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With the advent of high-throughput gene perturbation screens (e.g., RNAi assays, genome-wide deletion mutants),

modeling the complex relationship between genes and phenotypes has become a paramount problem. One broad class

of methods uses ‘guilt by association’ methods to impute phenotypes to genes based on the interactions between the
given gene and other genes with known phenotypes. But these methods are inadequate for genes that have no cataloged

interactions but which nevertheless are known to result in important phenotypes. In this paper, we present an approach

to first model relationships between phenotypes using the notion of ‘relative importance’ and subsequently use these
derived relationships to make phenotype predictions. Besides improved accuracy on S. cerevisiae deletion mutants

and C. elegans knock-down datasets, we show how our approach sheds insight into relations between phenotypes.

1. INTRODUCTION

There are now a variety of mechanisms to study
loss of function phenotypes in specific cell types
or at different stages of development in an organ-
ism. Genome wide deletion mutants, e.g., for Sac-
charomyces cerevisiae 1, 2, use homologous recombi-
nation to replace genes with targeted cassettes so
that the resulting strain can be screened for spe-
cific phenotypes (or lack thereof). RNA interference
methodologies, in organisms such as Caenorhabdi-
tis elegans 3, 4, use post-transcriptional gene silenc-
ing to degrade specific RNA molecules, thus caus-
ing a drastic attenuation of gene expression. Since
RNAi may not completely deplete the expressed
RNA molecules, its use is referred to as a ‘knock-
down’, in contrast to a complete ‘knockout’ exhib-
ited by a deletion mutant. Through the use of high-
throughput screens, both these techniques now sup-
port large scale phenotypical studies.

A central goal of bioinformatics research is to
model the phenotype effects of gene perturbations.
The mapping between gene function and expressed
phenotype is complex. A single gene perturbation

(through deletion or RNAi interference) can lead
to a cascade of changes in transcription or post-
transcriptional pathways. It is impractical to make
a comprehensive empirical analysis when there is a
large number of candidate genes. An emerging area
of interest therefore is to use diverse, highly het-
erogeneous, data (e.g., microarrays, RNAi studies,
protein-protein interaction assays) to computation-
ally model phenotype effects for mutations.

Previous studies have shown that by consider-
ing interactions between candidate genes and target
genes (which have been known to result in a desired
phenotype) the accuracy of phenotype prediction can
be improved. Examples of interactions that have
been considered by such works include physical inter-
actions between proteins 5, interactions underlying
protein complexes 6, and integrated gene networks
constructed from multiple data sources 7. Most of
these methods can be classified as ‘direct’ methods
since they require a direct interaction between a gene
and another gene with the target phenotype in order
to predict the phenotype for the given gene.

Statistical and computational methods to prior-
itizing genes by using combinations of gene expres-
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sion and protein interaction data have also been pro-
posed, e.g., CGI 8 and GeneRank 9. In addition to
direct interactions, these methods take into account
indirect interactions, i.e., links from genes to target
genes through other intermediate genes. However,
these approaches assume that there is at least one
path from a candidate gene to some target gene(s).
Since many genes do not have any catalogued inter-
actions, this limits their applicability.

Markowetz et al. 10 proposed the NEM (nested
effects models) approach to rank genes according
to subset relations between phenotypes. NEM uses
phenotype profiles only, i.e., it does not consider
any protein-protein interactions. While this over-
comes the limitations mentioned previously, NEM
has shortcomings in scalability with respect to the
number of phenotypes and to overcome the increased
computational cost, NEM focuses on inference only
from pairwise and triple relations.

Contributions: We propose a new graph theoretic
approach to predicting phenotype effects of gene per-
turbation using phenotype relations (P3). Our ap-
proach focuses on relative importance methods to
infer relations between phenotypes and uses these
relations to predict phenotype effects. We integrate
phenotype profiles with the gene network to derive
phenotype relations. It is assumed that genes tightly
connected are likely to share the same phenotypes.
We use a weighted directed graph to model the re-
lations between phenotypes such that more compli-
cated relations can be illustrated and interpreted in-
stead of just subset relations. Since predictions are
carried out purely based on the phenotype relations
derived, there is no requirement for known interac-
tion paths from candidate genes to target genes. Fur-
thermore, once the relations between phenotypes are
derived, they can be used repetitively in the predic-
tion process. In particular, complete perturbation
effects across all phenotypes can be predicted simul-
taneously from the relations between known pheno-
types and others. Therefore, P3 is more effective
for large-scale phenotype prediction than previous
methods that rank genes for each phenotype, one at
a time. Experimental results on S. cerevisiae and C.
elegans also show that our approach outperforms the
direct and GeneRank methods consistently. In par-

ticular, for genes without any interactions in S. cere-
visiae, we show that our method can predict 96% of
their phenotypes with AUC (area under ROC curve)
greater than 0.8, and 60% of the phenotypes in C.
elegans.

2. WORKING EXAMPLE

Table 1 describes an example of phenotype profiles
resulting from many gene perturbations. Each row
represents a phenotype and each column a gene. The
cell value indicates whether the gene perturbation ex-
hibits the corresponding phenotype, e.g., g1 gives rise
to p1 but not p2 and p3. A second form of data avail-
able is a gene network as shown in Figure 1 (left),
that shows interactions between genes. For ease of
interpretation, genes that result in the same pheno-
type as shown in Table 1 are also grouped in Figure 1
(left). Suppose that the only information about g7

that we are given is that it results in phenotype p3

and we desire to use computational methods to pre-
dict that it will also cause p2 but not p1 (see last
column of Table 1).

Table 1. Example phenotype profiles.

g1 g2 g3 g4 g5 g6 g7

p1 1 1 0 0 0 1 0
p2 0 0 1 1 1 0 1

p3 0 0 0 1 0 1 1

• Using phenotype profiles: If we were to use
only Table 1 to make a prediction, it is not clear
whether g7 should result in p1 or p2. p1 and p2

involve three genes each, and p3 has (exactly) one
gene in common with both sets. Obviously, p1 and
p2 have an equal chance to be predicted, no matter
what association measure is used.

• Using network information: If we assume that
all links in Figure 1 (left) have the same weight,
then in fact the prediction result will be p1. To
see this, observe that g7 has only one interaction
partner g2, and it is known that g2 contributes to
p1 only. And there are no paths from g7 to any
genes resulting in phenotype p2. Hence, no matter
what graph theoretic methods are used, p1 has a
better chance of being predicted.
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Fig. 1. (left) Example of gene network. (right) Induced relationships between phenotypes.

We propose to combine the selective superiorities of
the two methods to model phenotypes. In this pro-
cess, we develop a method that resembles a collab-
orative filtering algorithm 11 used in recommender
systems research. First, we derive relationships be-
tween phenotypes from Table 1 and Figure 1 (left).
Figure 1 (right) demonstrates the relationships be-
tween phenotypes obtained by applying our algo-
rithm presented in the following section. The value
on the arrow from phenotype pi to phenotype pj de-
notes the tendency that a gene perturbation causing
pi also causes pj . From such a relation, we can pre-
dict that if a gene perturbation results in p3, then it
is more likely to result in p2 rather than p1. Some
characteristics of existing methods and our approach
are listed in Table 2.

3. METHODS

3.1. Inferring Relations Between
Phenotypes

As stated earlier, inferring relations between pheno-
types is a one-time cost and can be amortized over
the prediction process. Our method is motivated
by the study of relative importance in networks 12.
Original link analysis methods, such as PageRank 13

and HITS 14, rank nodes according to their “impor-
tance” or “authority” in the entire network. Relative
importance analysis focuses on determining the im-
portance of nodes with respect to a subset of the
network, called the “root set.” Multiple algorithms
have been proposed for relative importance compu-

tation, such as k-short path, k-short node-disjoint
paths, PageRank with priors, HITS with priors, and
the k-step Markov approach, which are all surveyed
by White and Smyth 12.

Suppose that there are n genes G = {gi|1 ≤ i ≤
n}, and m phenotypes P = {pi|1 ≤ i ≤ m} in a
study. Let Wn×n denote the connection matrix of
the network, where wi,j denotes the weight of the
connection between gene gi and gene gj . W is re-
quired to be a symmetric matrix whose diagonal is
uniformly 0. For each phenotype pj , there is a cor-
responding vector pj = 〈v1, v2, ..., vn〉, where vi = 1
indicates that gene gi is known to result in pj , oth-
erwise vi = 0. These vectors are grouped together to
form a gene phenotype matrix Vm×n, where rows are
phenotypes and columns are genes. Given a pheno-
type p, genes resulting in this phenotype form a root
set R. Similar to PageRank with priors, each gene is
assigned a prior rank score, as shown in Equation 1.
Observe that the sum of all initial rank scores is 1.

r0
gi

=

{
1

‖R‖ if gi ∈ R,

0 otherwise.
(1)

Let N(gi) = {gj |wi,j > 0, i 6= j, and gj ∈ G} denote
the set of all other genes that interact with gi. Define
parameter β, 0 ≤ β ≤ 1, to be the relative weight be-
tween the original score of a gene and the score that
results through the influence of its neighbors. The
formula for iteratively computing gene rank scores is
shown in Equation 2.
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Table 2. Comparison of P3 to other methods for phenotype prediction.

Use Use Ability to Induce

Method phenotype profiles? gene interactions? rank phenotypes? phenotype relations?

Wormnet (Direct)
√

GeneRank
√

NEM
√ √ √

P3 √ √ √ √

rk+1
gi

= βr0
gi

+ (1− β)

 ∑
gj∈N(gi)

wi,j

πgi

rk
gj

 . (2)

Here, πgi =
∑n

j=1 wi,j is the total weight of inter-
actions involving gene gi. k in the equation indi-
cates the number of iterations. After convergence,
we obtain rank scores of all genes with respect to
phenotype p. The above procedure can be repeated
for every phenotype to obtain the corresponding list
of rank scores of all genes. The list of rank scores
of genes to a phenotype corresponds to a vector
Rpi

=< rg1 , ..., rgn
>, where rgk

is the rank score of
gk. Let Cm×m denote a “closeness” matrix of pheno-
types, where both rows and columns are phenotypes,
and each entry ci,j stores the closeness value from
phenotype pj to pi. It is defined as the pi’s average
rank scores of genes causing pj . The formula is given
in Equation 3, where pj

T is the transpose of pj .

ci,j = pT
j ×Rpi (3)

Note that this matrix is not necessarily symmetric,
since the rank score of a gene to a phenotype depends
on the scores of its neighbors, but for two phenotypes
p and q, genes involved in phenotype p may not have
the same neighbors as genes involved in phenotype q.
For simplicity, the diagonal of the matrix is set to 0,
because the closeness of a phenotype to itself is not
of interest. This matrix thus maps to a weighted di-
rected graph, such as seen in Figure 1 (right), where
nodes are phenotypes, and the weight of the directed
edge from phenotype pi to phenotype pj is ci,j . Af-
ter the whole matrix C is computed, prediction is
carried out using this matrix.

3.2. Predicting Phenotype Effects of
Gene Perturbations

Algorithms for ranking genes to a phenotype and
ranking phenotypes for a gene using the phenotype
graph are described below.

3.2.1. Ranking Genes for a Phenotype

Given a phenotype p, suppose that there is a gene
g which is known to result in phenotypes {q1, ....qk}.
The closeness of phenotype qi, 1 ≤ i ≤ k, to p is
the weight of the edge from p to qi in the pheno-
type graph. There are multiple ways to define the
rank score of a gene g to the phenotype p, for ex-
ample, we can utilize the maximum closeness from
qi, 1 ≤ i ≤ k, to p. Here, we used the average close-
ness from known phenotypes of the gene to the target
phenotype. The rank scores of all genes to all target
phenotypes can be calculated simultaneously by a
simple matrix computation, as shown in Equation 4.

RG = V ′ × C (4)

V ′, with entries v′i,j = vj,i∑m
k=1 vk,i

, is obtained by trans-
posing the phenotype-gene matrix V and dividing
each entry by the number of 1s in the corresponding
row. RG is thus an n × m matrix, where rows are
genes and columns are phenotypes, and the value of
each cell is the rank score of the gene to the corre-
sponding phenotype.

3.2.2. Ranking Phenotypes for a Gene

Given a gene g, assume that it is known to result
in phenotypes {q1, ..., qk}. For any other phenotype
p in the phenotype graph, the closeness from p to
phenotype qi, 1 ≤ i ≤ k is the weight of the edge
from qi to p. The method of ranking phenotypes to
a gene is very similar to ranking genes for a pheno-
type, described above. In ranking genes, the weights
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on the edges incident on phenotypes {q1, ..., qk} are
used, but in ranking phenotypes, the edges outgo-
ing from phenotypes {q1, .., qk} are considered. The
rank score of phenotype p to gene g is the average of
the closeness values from p to phenotypes {q1, ..., qk}.
Analogously as stated earlier, rank scores of all phe-
notypes to all genes can be computed at the same
time. Equation 5 describes the method, where RG

is the resulting rank score matrix.

RP = V ′ × CT (5)

The only difference from the method to ranking genes
is that the transpose of the closeness matrix is used
here.

4. EXPERIMENTAL RESULTS

We illustrate the effectiveness of our methodology by
comparing it to the Direct method (as used in Lee et
al. 7) and GeneRank 9 on two real datasets: deletion
mutants on yeast and an RNAi study of early em-
bryogenesis in the C. elegans nematode. We further
analyze the phenotype graphs derived by clustering
phenotypes with high closeness values and present a
biological interpretation.

4.1. Data

Two datasets are used in this study: the dataset of C.
elegans RNAi induced early embryo defects 4 and the
yeast knockout dataset from the Munich Information
Center for Protein sequences (MIPS) database 15.

We focus on 45 RNAi induced defect cate-
gories in the C.elegans early embryo (data available
in 16) and use an interaction network extracted from
Wormnet 7. The original core Wormnet contains
113,829 connections and 12,357 genes. To compare
with the Direct and GeneRank methods, we select
genes resulting in at least two early embryo defects
and interacting with at least one other gene, and re-
tain all interactions between them in Wormnet. To
evaluate the applicability of P3 on predicting phe-
notypes for genes without interactions, we prepare
another gene set that retains genes without any in-
teractions.

In the yeast data, the underlying network in-
volves protein-protein interactions, and is built by
combining the yeast protein interaction data from

several sources (CYGD 17, SGD 18, and BioGrid 19).
Phenotypes and genes are selected according to the
same criteria as above. The statistics of these
datasets are listed in Table 3.

4.2. Experiment Setup

We implement the Direct method and use the log-
likelihood value of each interaction published with
Wormnet as the edge weights for the C. elegans net-
work. For a given phenotype, genes known to re-
sult in that phenotype are considered as the seed
set. The rank score of other genes are the sum of the
log-likelihoods of interactions to the seed set. In the
case of yeast, we simply set the same weight on all
interactions.

Table 3. Statistics of datasets used in this work.

Organism Genes Interactions Phenotypes

Caenorhabditis elegans 420 6677 45
Saccharomyces cerevisiae 1232 13228 72

In addition to the connectivity matrix of the net-
work, GeneRank has another input, namely the ex-
pression changes vector, which is used to set initial
ranks. In our case, we use a binary phenotype signa-
ture vector, where 1 means that the corresponding
gene is known to show that phenotype, 0 otherwise.
There is also a parameter d that determines relative
weights of expression changes and connectivity infor-
mation to the rank value. We tried multiple values on
d from 0.1 to 0.9 with interval 0.1, and chose the one
gives optimal prediction results in performance com-
parison (0.1). The implementation published with
the original paper is used.

To compare with the above methods, the algo-
rithm for ranking genes for a given phenotype is ap-
plied. Another algorithm to ranking phenotypes for
a given gene is used to predict phenotypes for genes
without any interactions. There is one parameter
β in P3 to derive relations between phenotypes. We
studied different values on β from 0.1 to 0.9 with step
0.1, and found that 0.6 gives the best performance.
We used 0.6 in all the experiments described below.
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Fig. 2. Overall performance comparison on the C. elegans dataset. Direct : ranking genes using the interaction network only;
GeneRank : d = 0.1; P3 : β = 0.6

Fig. 3. (left) ROC curves on C. elegans. (right) Precision vs. Recall on C. elegans. Direct: points, GeneRank: dashed line,
P3: solid line; square: P1-AB Nuclear-Size-Shape, star: Four Cell Stage Nuclei-Size-Shape, circle: Tetrapolar Spindle.

4.3. Results

To evaluate the prediction performance for each phe-
notype, we used the leave-one-out and k-fold cross
validation approaches. For the leave-one-out ap-
proach, one gene/phenotype pair is ignored from the
original dataset each time, and the prediction algo-
rithm is applied on the remaining dataset to see if
that gene/phenotype pair is predicted correctly. Re-
sults show that our method outperforms the direct
method and GeneRank method almost in all cases.

We compared the Area Under the Receiver Operat-
ing Characteristic (AUC ROC) curve for each phe-
notype and plot the ROC curve and Precision-Recall
curves for some phenotypes for further performance
comparison. For k-fold cross validation, the original
gene/phenotype pairs are separated into k groups, 10
in C. elegans and 5 in yeast, one of them is selected
as test data and the remaining are used as training
data. The distributions of AUC were compared. P3

outperforms other methods in all cases. In the exper-
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iment of predicting phenotypes to genes without any
interactions, results show that P3 is able to predict
a majority of these phenotypes with high accuracy.

4.3.1. Leave-One-Out

C. elegans: For each phenotype prediction, we com-
puted true-positive rate versus false-negative rate to
measure the recovery of genes with the given pheno-
type. The comparison of the area under the Receiver
Operating Characteristic curve for each phenotype is
shown in Figure 2. For visualization purpose, 20 de-
fects are randomly selected for discussion here. The
defect “AB Spindle Orientation” shows the highest
AUC in the results of all three methods, with val-
ues of 0.99 in P3 and GeneRank, and 0.76 in Di-
rect method. P3 is always better than the Direct
method and outperforms the GeneRank method in
most cases. The AUCs of P3 are greater than those of
Direct method and GeneRank by 0.37 and 0.2, in av-
erage respectively, and the maximum differences are
0.6 and 0.73, respectively. Only three defects, “Egg
Size/Shape”, “AB Spindle Orientation” and “P1/AB
Cortical Activity” show that GeneRank method is
slightly better than P3, with the maximum difference
of AUC as 0.028. Three phenotypes, “Tetrapolar
Spindle”, “Four Cell Stage Nuclei-Size-Shape”, and
“P1-AB Nuclear-Size-Shape”, that have both high
AUC and precision-recall for P3 were chosen for fur-
ther comparison. Figure 3 (left) shows their ROC
curves, and the corresponding precision-recall curves
are shown in Figure 3 (right).
Yeast: Similar to the study in C. elegans, we com-
puted true-positive rate versus false-negative rate
and precisions at certain recall levels. The compari-
son of the area under the Receiver Operating Char-
acteristic curve for each phenotype is shown in Fig-
ure 4. For simplicity, we show the results for 28 phe-
notypes among the 72 examined phenotypes. The
highest AUC in the selected results of P3 is 0.98,
from “Cell wall-Hygromycin B”, that of the direct
method is about 0.81, from “Peroxisomal mutants”,
and GeneRank has the highest AUC value about
0.88, from “Sensitivity to immunosuppressants”. P3

outperforms GeneRank and Direct method in most
cases. The AUCs of P3 are greater than those of
Direct method and GeneRank by 0.4 and 0.2 in av-
erage respectively, and the maximum differences are

0.6 and 0.8 respectively. Three phenotypes that have
both high AUC values and precisions among the re-
sult of P3 method were chosen for further compar-
ison. They are “Conditional phenotypes”, “Carbon
utilization”, and “Cell morphology and organelle mu-
tants”. Figure 5 (left) shows their ROC curves, and
the corresponding precision-recall curves are shown
in Figure 5 (right).

4.3.2. k-Fold Cross Validation

C. elegans. 10-fold cross validation was carried out
on C. elegans data. Figure 6 shows the distributions
of AUC values of each method. The median, lower
quantile and upper quantile of each group is plot-
ted. As is evident, the performance is considerably
improved by using P3 for phenotype prediction.
Yeast. 5-fold cross validation was carried out on the
yeast data. Figure 7 shows the comparison of dis-
tributions of AUC. The median, lower quantile and
upper quantile of each group is plotted. P3 outper-
forms the other two methods in all cases.

4.3.3. Predicting Phenotypes to Genes

Without Any Interactions

To evaluate our approach in predicting phenotypes
for genes without any interaction information, we
identified those genes that have at least two phe-
notypes but without interactions in both datasets.
We used the phenotype graphs obtained in the
leave-one-out experiment, that were derived without
any information about the test genes. The target
gene/phenotype pairs are separated almost equally
into two groups: one for training and another for
testing. For example, for each gene, if it has two
phenotypes then one is in the training group and an-
other is in the test group. Results show that P3 can
predict most of the phenotypes successfully. Table 4
presents the characteristics of the data and results.

Table 4. Predicting phenotypes for genes without interactions.

Organism Genes Predicted with AUC ≥ 0.8

Caenorhabditis elegans 42 24

Saccharomyces cerevisiae 48 46
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Fig. 4. Overall performance comparison on yeast phenotype dataset. Direct : ranking genes using the interaction network only;

GeneRank : d = 0.1; P3 : β = 0.6

Fig. 5. (left) ROC curves on yeast. (right) Precision vs. Recall on yeast. Direct: points, GeneRank: dashed line, P3: solid
line; circle: Carbon utilization , square: Conditional phenotypes, star: Cell morphology and organelle mutants.

4.4. Phenotype Relations

The complete directed graph of phenotypes is too
complex to describe in detail here. Therefore, we
partition the graph into several highly connected
subgraphs by using the CAST 20 algorithm. CAST
is a heuristic approach for solving the ‘corrupted
cliques’ problem. It transforms an undirected graph
into a set of cliques or almost cliques by repetitively
adding nodes having maximum average similarity to
the current clique, as long as the similarity is above

a threshold λ, and removing nodes with minimum
average similarity to the clique, when the similarity
is less than the threshold. The process stops when
there are no more nodes to add or remove. First,
directions are removed from the edges in the origi-
nal phenotype graph. For each pair of phenotypes,
two directed edges are merged into one undirected
edge. Every new edge is assigned a new weight that
is the average of weights of the original two edges.
The graph is further adjusted by deletions of “weak”
connections between phenotypes. For example, if the
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Fig. 6. AUC distributions on C. elegans. Direct method (left), GeneRank method (middle), and P3 (right).

Fig. 7. AUC distributions on yeast. Direct method (left), GeneRank method (middle), and P3 (right).

weight of the connection between phenotype p to q is
less than a threshold t, then the corresponding edge
is removed. We run the CAST algorithm on this
simplified graph. A set of cliques and almost cliques
are obtained. Each clique/almost clique is a clus-
ter of single or a set of highly related phenotypes.
Genes causing these phenotypes tend to interact or
function together. Figure 8 and Figure 9 show some
of the phenotype cliques obtained. The thickness of
links represents the closeness between phenotypes.
Multiple values are used for parameter t and λ. As t

and λ decrease, the number of cliques decreases and
the size of the maximum clique increases. We choose
the parameter values that give small cliques so that
they are relatively easy to interpret biologically. In
C. elegans, there are 23 cliques/almost cliques, and
the largest clique contains 11 nodes, one clique with
5 nodes, 4 nodes, and 3 nodes respectively, three
cliques with 2 nodes, and the rest are singletons. In
yeast, there are 41 cliques/almost cliques, and the
largest clique contains 11 nodes, one clique with 4
nodes, six with 3 nodes, and six with 2 nodes, the
remaining are singletons.

The C. elegans phenotypes identified in Figure 8

are all related to cell division. The edges suggest
that there are distinct relationships between the for-
mation and behavior of the nuclei, indicative of a
functional role for structural proteins. The role of
structural proteins, acting as conduits for macro-
molecular and organellar movement can also be seen
in the largest clique where cytokinesis (splitting of
the cytoplasm to form two cells) and furrow forma-
tion (where the cells are divided in half) are related.

The larger yeast clique in Figure 9 pertain to
drug sensitivities, including antibiotics. Such associ-
ations could potentially be reflective of the role of the
extracellular domain in resistance or non-resistance
to select antibiotics. Inasmuch, caffeine sensitivity
has been related to the synthesis of phospholipids
(cell membrane components) and changes in calcium
flux. Indeed, the smaller clique relates all of these
concepts through sensitivity to immunosuppresants,
a sensitivity that is related to phosphorylation-based
signal transduction cascades.

5. DISCUSSION

In this paper, we have presented an approach to
modeling phenotype relations and using these rela-
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Fig. 8. Phenotype cliques in the C. elegans dataset derived from P3.

Fig. 9. Phenotype cliques in the S. cerevisiae dataset derived from P3.

tionships to predict phenotypes for uncharacterized
genes. The strong results indicate that the combi-
nation of gene networks and phenotype profiles pro-
vides a powerful synergy that is not obtainable with

either method alone. One limitation is that to be
able to make predictions, a gene should have at least
one known phenotype. In future work, we seek to
capture more complex many-many effects between



July 8, 2008 10:38 WSPC/Trim Size: 11in x 8.5in for Proceedings 021Jin

235

genes and phenotypes and design new experiments
to validate the predictions made.
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