank in the interval ],2[ *r ? It is reasonable that the most 
robust consensus tree should be from a rank, where the 
bases of its subspace generated by the PG-NMF each 
time represent all levels of patterns inherent in the 
dataset. From the point of view of data variability, it is a 
rank where the ratio between the largest data variability 
and the smallest data variability of the bases data 
reaches its maximum value.   

We propose a measure robust indexδ to find the 
most robust consensus tree according to the previous 
considerations. The robust indexδ is the condition 
number of the covariance matrix of the average basis 
matrix )(WE from the N times running of the PG-NMF. 
The average basis matrix is defined as: 
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The condition number of the covariance matrix of the 
average basis matrix )(WE  is the ratio between the 

maximum eigenvalue and the minimum eigenvalue of  
)(WE : minmax / λλδ = .  The maxλ  is the variance of the 

1st principal component of the average basis matrix: the 
largest data variability of the basis data. The minλ  is the 

variance of the last principal component of the average 
basis matrix:  the smallest variability of the basis data. 
The robust index can be huge but it is impossible to 
reach infinite because minλ  is the smallest positive 

eigenvalue of the covariance matrix of )(WE .  The final 
classification is just the consensus tree with the largest 
robust index number. The PG-NMF based consensus 
kernel hierarchical clustering algorithm (PG-NMF-
CKHC)  can be described as follows.  

Algorithm 2  PG-NMF based Consensus kernel hierarchical 

clustering 

Input:  a mn ×  nonnegative data matrix X, Importance ratio         

                          threshold 90.0≥ε    

Output: the final consensus tree T  
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1. Decide the rank search interval *],2[ r  by the    

                     important ratio threshold ε  

2. For r=2: r* 

3.     Conduct consensus kernel hierarchical clustering    

                        at rank r  to get a consensus tree rT  at rank r 

4.     Compute the robust index δ  of  the consensus 

                 tree rT  

5. End 

6. rTT ← with the maximum robust index 

 

4.   EXPERIMENTS 

We apply the PG-NMF-CKHC algorithm to discover the 
cancer molecular patterns for several bench-mark cancer 
datasets. We use a measure called classification rate 

miC
m

i
r /)(

1
∑=
=

δ  to evaluate the accuracy of the 
unsupervised classification for a dataset with m samples, 
where 1)( =iδ  if the samplei is assigned in a correct 
cluster; otherwise 0)( =iδ . We use three kernel functions 
in our algorithms: linear, polynomial and Gaussian 
kernel. The dissimilarity measures in the kernel 
hierarchical clustering are chosen as Euclidean and 
correlation distances. We choose the average linkage 
metric in the kernel hierarchical clustering. The PG-
NMF algorithm is run N=100 times in each optimal rank 
search interval with tolerance 10e-9. 

The first dataset is Leukemia dataset, a benchmark 
dataset consisting of 38 samples in the cancer research. 
It can be classified as 27 acute lymphoblastic leukemia 
(ALL) and 11 acute myelogenous leukemia (AML) 
marrow samples. The ALL samples can be further 
divided into 19 ‘B’ and 8 ‘T’ subtypes. HC and SOM 
were proved to be unstable for this dataset.15 The 
optimal search interval for this dataset is [2,6] under the 
importance ratio threshold 0.90. The robust index in 
PG-NMF-CKHC reaches its largest number at rank 5 for 
a Gaussian kernel under the correlation distance (Figure 
2). Figure 1 is the visualization of the final consensus 
tree.  It is clear that there are three clusters, AML, ALL-
B, and ALL-T in the final consensus tree.  

There is just only one misclassification i.e. 
ALL_14749_B-cell was assigned to AML.  We have found 
the combinations of the Gaussian kernel function and 
correlation/Euclidean distance under the average linkage 
metric both can reach the best performance in the 
classification. Under the linear kernel, we can see that 
classification results under the correlation distance are 

better than those of Euclidean distance (Figure 3). The 
NMF clustering has two misclassified samples: 
ALL_21302_B-cell and ALL_14749_B-cell. Sparse-NMF 
clustering has one misclassified sample: AML_12. 
However, the running time of NMF and sparse-NMF 
clustering are twice more than that of our algorithm. 

Fig. 1.  The visualization of the consensus tree at rank 5 for a 
Gaussian kernel under the correlation distance and average linkage 
metric.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  The largest robust index reached at rank 5 for the Gaussian 
kernel with correlation distance. 
 

Fig. 3. The classification rates under linear, polynomial and  Gaussian  

kernel for  Euclidean and correlation distances. 

 
The second dataset is Medulloblastoma dataset, 

the gene expression data from childhood brain tumors 
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known as medulloblastomas. The pathogenesis about 
these tumors is still not well understood yet by 
investigators. However, there are two generally accepted 
histological sub-classes: classic and desmoplatic. These 
sampled are divided as 25 classic and 9 desmoplastic 
medulloblastomas.  General HC and SOM failed to 
reveal the classifications of these samples.15  The robust 
index reaches its maximum in the optimal rank search 
interval [2,10] at rank 7  for a polynomial kernel under 
the correlation distance. Figure 4 is the visualization of 
the final classification. There are 8 desmoplastic 
samples clustered and total 2 samples are misclassified: 
sample 25 and sample 33. 

Fig.  4. Visualization of the final consensus tree of the 

medulloblastomas dataset at the rank 7 under the polynomial kernel 

under the average linkage metric and correlation distance. 
 
 
 
 
 
 
 
 

. 
 

 

Fig.  5. The largest robust index reached at rank 7 for the polynomial 

kernel with correlation distance.  

 

The NMF has 2 samples misclassified at its best 
decomposition rank 5.15 However, it only gets 7 
desmophlastic samples clustered. Although our 
algorithm also have 2 misclassified samples, we have 

better clustering structure since there are 8 
desmophlastic samples clustered. On the other hand, 
sparse-NMF has 7 misclassified at its best rank 5. 16 It 
seems sparseness constraints do not contribute to the 
improving classification rates for this dataset. Since the 
pathogenesis of medulloblastoma is still not well-
understood, we did not compute the classification rates 
for this dataset.  

The third dataset is an ovarian cancer dataset, a 
MS proteomics dataset consisting of 20 cancer and 20 
normal samples, which presents as a 15142×40 positive 
matrix. This data set is a subset of Ovarian Dataset 8-7-
02 that was generated using the WCX2 protein array, 
which includes 91 controls and 162 ovarian cancers. For 
this dataset, we try supervised classification first. We 
randomly pick other 40 samples (20 cancer and 20 
normal) from the original dataset as a training set; then 
we use kNN under Euclidean and correlation distance to 
classify the MS data. We have found the best 
classification rate from kNN is 92%. But it can’t classify 
sample 3, 12, 36 correctly. Our algorithm reaches the 
best classification at rank 7 in the optimal rank search 
interval [2,10]. There is only one misclassified sample 
:sample 36 (Figure 6). 

 
Fig.  6.  The final consensus tree at rank 7 under Gaussian kernel with 

correlation distance. 

 
Figure 7 shows the performance of linear, Gaussian 

and polynomial kernel in the classification. The 
combination of the polynomial kernel and correlation 
distance has the best performance under the average 
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linkage metric. Classification rates generally decrease 
after the rank 7 and the correlation distance generally 
performs better than the Euclidean distance in the 
classification. 

 
Fig. 7. The classification rates of the PG-NMF-CKHC for this 

dataset: polynomial kernel + correlation distance reaches the best 

classification rate. 

 

We also apply NMF and sparse-NMF classification 
for the proteomics data, although they were developed 
under the context of gene expression data. There are 8 
samples misclassified from NMF clustering and 12 
samples misclassified from the Sparse NMF clustering 
for our ovarian cancer dataset. Both algorithms indicate 
there are 2 clusters from their cophenetic coefficients. 
Since a proteomics dataset generally has much higher 
dimensionalities than a gene expression dataset, NMF 
and sparse NMF clustering have large time complexity 
for a proteomics dataset. For this dataset, NMF 
clustering takes >78 hours and sparse-NMF clustering 
takes >153 hours running under two PCs with 3.0 GHZ 
CPU and 504 RAM running under WIN-XP OS. It 
seems that NMF based clustering/classification 
mechanism can’t work well in the context of the 
proteomics data. 

4.1.   Comparing classification results 
from kNN, sparse-NMF and 
support vector machines (SVM) 

We compare PG-NMF-CKHC for the four datasets (the 
leukemia, medulloblatoma, ovarian cancer dataset and a 
colon cancer dataset, which consists of 22 controls and 
40 cancer data samples) with the classic NMF 
clustering, sparse-NMF clustering, and SVM and kNN 

classifications. In kNN and SVM, We run classification 
10 times under holdout cross-validation with 50% hold-
out percentage for each case. We take the average 
classification rates as the final classification rates. In the 
SVM classification, we also use linear, polynomial and 
Guassian kernel. We select the best final classification 
rate from three kernels as the final classification rate of 
SVM. In the leukemia data, we use SVM/kNN to 
classify ALL and AML types instead of all three types. 
Although the pathogenesis of medulloblatoma is not 
well established, we still compute the classification rates 
of this dataset based on the general assumption that 
samples are divided as 25 classic and 9 desmoplastic 
medulloblastomas, for the convenience of comparisons. 
Table 1 shows the classification rates for the four 
benchmark datasets from kNN, PG-NMF-CKHC, NMF, 
sparse-NMF and SVM classifications. 

We have found that our algorithm is superior to the 
NMF, sparse-NMF and supervised SVM classification 
algorithms for these datasets; The NMF classification 
has better performance than SVM and kNN for three 
gene expression datasets. Sparse-NMF has averagely 
better performance than kNN for three gene expression 
datasets. However, the NMF and sparse-NMF can’t 
compete with kNN and SVM for the proteomics data.  

 According to our classification results, it seems that 
sparseness constraint on the NMF may not always 
contribute to the improvement in the classifications for 
some datasets. Besides the ovarian dataset, for the 
medulloblatoma dataset, the classic NMF clustering 
seems to perform better in classifying desmoplastic 
medulloblastomas than the sparse-NMF clustering at 
rank 5, where both algorithms reaches the most robust 
reproducibility partitions. We also noticed the NMF and 
sparse-NMF clustering can not compete with SVM 
classification for the ovarian dataset. It is interesting to 
see that sparseness constraint may not lead to the better 
classification results for the colon cancer dataset. The 
classic NMF clustering reaches its largest cophenetic 
correlation coefficient at rank 2 (2 clusters) and its 
corresponding classification rate is 0.9355. However, 
the sparse NMF clustering reaches its largest cophenetic 
correlation coefficient at rank 4 (4 clusters) and its 
corresponding classification rate is 0.7581. It is possible 
due to the fact that the expression patterns of those 
dominant co-expressed genes such as, oncogenes, tumor 
suppressor genes are not extracted out in the sparse 
representation. This may also indicate that sparseness 
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control may not always lead to a better classification 
results for some dataset. Figure 8 and 9 give the 
visualization of the NMF and sparse-NMF clustering 
from the rank 2-5 for the colon cancer dataset. 
Probability of two samples clustered together is 
indicated by color. Generally, blue indicates a numeric 
value near 0 and a red color indicates a numeric values 
near 1. The deep blue standing for 0 indicates samples 
are never assigned in one cluster and dark red standing 
for 1 indicates samples are assigned in one cluster. 
 
 
 
 
 
 
 
 
 
 
Fig.  8. The visualization of the NMF clustering from rank 2-5 for the 

colon dataset 

 
 
 

 

 

 

 

 

 

Fig.  9.  The visualization of the sparse-NMF clustering from rank 2-

5 for the colon dataset 

 

 

5.   CONCLUSIONS 

As a part-based learning machine learning algorithm, 
NMF has found its application successfully in image 
analysis, document clustering and cancer molecular 
pattern discovery. In this study, we present an NMF 
based subspace kernel clustering algorithm: PG-NMF-
CKHC based on the input space, subspace and kernel 
space clustering framework. We have shown that PG-
NMF-CKHC improves the cancer molecular pattern 
discovery for the well-studied four datasets. It can work 
well for both gene expression data and protein 
expression data according to out current results. 

Our algorithm can be generalized to a family of 
subspace kernel classification/clustering algorithms in 
machine learning by selecting different transforms to 
generate subspaces and different kernel clustering 
algorithms to cluster data. For example, conduct kernel 
k-means clustering in a subspace generated by the 
independent component analysis (ICA) applied to a high 
dimensional dataset, or conduct the kernel Fisher 
discriminant analysis (KFDA) 22 in a subspace generated 
by principal component analysis (PCA).   

 Despite its promising features, it is also worthy to 
point out that PG-NMF based consensus kernel 
hierarchical clustering has the limitation of greater 
algorithmic complexity, especially compared with the 
traditional hierarchical clustering (HC). However, it is 
clear that our algorithm is easy to fit in a parallel 
computing structure due to its Monte Carlo simulation 
mechanism. Thus, we plan to implement the parallel 
version of the subspace based kernel classification 
algorithm for the cancer molecular pattern classification 
in the following work. 

 

 
 

Table 1.   Compare PG-NMF-CKHC classification results with  
those of the NMF, sparse-NMF, SVM and KNN classifications 

Cancer Data Information Algorithm  Classification Rates 

 Cancer Name    Data Size  #type  kNN PGNMF-CKHC  NMF Sparse-NMF       SVM 
  Leukamia   5000×38      3 0.8860          0.9737  0.9470      0.9737      0.9132 
Medulloblastoma   5893×34      2 0.7611          0.9412 0.9412      0.8235      0.8300 

  Ovarian   15142×40      2 0.8990          0.9750 0.8000      0.7000      0.9474 

  Colon   2000×62      2 0.7667          0.9355 0.9032      0.7581      0.8542 

64



 

 

Acknowledgments 

Author wants to thank the support from the New Faculty 
Research Award at Eastern Michigan University for this  
research. 

References 

1.  Lilien, R. and Farid, H. Probabilistic Disease 
Classification of Expression-dependent Proteomic 
Data from Mass Spectrometry of Human Serum, 
Journal of Computational Biology  2003; 10 (6),  
925-946. 

2.  Golub, T. et al.  Molecular Classification of Cancer: 
Class Discovery and Class Prediction by Gene 
Expression Monitoring, Science 1999; 286: 531-
537. 

3.  Furey T., Cristianini N., Duffy N, Bednarski D., 
Schummer M. and Haussler D. Support vector 
machine classification and validation of cancer 
tissue samples using microarray expression data, 
Bioinformatics 2000; 16 (10): 906-914. 

4.  Hautaniemi, S. , Yli-Harja, O.,  Jaakko Astola, J., 
Kauraniemi, P. et al. Analysis and Visualization of 
Gene Expression Microarray Data in Human 
Cancer Using Self-Organizing Maps, Machine 
Learning 2003; 52: 45-66. 

5.  Ressom, H., Varghese, R., Saha, D., Orvisky, R. et 
al. Analysis of mass spectral serumprofiles for 
biomarker selection. Bioinformatics 2005; 21: 
4039-4045. 

6.  Liu Z., Chen D. and Bensmail H. Gene expression 
data classification with Kernel principal component 
analysis. J Biomed Biotechnol. 2005 (2) 155–159. 

7.  Eisen,M. et al. Cluster analysis and display of 
genome-wide expression patterns. Proc. Natl Acad. 
Sci. USA 1998; 95: 14863–14868. 

8.  Tamayo, P. et al. Interpreting patterns of gene 
expression with self-organizing maps: methods and 
application to hematopoietic differentiation. Proc. 
Natl Acad. Sci. USA 1999; 96: 2907–2912. 

9.  Bicciato,S. et al. PCA disjoint models for multiclass 
cancer analysis using gene expression data. 
Bioinformatics 2003; 19: 571–578 

10.  Wall, M., Andreas, R., Rocha, L. Singular value 
decomposition and principal component analysis. A 
Practical Approach to Microarray Data Analysis. 
Berrar, D., W. Dubitzky, W., Granzow, M. eds. 
Kluwer: Norwell, 2003; 91-109. 

11.  Tan, Y., Shi, L., Tong, W., and Wang, C. Multi-
class cancer classification by total principal 
component regression using microarray gene 

expression data. Nucleic Acids Res. 2005; 33(1) 56-
65. 

12.  Zhang, X., Yap, Y., Wei, D., Chen, F. and Danchin, 
A. Molecular diagnosis of humancancer type by 
gene expression profiles and independent 
component analysis, European Journal of Human 
Genetics 2005; 1–9: 1018-4813. 

13.  Daniel D. Lee and H. Sebastian Seung.: Learning 
the parts of objects by non-negative matrix 
factorization. Nature 1999;  401: 788–791. 

14.  Lin, C. Projected gradient methods for non-negative 
matrix factorization, Neural Computation 2007; In 
Press.  

15.  Brunet, J., Tamayo, P., Golub, T. and Mesirov., J. 
Molecular pattern discovery using matrix 
factorization. Proc. Natl Acad. Sci. USA, 2004, 
101,12: 4164–4169. 

16.  Gao, Y. and Church, G. Improving molecular 
cancer class discovery through sparse nonnegative 
matrix factorization, Bioinformatics 2005; 21 (21):, 
3970–3975. 

17.  Patrik O. Hoyer: Non-negativematrix factorization 
with sparseness constraints. Journal of Machine 
Learning Research 2004, 5: 1457–1469. 

18.  Yeung, K. and Ruzzo, W.: Principal Component 
Analysis for clustering gene expression data, 
Bioinformatics, 2001; 17 (9): 763-774. 

19.  Lee, S. and Batzoglou, S. ICA-Based Clustering of 
Genes from Microarray Expression Data, Neural 
Information Processing Systems(NIPS) 2003.  

20.  Vapik, V. The Nature of Statistical Learning 
Theory. Springer Verlag, New York, 1995. 

21.  Qin. J. et al.: Kernel hierarchical gene clustering 
from microarray expression data, Bioinformatics, 
2003, 19 (16),  2097-2104. 

22.  Mika, S.,  Rätsch,  G., Weston, J., Schölkopf, B. 
and Müller, KR. Fisher discriminant analysis with 
kernels, Neural Networks for Signal Processing IX,. 
1999; 41-48. 

 
 

65


