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omThe \standard" method for peptide identi�
ation by tandem mass spe
trometry 
ompares observed mass spe
trato predi
ted mass spe
tra, 
omputed from protein databases. Another approa
h, a
tively promoted in the last fewyears, 
ompares observed mass spe
tra to previously observed, \library" spe
tra. In this paper we des
ribe algorithmsand software for 
ombining the two methods in a way transparent to the user. The software applies the same dot-produ
t s
oring algorithm to theoreti
al and library spe
tra, so that results from the two types of sear
hes are dire
tly
omparable. We show that 
ombined database and library sear
h outperforms either method alone.1. INTRODUCTIONIn the past 15 years, shotgun proteomi
s1; 2 hasemerged as the dominant paradigm for analysis ofprotein samples. In this method, a 
omplex proteinsample is digested with a protease su
h as trypsininto a still-more-
omplex peptide mixture, whi
h isthen separated by liquid 
hromatography (LC) andassayed by tandem mass spe
trometry (MS/MS).The tandem mass spe
tra are most often identi�edby database sear
h, that is, by 
omparison with pre-di
ted, \theoreti
al" spe
tra of peptides in a pro-tein database. There are numerous sear
h tools forthis 
omparison; the most popular ones are Mas
ot3,SEQUEST4, and X!Tandem.5 Tandem spe
tra ofpeptides, however, are not 
ompletely predi
table,as the fragment ions and their relative intensities(peak heights) depend upon the instrument parame-ters and the peptide 
hemistry in some 
ompli
atedand poorly understood way. The spe
trum-libraryapproa
h o�ers an alternative to database sear
h;the idea here is to 
ompare ea
h unknown spe
-trum to previously observed well-identi�ed spe
tra,rather than to theoreti
al spe
tra. This approa
ho�ers shorter sear
h times, be
ause the number offrequently observed peptides (trypti
 or otherwise)from some organism will typi
ally be at least 100times smaller than the total number of peptides inthe proteome. In the long run, on
e spe
trum li-braries o�er suÆ
ient 
overage, the approa
h shouldalso o�er greater sensitivity, be
ause an unknownspe
trum should more 
losely mat
h an observedspe
trum than a theoreti
al spe
trum of the 
orre
t

peptide.Here we propose a hybrid method that enables agra
eful transition to the spe
trum-library approa
h.The spe
trum library 
an be built in-house in the
ourse of biologi
al studies, using one MS set-up,rather than relying on publi
-a

ess spe
trum li-braries from a variety of set-ups. Database-sear
hand spe
trum-library s
oring use exa
tly the samepeaks (a-, b-, and y-ions, neutral losses, and soforth), and only the predi
ted intensities 
hange, sothat the system 
an 
ompare the s
ores from thetwo approa
hes dire
tly. The system automati
ally
hooses the best mat
h, and if the mat
h ex
eeds as
ore threshold, it optionally re
ords the spe
trumfor subsequent sear
hes. Indeed our hybrid tool 
on-sists of two separate programs: ByOni
6 for databasesear
h and a new program 
alled LyBrary for li-brary sear
h. The hybrid approa
h does not o�erthe speed-up of the pure spe
trum-library approa
h,but it o�ers greater sensitivity be
ause it 
an identifya peptide the �rst time it is observed.We tested our hybrid method using two bi-ologi
al samples (Jurkat 
ell lysate and mouseblood plasma) for whi
h we had numerous te
hni-
al repli
ates. We address the following questions:How mu
h sensitivity improvement is possible withthe spe
trum-library approa
h? How mu
h woulddatabase sear
h improve with a

urate intensity pre-di
tion? Can the spe
trum-library approa
h improvethe limit of dete
tion (that is, the lowest 
on
entra-tion at whi
h proteins are reliably dete
ted)?



2. BACKGROUNDWe start with an example peptide agfagddapr++with fragmentation spe
trum shown in Figure 1. Themost important fragment ions 
orrespond to pre�xesand suÆxes of the peptide sequen
e, and these ionsare 
onventionally named a-, b-, and 
-ions and x-,y-, and z-ions, respe
tively. The most 
ommon ionsprodu
ed by CID fragmentation (
ollision-indu
eddisso
iation) are the b- and y-ions. The ion num-ber indi
ates the number of residues, so that the b3ion from the peptide agfagddapr++ is agf+ andthe y6 ion is gddapr+. CID also produ
es some a-ions; the a4 ion is essentially the b4 ion with a lossof 
arbon monoxide (28 Daltons).
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Fig. 1. A tandem-MS spe
trum of agfagddapr++ froma
tin, a
quired on a Thermo LTQ ion-trap instrument. Peaksgrowing up show relative intensity (per
ent of total ion 
ur-rent); 0.5 has been added to ea
h peak for visibility. Peaksgrowing down show ByOni
's rank-based Iobs(s) values andrank-based Iref (s) predi
tions. for the same spe
trum. Rank\
attens" the peak intensities, taking them partway to pres-en
e/absen
e. Unobserved peaks like a3 at 248 and b9 at 802Da have negative Iobs(s) values (not shown).The rationale for the spe
trum library approa
his the following: given the sequen
e agfagddapr,it is hard to predi
t that y6 and y7 would be themost intense y-ions, that b9�18 (water loss fromb9) would be more intense than b9 (a
tually missingfrom Fig. 1), and that a4 would be the only promi-nent a-ion, yet these seem to be stable features oflow-energy CID MS/MS spe
tra, repeated in otherspe
tra of the same peptide as shown in Figure 2.Some other features, however, are apparently not sostable, for example, All�18++ and All�36++ (thefull peptide with water losses) are prominent in Fig. 1

but not in Fig. 2. As shown in Fig. 3, di�erent instru-ment types and di�erent pre
ursor ion 
harges givedi�erent intensity patterns. In this work we limit at-tention to a single type of instrument, whi
h wouldbe the likely s
enario for in-house library sear
h.In order to maximize our library 
overage, we alsolimit attention to +2 pre
ursors, the most impor-tant 
harge state for ion-trap instruments employingCID fragmentation.The spe
trum-library approa
h was proposed byYates et al.7 in 1998, but the �rst large-s
ale e�ortsare the Global Proteome Ma
hine (GPM) by Beaviset al.8; 10 and the PeptideAtlas proje
t by Desiere,Aebersold, et al.12, both of whi
h now have 105 {106 well-identi�ed spe
tra. (An early e�ort by NISTfo
used mostly on small mole
ules.13) The initialannotations for GPM are made by X!Tandem andthe library sear
h software is 
alled X!Hunter. Nowthat the GPM library in
ludes some 400,000 \proteo-typi
" peptides, GPM also o�ers a mode 
alled X!P3in whi
h the library sear
h identi�es the proteins14,and then X!Tandem makes a broader sear
h, in
lud-ing modi�
ations of observed peptides and other pep-tides from the same proteins. The sear
h tool asso-
iated with the PeptideAtlas proje
t is Spe
traST,15part of the Trans Proteomi
 Pipeline from the In-stitute for Systems Biology. Yet another proje
tbuilt library-sear
h software 
alled BiblioSpe
,16 anddemonstrated 
ross-instrument identi�
ation usingtwo types of ion trap, Thermo LCQ and LTQ.All of these e�orts use very simple s
oring al-gorithms. For example, X!Hunter uses only the 20largest peaks in a library spe
trum.10 BiblioSpe
 andSpe
traST use more peaks, but they both roundmass-over-
harge (m/z) measurements to the 
los-est integer, rather than using a settable mass toler-an
e. In all three 
ases, the peaks are not ne
es-sarily identi�ed peaks; the software relies on aver-aging multiple spe
tra to remove noise and improvem/z measurements. (Spe
trum 
lustering11 also av-erages spe
tra, but it averages them prior to identi�-
ation.) Be
ause LyBrary uses only identi�ed peaks,it re
ords exa
t (theoreti
al) m/z values and dis
ardsunexplained \noise" peaks. Exa
t m/z values are of
ourse a great advantage, espe
ially in identifyinghigh-resolution spe
tra (QTOF, Orbitrap, FTICR)using low-resolution library spe
tra (ion-trap). This
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m/zFig. 2. More Thermo LTQ MS/MS spe
tra of agfagddapr++ from three di�erent 
hromatographi
 runs and threedi�erent organisms (human, mouse, and C. elegans). In all 
ases the tallest peaks in
lude y2 at 272, b3 at 276, a4 at319, y3 at 343, b4 at 347, y8++ at 424, y5 at 573, y6 at 630 Da, and y7 at 701. All-18++ and All-36++ at 480 and471 are most prominent in the rightmost spe
trum.
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m/zFig. 3. Agilent QTOF spe
trum of agfagddapr++ on the left, and Thermo LTQ spe
trum of agfagddapr+ on theright. In the QTOF spe
trum, prominent peaks in
lude b3 at 276, b4 at 347, All++ (without water loss) at 489, y6 at630, and y7 at 701. The peaks at 70 and 120 (the tallest) are immonium ions from proline and phenylalanine, rarelyobserved in ion-trap spe
tra. In the spe
trum of the singly-
harged peptide, the tallest peaks are y3 at 343, y4 at 458,y5 at 573, y8 at 848, and All-18+ at 958.design 
hoi
e, however, has a potential downside:maybe there are unusual|and hen
e unidenti�ed|signal peaks, e.g., doubly 
harged b-ions, 
hara
ter-isti
 of the peptide, that LyBrary does not 
onsider.We address this question in Se
tion 5.In previous studies, the library approa
h hasalways given mu
h greater speed, but be
ause ofin
omplete libraries has not always given greatersensitivity.9 Craig et al.10 report 1000-fold speedimprovement and 50% better sensitivity on a sam-ple 
ontaining only bovine serum albumin; in this
ase the spe
trum library had essentially 
omplete
overage. Lam et al.15 report that on four yeastdata sets, Spe
traST always gave a better sen-sitivity/spe
i�
ity tradeo� (ROC 
urve) than SE-QUEST, but SEQUEST gave a larger number ofhigh-probability mat
hes on two of the data sets.Frewen et al.16 report that with their most 
omplete

library (for E. 
oli), BiblioSpe
 
ould make 91% ofthe identi�
ations made by SEQUEST. Library 
ov-erage of yeast and E. 
oli is mu
h more 
ompletethan for organisms with larger proteomes,15 so it isfair to say that 
overage remains the major limita-tion of the spe
trum-library approa
h. We designedLyBrary to �ll this need: library sear
h that workseven without high 
overage.3. ALGORITHMSLyBrary is built on top of ByOni
,6 a 
onventionaldatabase sear
h program. Given an unknown spe
-trum, ByOni
 (respe
tively, LyBrary) s
ores 
andi-date peptides using a s
oring fun
tion that essen-tially takes the dot produ
t of two ve
tors: the ob-served spe
trum and the theoreti
al (library) spe
-trum. Spe
i�
ally, given an observed spe
trum S



and a theoreti
al or library spe
trum T , the s
ore isS
ore(S; T ) =Xs2St2T A

(s; t) � Iobs(s) � Iref(t); (1)where s is a peak in S and t a peak in T . A peakis a pair of numbers: an m/z measurement and anintensity, roughly proportional to ion 
ount.The most informative ions in MS/MS spe
tra ofpeptides are b- and y-ions, whi
h 
orrespond to pre-�xes and suÆxes of the amino a
id sequen
e. Themass of a b-ion is the sum of the residue masses alongwith 1.007 Dalton for the mass of a proton; a y-ionin
ludes the residue masses along with a proton andwater (18.011 Da). Other 
ommonly observed ionsare water and ammonia losses from b- and y-ions, de-noted by �18 and �17 in Figure 4; doubly 
hargedy-ions, su
h as \y9 2+"; and neutral losses from thepre
ursor ion su
h as \All-36 2+" and \All-18 2+".

Fig. 4. A s
reenshot of ByOni
's s
oring report for the pep-tide ssgsllnnamk++. The �rst two 
olumns give observedand theoreti
al m/z values. The third 
olumn shows rela-tive intensity (per
ent of total ion 
urrent); the fourth 
olumnshows rank-based intensity; and the �fth 
olumn, \Wt Fa
-tor" shows ByOni
's predi
tion of the rank-based intensity inarbitrary units. The s
ore is the dot produ
t of 
olumns 4 and5, with ea
h summand in the dot produ
t weighted a

ordingto the 
loseness of the mat
h in the �rst two 
olumns.To be in
luded in the sum for Equation (1), them/z measurements for peaks s and t must mat
hwithin a user-de�ned toleran
e, typi
ally 0.4 Dal-tons per 
harge (Thompsons) for an ion-trap instru-

ment. A

 is a fun
tion that returns 1.0 if the m/zmeasurements mat
h exa
tly and drops to 0.0 in abell-shaped 
urve as the di�eren
e between the mea-surements in
reases to the user-de�ned toleran
e.6ByOni
 uses a rank-based fun
tion for weighting ob-served intensity:Iobs(s) = A=(2 + Rank(s)) + B � RelI(s)� C (2)After 
orre
ting for isotope peaks and varying in-strument sensitivity a
ross the m/z range, Rank(s)is 1 for the tallest peak in S, 2 for the se
ond tallest,and so forth. RelI gives peak s's fra
tion of the totalion 
urrent in S, and A, B, C are empiri
ally 
hosenpositive 
onstants, su
h that the Rank term domi-nates over the RelI term. C is in
luded so that apredi
ted but unobserved peak makes a small nega-tive 
ontribution to S
ore(S; T ); this helps level the
omparison of 
andidates with di�erent numbers ofpredi
ted peaks. See Figures 1 and 4.ByOni
 in
ludes rule-based \expert system"
ode (following the lead of Zhang17) that attempts topredi
t Iobs(s) based on the peptide sequen
e, 
hargestate, instrument type, and so forth; this predi
tionis used as Iref(s). The expert system in
ludes 
hem-i
al knowledge su
h as the fa
ts that y5 { y9 ionstend to be strong, that a2 and a4 are the most likelya-ions, and that 
leavage is likely on the C-terminalside of proline (hen
e the strong y1 peak in Figure 1).The expert system is of 
ourse obviated by the li-brary approa
h, and for LyBrary we tried various
hoi
es for Iref(s) as des
ribed below. ByOni
's rank-based Iobs(s) and Iref(t) were 
hosen for robustness;with the library approa
h more aggressive intensityweighting is possible.S
orers in other sear
h tools di�er in variousways. For example, Mas
ot uses 0 = 1 values for bothIobs(s) and Iref(t), using the intensities only to de-
ide where to 
ut o� the observed peak list andwhi
h \peak series" (a-, b-, y-ions, et
.) to s
ore.X!Tandem uses relative intensity for Iobs(s) (normal-ized to the tallest peak rather than the total ion
urrent) and unit intensities for Iref(t). SEQUESTuses relative intensity within an m/z band for Iobs(s)and unit intensities for Iref(t). None of the majordatabase sear
h engines in
lude an A

 term, butseveral de novo sequen
ers do.18



3.1. Library Spe
trum Intensity WeightsLyBrary's s
orer di�ers from ByOni
 only in theweights Iref(s). We explored three possibilities. Inall 
ases, we normalized the Eu
lidean length of theve
tor of Iref(s) values to agree with the length ofthe ve
tor predi
ted by ByOni
's expert system. Ly-Brary s
ores are thus 
omparable to ByOni
 s
ores,but we expe
t LyBrary s
ores for 
orre
t mat
hesto be somewhat higher, be
ause the peak intensitiesfrom library spe
tra should be more a

urate thanthose from theoreti
al spe
tra, that is, the angle be-tween the observed and library spe
tra, regarded asve
tors, should be 
loser to zero. For a given peptidep, let S(p) denote the library spe
trum mat
hing pwith highest ByOni
 s
ore. We also tried using theaverage of all library spe
tra for p, but the resultswere almost identi
al.(1) Rank-based intensities. In this option, Ly-Brary set Iref(s) equal to Iobs(s) in S(p).(2) Relative intensities. LyBrary set Iref(s) to therelative intensity of s in S(p).(3) Square root. LyBrary set Iref(s) to the squareroot of the relative intensity of s in S(p).3.2. Software Ar
hite
tureFor a top-s
oring peptide-to-spe
trum mat
h (PSM),ByOni
 writes out a s
oring report su
h as the oneshown in Figure 4. The report details ea
h peakdown to rank 20 { 200 (depending upon peptide massand the number of peaks in the spe
trum), its inten-sity, its predi
ted intensity (if any), and so forth. Thereport also in
ludes predi
ted peaks not observedand large unexplained peaks (at least 0.5% of thetotal intensity in the MS/MS spe
trum).LyBrary really 
onsists of two programs:Ar
hive and LibS
ore. Ar
hive parses and refor-mats ByOni
's s
oring reports into a spe
trum li-brary. The library is organized by pre
ursor mass,so that one �le in
ludes all peptides with pre
ursormass 1600 { 1700 Da, another in
ludes all with pre-
ursor mass 1700 { 1800, and so forth. In order tos
ore an unknown spe
trum, LibS
ore opens the rel-evant library �les and s
ores all the peptides with theright pre
ursor mass. For example, if the unknownspe
trum has pre
ursor mass 1708.78, LibS
ore run

without modi�
ations (and pre
ursor mass toleran
eat most 8 Da) would open only the �le with masses1700 { 1800 Da. If oxidized methionine were en-abled, then LibS
ore would also open the �le withmasses 1600 { 1700 Da in order to s
ore peptides of(unmodi�ed) mass 1708:78�15:995with one m[+16℄,peptides of mass 1708:78�31:990 with two m[+16℄'s,and so forth. LibS
ore, like ByOni
, sets reasonablelimits on the numbers of modi�
ations per peptide,at most two m[+16℄'s, at most one sodiation, and soforth.LibS
ore uses ByOni
's predi
ted peak intensi-ties to normalize the previously observed peak inten-sities; these normalized intensities, an equal-lengthbut di�erent-dire
tion ve
tor, then substitute for By-Oni
's predi
tions in the s
oring subroutine. Lib-S
ore writes its output in the same plain-text for-mat as ByOni
, so that subsequent programs likeComByne19 (a peptide-to-protein integration tool)
an use output from either program, or even 
on
ate-nated �les produ
ed by any 
ombination of sear
hesfrom either tool. Our hybrid approa
h a
tually 
on-sists of a run of ByOni
 and a run of LibS
ore (ona previously built library), a 
on
atenation of thetwo outputs, and then a run of ComByne to produ
ethe �nal report, whi
h we generally read into an Ex-
el spreadsheet. ComByne always pi
ks the highests
oring PSM for ea
h spe
trum, regardless of the ori-gin (ByOni
 or LibS
ore) of the PSM.LibS
ore a
tually has two ways to make modi-�
ation identi�
ations: it 
an use either a previousobservation of the same peptide with (exa
tly) thesame modi�
ations, or a previous observation of thesame peptide without modi�
ations. (In all the ex-periments reported in Se
tion 4, however, we usedonly the latter path.) LibS
ore 
annot 
urrently usean observation of dnstm[+16℄gymmak to identifydnstm[+16℄gym[+16℄mak. When LibS
ore usesan unmodi�ed library peptide to identify a modi�edunknown, it assumes that the peak intensity patternis un
hanged, only the masses are shifted. This as-sumption is reasonable for most low-mass modi�
a-tions, and has been validated in Bandeira's work onspe
tral networks analysis,20 but the assumption isnot wholly true form[+16℄, whi
h sometimes loses 64Da, and is quite untrue for phosphorylation (s[+80℄and t[+80℄), whi
h has a prominent neutral loss of



98 Da. In the 
ase that both modi�ed and unmodi-�ed peptides are in the library, LibS
ore obliviouslys
ores the 
andidate mat
h both ways and retainsonly the higher s
ore.4. EXPERIMENTAL RESULTSWe used two data sets, des
ribed below. Due tola
k of suÆ
ient data, we did not attempt to use aspe
trum library built for one type of instrument tomake identi�
ations on another type, nor did we at-tempt to identify the same peptide in di�erent 
hargestates.(1) Jurkat Cell Lysate. Five LC-MS/MS runs ona Thermo LTQ Orbitrap, with Orbitrap single-MS and LTQ MS/MS. These runs are essentiallyte
hni
al repli
ates, di�ering only in details ofthe data a
quisition (e.g., whether the top 5 or10 peaks in the single-MS s
an were sele
ted forMS/MS).(2) Mouse Blood Plasma. Six LC-MS/MS runson a Thermo LTQ of MARS-depleted mouseblood plasma, spiked with low 
on
entrations of13 soluble human proteins. (MARS is \multipleaÆnity removal system" for removing serum al-bumin and 5 other abundant proteins in orderto improve dynami
 range.) The spiked proteinswere at two di�erent 
on
entrations, 1 �g/mland 10 �g/ml, with 3 te
hni
al repli
ates at ea
h
on
entration.4.1. Complete CoverageWe used the Jurkat sample to test how mu
h sensi-tivity gain is possible with the spe
trum library ap-proa
h, assuming a best-
ase s
enario in whi
h thelibrary has 
omplete 
overage of all the peptides inthe sample. In this 
omputational experiment, we�rst used ByOni
 for a 
onventional database sear
husing the IPI human protein database with about49,000 protein sequen
es. We in
luded reversed pro-tein sequen
es as \de
oys" in order to measure falsepositive and false dis
overy rates.21 We ran sear
heswith and without modi�
ations enabled; the modi�-
ations 
onsidered were oxidation (m), deamidation(n and q), pyro-glu (N-terminal e and q), a
etyla-tion (
, s, k and N-terminus), disul�de bridge (sin
e

the sample had no 
ysteine treatment), 
arbamyla-tion (k, r and N-terminus).Orbitrap pre
ursor masses were good to about�7 ppm, so we judged 20 ppm to be a safe toleran
efor pre
ursor masses. High pre
ursor mass a

ura
yalone is very informative and hen
e 
an mask dif-feren
es between s
oring algorithms, so we also ransear
hes with a \�
titious" pre
ursor mass toleran
eof 5 Da.Table 1. Numbers of mat
hes to 30 abundant peptides fordatabase sear
h (ByOni
) and spe
trum library (LyBrary),using either 20 ppm or 5 Da pre
ursor mass toleran
e. Wereport average numbers over the 5 runs, for two di�erentsear
hes: a no-modi�
ation sear
h, and a sear
h with 13modi�
ations enabled. The �rst four lines of the table showthat library sear
h with rank-based weighting gives about10% { 20% greater sensitivity than database sear
h withrank-based weighting. The last three lines show that rankand square-root weighting beat relative intensity.Sear
h # No mod # ModsByOni
 (5 Da) 133.6 142.0ByOni
 (20 ppm) 137.4 146.4LyBrary (rank, 5 Da) 147.0 155.8LyBrary (rank, 20 ppm) 157.6 172.6LyBrary (sqrt root, 5 Da) 145.6 154.0LyBrary (relative, 5 Da) 133.4 142.2The spe
trum library for run 1 in
luded allhigh-s
oring spe
tra from runs 2{4, even those thatmat
hed de
oy peptides. This \aggressive" poli
y al-lowed us to generate the library automati
ally, with-out any manual 
uration. The library for run 1 in-
luded 6804 peptides, in
luding 348 reversed pep-tides. We used a similar leave-one-out approa
h forall 5 runs. For both database sear
h and librarysear
h, we 
ounted the number of mat
hes (of anys
ore) to 30 abundant trypti
 peptides found in all5 runs, all of whi
h are true (non-reversed) peptides.This simulates the 
ase of 
omplete 
overage, be-
ause we only 
ount peptides represented in all spe
-trum libraries. Mat
hes to the top 30 peptides arepresumed 
orre
t, be
ause the top 30 peptides repre-sent less than 0.5% of the spe
trum library and lessthan 0.01% of the protein database. We use the num-ber of mat
hes to the top 30 peptides as a proxy forthe overall number of 
orre
t mat
hes (\sensitivity"or \re
all"), be
ause it is hard to validate mat
hes tolow-ranking peptides or proteins in 
omplex naturalsamples.



Table 2. Numbers of mat
hes to the top 100 proteins in run 1 of the Jurkat 
ell lysate for database sear
h (ByOni
),spe
trum library (LyBrary), and 
ombined sear
h. The spe
trum library was built using runs 2 { 5.Sear
h # Spe
tra # Mod Spe
tra # Unique Coverage of Top 3 ProteinsByOni
 1567 216 1241 32.6% 44.7% 20.7%LyBrary (rank-based) 1717 208 1206 24.6% 30.0% 16.5%LyBrary (relative intensity) 1704 195 1184 25.6% 30.0% 17.4%LyBrary (sqrt relative intensity) 1715 194 1199 24.6% 30.0% 16.5%ByOni
 + LyBrary (rank-based) 1846 255 1406 34.1% 43.8% 22.1%As shown in Table 1, library sear
h outperformsdatabase sear
h by a small amount. Rank-based andsquare-root of relative intensity outperformed rawrelative intensity, whi
h gave the top few peaks toomu
h 
onsideration. Top peaks su
h as \All-18 2+"(the entire peptide, doubly 
harged, with one wa-ter loss) do not dis
riminate between 
andidate pep-tides of the same pre
ursor mass very e�e
tively be-
ause most peptides 
an lose water. Frewen et al.16also found that using the square-root gave better re-sults. Surprisingly, high pre
ursor mass a

ura
ygave LyBrary a bigger boost than it gave ByOni
.We attribute this to the sizes of the library and thedatabase. 20 ppm pre
ursor a

ura
y typi
ally limitsthe number of library possibilities to about 10 (100if modi�
ations are enabled) so that even very poorspe
tra with few fragment peaks 
an be identi�ed,but the number of database possibilities is still onthe order of 104 (or 105 with modi�
ations).The experiment des
ribed in this se
tion alsogives a partial answer to another of our questions.If we 
ontinue to develop ByOni
's intensity predi
-tion, without making any other improvements, we
an expe
t to a
hieve only moderate gains in sensi-tivity, at most about 20% more identi�
ations at thespe
trum level.4.2. In
omplete CoverageIn this se
tion, we drop the 
omplete-
overage as-sumption and address a more realisti
 s
enario inwhi
h the spe
trum library is built from a small num-ber of similar samples and hen
e has in
omplete 
ov-erage. We again used a leave-one-out approa
h, withthe spe
trum library for run 1 built using runs 2 {5, but now we 
onsider not just the top 30 peptides,but all peptides in top proteins. Table 2 reports thenumber of spe
tra mat
hed to peptides from the top100 proteins in run 1 of the Jurkat 
ell lysate, forByOni
, LyBrary, and a hybrid run, whi
h ran both

ByOni
 and LyBrary as explained above. We used 20ppm pre
ursor mass toleran
e and sear
hed trypti
and semitrypi
 +2 peptides with the same modi�-
ation list as above. The top-100 protein list was
ompiled by an initial run of ByOni
 and ComByne,but a protein list 
ompiled using LyBrary and Com-Byne is not mu
h di�erent.As shown in the table, ByOni
 alone mat
hedfewer spe
tra to the top 100 proteins, but foundmore unique peptides and more modi�ed peptides.The di�eren
e in performan
e was modest|LyBrarygave less than 10% more mat
hed spe
tra. Runs 2{ 5 (not shown) give similar results, with LyBrary'sedge varying from 9% to 12%. On all runs, the hy-brid approa
h gave the best results on all measures,with an edge of 15% to 21% over ByOni
 alone.On this sample, it appears that a set of four runsof exa
tly the same material on exa
tly the same pro-teomi
s set-up gives de
ent but not 
omplete 
over-age. LyBrary found almost as many unique pep-tides as database sear
h, but its 
overage of the top3 proteins fell short of ByOni
's 
overage. This is
onsistent with MS/MS studies22 in whi
h repeatruns 
onsistently yield some new peptide and pro-tein identi�
ations. Table 3 gives our own studyof this type. ByOni
 
an make these new identi�-
ations, but LyBrary alone 
annot identify peptidesnot represented in the library. Conversely, LyBrary'sidenti�
ations that were not found by ByOni
 of-ten mat
hed poor spe
tra to already-identi�ed abun-dant peptides at the beginning or end of their elutionpulses, or mat
hed poor spe
tra to modi�ed versionsof abundant peptides. The �rst type of extra identi-�
ation is not espe
ially useful, but the se
ond typemay be quite important if the modi�
ations are bio-logi
ally a
tive. Be
ause ByOni
 and LyBrary havedi�erent strong points, the hybrid approa
h gives thebest overall analysis of the data.



Table 3. Numbers of peptides and proteins found by
ombining ByOni
's database-sear
h identi�
ations from6 repeat runs of the mouse blood plasma sample. Thepeptide number is the number of distin
t peptides in the3 most abundant proteins (Alpha-2-ma
roglobulin, 
om-plement C3, and murinoglobulin), with di�erent modi�-
ation states 
onsidered distin
t. Coverages gives per
ent
overage for the top 3 proteins. The protein number is thenumber of proteins ranked above the 3rd highest reverse.Runs # Peptides Coverages # Prots1 281 58% 61% 50% 1391{2 353 61% 67% 54% 1501{3 388 62% 69% 57% 1541{4 450 67% 75% 60% 1611{5 506 67% 77% 61% 1671{6 535 68% 79% 61% 167What about protein sensitivity? We usedComByne19 to integrate peptide identi�
ations intoprotein identi�
ations. ByOni
 �nds 269 proteins at1% FDR as measured by the number of reversed pro-teins, that is, ComByne's ranked list put the thirdhighest reversed protein at rank 272. LyBrary alone�nds fewer proteins|typi
ally around 200|and thenumber is unstable and hard to estimate be
ause thespe
trum library 
ontains only a few reversed pep-tides for gauging FDR. The best result was obtainedby ByOni
 plus LyBrary (rank-based) using a 
on-servative spe
trum library, whi
h in
luded only ex-tremely high-s
oring spe
tra and no spe
tra mat
h-ing reversed peptides. This 
ombination found 296proteins at 1% FDR.4.3. Improved Limit of Dete
tion?Sample 2 
onsists of mouse blood plasma, spikedwith either low (1 �g/ml) or high (10 �g/ml) 
on-
entrations of 13 soluble human proteins. We built aspe
trum library using 3 
hromatographi
 runs withhigh 
on
entrations, where the spiked proteins arefairly easy to dete
t, to test whether the spe
trumlibrary approa
h would help �nd the spiked proteinsin the lower 
on
entration samples, where many ofthe spiked proteins are missed by ByOni
 (and everyother database sear
h engine we have tried). Thequestion we would like to answer is whether low-abundan
e proteins are missed be
ause they have noMS/MS spe
tra or be
ause their MS/MS spe
tra aretoo poor to be identi�ed.Again we used an aggressive spe
trum libraryin
luding both forward and reversed proteins. We

sear
hed the spe
tra for trypti
 and semitrypti
 pep-tides, assuming only +2 pre
ursor 
harge, withoutany modi�
ations enabled. For the mouse bloodplasma sample, whi
h was taken on a Thermo LTQinstrument (without Orbitrap), the 
harge 
annotbe reliably determined in advan
e, but previoussear
hes on this sample showed that +2 pre
ursorspredominate and that less than 10% of the peptides
arry modi�
ations. Overall results were 
onsistentwith the earlier experiments. ByOni
 alone mat
hed1516 spe
tra representing 894 unique peptides tothe top 100 proteins. LyBrary alone mat
hed 1582peptides representing 614 unique peptides. The hy-brid approa
hmat
hed 1778 spe
tra representing 916unique peptides. The top-ranked reversed proteinhad rank 120 for ByOni
, 110 for LyBrary, and 113for ByOni
 + LyBrary. All three approa
hes foundthe same 8 spiked proteins with about the same 
on-�den
e, in the sense that for all three approa
hes 5of the 8 proteins were reliably identi�ed (above thetop-ranking reverse protein) and 3 were in the grayzone (below the top-ranking reverse, but well abovethe noise zone, the point in the ranked list at whi
hhalf of the protein identi�
ations are reversed).This result suggests that although the hybridapproa
h does indeed o�er higher sensitivity at thespe
trum level (17% more mat
hes to the top pro-teins, 
onsistent with the results on the Jurkat sam-ple), it does not o�er 
ommensurate improvementat the protein level. We believe that low-abundan
eproteins, at least in single-LC runs of blood plasma,are most often missed be
ause they have no MS/MSspe
tra at all. Blood plasma is very ri
h in peptides,so that the usual top-5 or top-10 approa
h to shotgunproteomi
s (pi
king only the 5 or 10 biggest single-MS peaks for MS/MS) will fail to a
quire MS/MSspe
tra for many low-abundan
e proteins.5. DISCUSSIONLibrary sear
h potentially improves sensitivity in twoways. First, it provides a fo
used database 
ontain-ing only observable \proteotypi
" peptides.9 Evenour aggressive library-building strategy gave librariesof less than 10,000 peptides, but the full IPI humanprotein database 
ontains on the order of 106 trypti
peptides. Se
ond, library sear
h gives more a

urateintensity predi
tions for fragment peaks, be
ause the



predi
tions are based on previous observations ratherthan general prin
iples. Thus one might hope thatlibrary sear
h would give very large sensitivity gainsover database sear
h. Unfortunately this does notseem to be the 
ase. Craig et al.10 reported 50%greater sensitivity in the 
omplete-
overage 
ase; andwe report mu
h less, only 10% { 20% improvement,in Table 1.Why did our library sear
h program fall short?We think that ByOni
 provides a better baselinethan X!Tandem and leaves less room for improve-ment. X!Tandem does not predi
t peak intensities,and does not s
ore neutral losses nor doubly 
hargedions, whi
h are often among the top 20 peaks. Eventhough ByOni
's expert system 
annot predi
t rela-tive intensity very a

urately, it 
an predi
t rank-based intensity reasonably well. ByOni
's predi
-tions of rank-based intensity have median 
orrelation
oeÆ
ient 0.559 with observed rank-based intensi-ties. This number is the 
orrelation of 
olumns 4 and5 (Rank Wt and Wt Fa
tor) of the s
oring reports(Figure 4), with the median taken over 920 uniquepeptides from the blood plasma sample. Observedand re-observed rank-based intensities|the analo-gous statisti
 for LyBrary|give median 
orrelation
oeÆ
ient 0.780. The 
orrelation 
oeÆ
ient for ob-served and re-observed relative intensities is higher(around 0.9) be
ause a few strong peaks dominate.Finally, we return to the question of whether thelibrary approa
h should use spe
tra 
ontaining allobserved peaks as in GPM and PeptideAtlas or onlyidenti�ed peaks. In this work we used only identi�edpeaks for 
ompatibility with database sear
h. Afterrunning our 
omputational experiments, we tenta-tively 
on
lude that this 
hoi
e did not adversely af-fe
t the spe
trum library approa
h. The number oflarge unexplained peaks (greater than 0.5% of totalion 
urrent) is not overwhelming. For example in theaggressive library for run 4, there are about 28,000large unexplained peaks and 174,000 explained peaks(large and small) in 6606 library spe
tra. Predi
tedbut unobserved peaks are 
ommon|129,000 in thesame library.What are the large unexplained peaks? Are theyion types not 
onsidered by ByOni
? For CID ion-trap spe
tra of +2 pre
ursors, ByOni
 
onsiders thefollowing peaks (and s
ores them if they fall into the

right m/z range): b1 { bn�1, where n is the length ofthe 
andidate peptide, y1 { yn�1, along with singlewater and ammonia losses from these ions. ByOni
also s
ores doubly 
harged y-ions from y4 to yn�1,the a-ions a2 { a8, and single and double neutrallosses from the pre
ursor ion. ByOni
 does not s
orethe following ions: internal fragments, a-ions largerthan a8, doubly 
harged b-ions, double neutral losses(e.g., two waters or one water and one ammonia)from b- or y-ions, and triple neutral losses from thepre
ursor ion. We have observed all of the ignoredions just named, but statisti
s on our training setssuggest that these ions are infrequent and not worths
oring. In fa
t, ByOni
 deliberately \over-s
ores",in
luding some infrequent peaks (b1, a3, water lossesfrom small y-ions) just for 
ompleteness.In manual inspe
tion of a small number (10s) oflibrary spe
tra, the single most 
ommon explanationfor large unexplained peaks was unre
ognized iso-tope peaks. ByOni
 requires fairly tight toleran
eson m/z and intensity in order to dismiss a peak asan isotope peak of another (explained) peak. If apeak does not �t within these toleran
es, then it is
onsidered unexplained. The se
ond most 
ommonexplanation was no explanation|expert inspe
tion
ould �nd no ion from the identi�ed peptide thatwould explain the peak.ACKNOWLEDGMENTSThe author thanks Don Kirkpatri
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