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The “standard” method for peptide identification by tandem mass spectrometry compares observed mass spectra
to predicted mass spectra, computed from protein databases. Another approach, actively promoted in the last few
years, compares observed mass spectra to previously observed, “library” spectra. In this paper we describe algorithms
and software for combining the two methods in a way transparent to the user. The software applies the same dot-
product scoring algorithm to theoretical and library spectra, so that results from the two types of searches are directly
comparable. We show that combined database and library search outperforms either method alone.

1. INTRODUCTION

In the past 15 years, shotgun proteomics® ? has
emerged as the dominant paradigm for analysis of
protein samples. In this method, a complex protein
sample is digested with a protease such as trypsin
into a still-more-complex peptide mixture, which is
then separated by liquid chromatography (LC) and
assayed by tandem mass spectrometry (MS/MS).
The tandem mass spectra are most often identified
by database search, that is, by comparison with pre-
dicted, “theoretical” spectra of peptides in a pro-
tein database. There are numerous search tools for
this comparison; the most popular ones are Mascot?,
SEQUEST*, and X!Tandem.® Tandem spectra of
peptides, however, are not completely predictable,
as the fragment ions and their relative intensities
(peak heights) depend upon the instrument parame-
ters and the peptide chemistry in some complicated
and poorly understood way. The spectrum-library
approach offers an alternative to database search;
the idea here is to compare each unknown spec-
trum to previously observed well-identified spectra,
rather than to theoretical spectra. This approach
offers shorter search times, because the number of
frequently observed peptides (tryptic or otherwise)
from some organism will typically be at least 100
times smaller than the total number of peptides in
the proteome. In the long run, once spectrum li-
braries offer sufficient coverage, the approach should
also offer greater sensitivity, because an unknown
spectrum should more closely match an observed
spectrum than a theoretical spectrum of the correct

peptide.

Here we propose a hybrid method that enables a
graceful transition to the spectrum-library approach.
The spectrum library can be built in-house in the
course of biological studies, using one MS set-up,
rather than relying on public-access spectrum li-
braries from a variety of set-ups. Database-search
and spectrum-library scoring use exactly the same
peaks (a-, b-, and y-ions, neutral losses, and so
forth), and only the predicted intensities change, so
that the system can compare the scores from the
two approaches directly. The system automatically
chooses the best match, and if the match exceeds a
score threshold, it optionally records the spectrum
for subsequent searches. Indeed our hybrid tool con-
sists of two separate programs: ByOnic® for database
search and a new program called LyBrary for li-
brary search. The hybrid approach does not offer
the speed-up of the pure spectrum-library approach,
but it offers greater sensitivity because it can identify
a peptide the first time it is observed.

We tested our hybrid method using two bi-
ological samples (Jurkat cell lysate and mouse
blood plasma) for which we had numerous techni-
cal replicates. We address the following questions:
How much sensitivity improvement is possible with
the spectrum-library approach? How much would
database search improve with accurate intensity pre-
diction? Can the spectrum-library approach improve
the limit of detection (that is, the lowest concentra-
tion at which proteins are reliably detected)?



2. BACKGROUND

We start with an example peptide AGFAGDDAPRTT
with fragmentation spectrum shown in Figure 1. The
most important fragment ions correspond to prefixes
and suffixes of the peptide sequence, and these ions
are conventionally named a-, b-, and c-ions and x-,
y-, and z-ions, respectively. The most common ions
produced by CID fragmentation (collision-induced
dissociation) are the b- and y-ions. The ion num-
ber indicates the number of residues, so that the b3
ion from the peptide AGFAGDDAPRTT is AGFT and
the y6 ion is GDDAPR™. CID also produces some a-
ions; the a4 ion is essentially the b4 ion with a loss
of carbon monoxide (28 Daltons).

10

All-18++
51 All-36++
3 yO++ ¥6
V3 yo-18++
yi b3 a0 Y5 7
%‘ vz ¥ 4 ven fll [bs, Y5 b7} k8| bo-18, ys, yo
s 0
=
5t
-10 I I I I
0 200 400 600 800 1000

m/z

Fig. 1. A tandem-MS spectrum of AGFAGDDAPRTT from
actin, acquired on a Thermo LTQ ion-trap instrument. Peaks
growing up show relative intensity (percent of total ion cur-
rent); 0.5 has been added to each peak for visibility. Peaks
growing down show ByOnic’s rank-based I,ps(s) values and
rank-based I.ef(s) predictions. for the same spectrum. Rank
“flattens” the peak intensities, taking them partway to pres-
ence/absence. Unobserved peaks like a3 at 248 and b9 at 802
Da have negative I,ps(s) values (not shown).

The rationale for the spectrum library approach
is the following: given the sequence AGFAGDDAPR,
it is hard to predict that y6 and y7 would be the
most intense y-ions, that b9—18 (water loss from
b9) would be more intense than b9 (actually missing
from Fig. 1), and that a4 would be the only promi-
nent a-ion, yet these seem to be stable features of
low-energy CID MS/MS spectra, repeated in other
spectra of the same peptide as shown in Figure 2.
Some other features, however, are apparently not so
stable, for example, All—18"% and All-36"" (the
full peptide with water losses) are prominent in Fig. 1

but not in Fig. 2. As shown in Fig. 3, different instru-
ment types and different precursor ion charges give
different intensity patterns. In this work we limit at-
tention to a single type of instrument, which would
be the likely scenario for in-house library search.
In order to maximize our library coverage, we also
limit attention to +2 precursors, the most impor-
tant charge state for ion-trap instruments employing
CID fragmentation.

The spectrum-library approach was proposed by
Yates et al.” in 1998, but the first large-scale efforts
are the Global Proteome Machine (GPM) by Beavis
et al.® 19 and the PeptideAtlas project by Desiere,
Aebersold, et al.'2, both of which now have 10°> —
105 well-identified spectra. (An early effort by NIST
focused mostly on small molecules.'®) The initial
annotations for GPM are made by X!Tandem and
the library search software is called X!Hunter. Now
that the GPM library includes some 400,000 “proteo-
typic” peptides, GPM also offers a mode called X!P3
in which the library search identifies the proteins'4,
and then X!Tandem makes a broader search, includ-
ing modifications of observed peptides and other pep-
tides from the same proteins. The search tool asso-
ciated with the PeptideAtlas project is SpectraST,*®
part of the Trans Proteomic Pipeline from the In-
stitute for Systems Biology. Yet another project
built library-search software called BiblioSpec,'® and
demonstrated cross-instrument identification using
two types of ion trap, Thermo LCQ and LTQ.

All of these efforts use very simple scoring al-
gorithms. For example, X!Hunter uses only the 20
largest peaks in a library spectrum.'® BiblioSpec and
SpectraST use more peaks, but they both round
mass-over-charge (m/z) measurements to the clos-
est integer, rather than using a settable mass toler-
ance. In all three cases, the peaks are not neces-
sarily identified peaks; the software relies on aver-
aging multiple spectra to remove noise and improve
m/z measurements. (Spectrum clustering!! also av-
erages spectra, but it averages them prior to identifi-
cation.) Because LyBrary uses only identified peaks,
it records exact (theoretical) m/z values and discards
unexplained “noise” peaks. Exact m/z values are of
course a great advantage, especially in identifying
high-resolution spectra (QTOF, Orbitrap, FTICR)
using low-resolution library spectra (ion-trap). This
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Fig. 2. More Thermo LTQ MS/MS spectra of AGFAGDDAPRTT from three different chromatographic runs and three
different organisms (human, mouse, and C. elegans). In all cases the tallest peaks include y2 at 272, b3 at 276, ad at
319, y3 at 343, b4 at 347, y81TT at 424, y5 at 573, y6 at 630 Da, and y7 at 701. All-18TT and All-36TT at 480 and

471 are most prominent in the rightmost spectrum.
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Fig. 3. Agilent QTOF spectrum of AGFAGDDAPR T on the left, and Thermo LTQ spectrum of AGFAGDDAPR™ on the
right. In the QTOF spectrum, prominent peaks include b3 at 276, b4 at 347, AllTT (without water loss) at 489, y6 at
630, and y7 at 701. The peaks at 70 and 120 (the tallest) are immonium ions from proline and phenylalanine, rarely
observed in ion-trap spectra. In the spectrum of the singly-charged peptide, the tallest peaks are y3 at 343, y4 at 458,

yb at 573, y8 at 848, and All-187" at 958.

design choice, however, has a potential downside:
maybe there are unusual—and hence unidentified—
signal peaks, e.g., doubly charged b-ions, character-
istic of the peptide, that LyBrary does not consider.
We address this question in Section 5.

In previous studies, the library approach has
always given much greater speed, but because of
incomplete libraries has not always given greater
sensitivity.” Craig et al.!® report 1000-fold speed
improvement and 50% better sensitivity on a sam-
ple containing only bovine serum albumin; in this
case the spectrum library had essentially complete

Lam et al.l®

coverage. report that on four yeast
data sets, SpectraST always gave a better sen-
sitivity /specificity tradeoff (ROC curve) than SE-
QUEST, but SEQUEST gave a larger number of
high-probability matches on two of the data sets.

Frewen et al.'® report that with their most complete

library (for E. coli), BiblioSpec could make 91% of
the identifications made by SEQUEST. Library cov-
erage of yeast and E. coli is much more complete
than for organisms with larger proteomes,'® so it is
fair to say that coverage remains the major limita-
tion of the spectrum-library approach. We designed
LyBrary to fill this need: library search that works

even without high coverage.

3. ALGORITHMS

LyBrary is built on top of ByOnic,® a conventional
database search program. Given an unknown spec-
trum, ByOnic (respectively, LyBrary) scores candi-
date peptides using a scoring function that essen-
tially takes the dot product of two vectors: the ob-
served spectrum and the theoretical (library) spec-
trum. Specifically, given an observed spectrum S



and a theoretical or library spectrum 7', the score is

Score(S,T) = Z Acc(s,t) - Tops(s) - Let(t), (1)

sES
teT

where s is a peak in S and ¢ a peak in T". A peak
is a pair of numbers: an m/z measurement and an
intensity, roughly proportional to ion count.

The most informative ions in MS/MS spectra of
peptides are b- and y-ions, which correspond to pre-
fixes and suffixes of the amino acid sequence. The
mass of a b-ion is the sum of the residue masses along
with 1.007 Dalton for the mass of a proton; a y-ion
includes the residue masses along with a proton and
water (18.011 Da). Other commonly observed ions
are water and ammonia losses from b- and y-ions, de-
noted by —18 and —17 in Figure 4; doubly charged
y-ions, such as “y9 2+4”; and neutral losses from the
precursor ion such as “All-36 2+” and “All-18 2+”.
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Fig. 4. A screenshot of ByOnic’s scoring report for the pep-
tide ssGSLLNNAMKTT. The first two columns give observed
and theoretical m/z values. The third column shows rela-
tive intensity (percent of total ion current); the fourth column
shows rank-based intensity; and the fifth column, “Wt Fac-
tor” shows ByOnic’s prediction of the rank-based intensity in
arbitrary units. The score is the dot product of columns 4 and
5, with each summand in the dot product weighted according
to the closeness of the match in the first two columns.

To be included in the sum for Equation (1), the
m/z measurements for peaks s and ¢ must match
within a user-defined tolerance, typically 0.4 Dal-
tons per charge (Thompsons) for an ion-trap instru-

ment. Acc is a function that returns 1.0 if the m/z
measurements match exactly and drops to 0.0 in a
bell-shaped curve as the difference between the mea-
surements increases to the user-defined tolerance.’
ByOnic uses a rank-based function for weighting ob-

served intensity:
Iobs(s) = A/(2 + Rank(s)) + B - Rell(s) = C  (2)

After correcting for isotope peaks and varying in-
strument sensitivity across the m/z range, Rank(s)
is 1 for the tallest peak in S, 2 for the second tallest,
and so forth. Rell gives peak s’s fraction of the total
ion current in S, and A, B, C are empirically chosen
positive constants, such that the Rank term domi-
nates over the Rell term. C is included so that a
predicted but unobserved peak makes a small nega-
tive contribution to Score(S,T'); this helps level the
comparison of candidates with different numbers of
predicted peaks. See Figures 1 and 4.

ByOnic includes rule-based “expert system”
code (following the lead of Zhang!") that attempts to
predict Iops(s) based on the peptide sequence, charge
state, instrument type, and so forth; this prediction
is used as L.ef(s). The expert system includes chem-
ical knowledge such as the facts that y5 — y9 ions
tend to be strong, that a2 and a4 are the most likely
a-ions, and that cleavage is likely on the C-terminal
side of proline (hence the strong y1 peak in Figure 1).
The expert system is of course obviated by the li-
brary approach, and for LyBrary we tried various
choices for L..¢(s) as described below. ByOnic’s rank-
based Iops(s) and Leer(t) were chosen for robustness;
with the library approach more aggressive intensity
weighting is possible.

Scorers in other search tools differ in various
ways. For example, Mascot uses 0/ 1 values for both
Lobs(s) and Liee(t), using the intensities only to de-
cide where to cut off the observed peak list and
which “peak series” (a-, b-, y-ions, etc.) to score.
X!Tandem uses relative intensity for Iops(s) (normal-
ized to the tallest peak rather than the total ion
SEQUEST
uses relative intensity within an m/z band for Iops(s)

current) and unit intensities for L.er().
and unit intensities for Le¢(t). None of the major
database search engines include an Acc term, but
several de novo sequencers do.8



3.1. Library Spectrum Intensity Weights

LyBrary’s scorer differs from ByOnic only in the
weights Le(s).
all cases, we normalized the Euclidean length of the

We explored three possibilities. In

vector of Iee(s) values to agree with the length of
the vector predicted by ByOnic’s expert system. Ly-
Brary scores are thus comparable to ByOnic scores,
but we expect LyBrary scores for correct matches
to be somewhat higher, because the peak intensities
from library spectra should be more accurate than
those from theoretical spectra, that is, the angle be-
tween the observed and library spectra, regarded as
vectors, should be closer to zero. For a given peptide
D, let S(p) denote the library spectrum matching p
with highest ByOnic score. We also tried using the
average of all library spectra for p, but the results
were almost identical.

(1) Rank-based intensities. In this option, Ly-
Brary set Lef(s) equal to Iops(s) in S(p).

(2) Relative intensities. LyBrary set Lef(s) to the
relative intensity of s in S(p).

(3) Square root. LyBrary set L.f(s) to the square
root of the relative intensity of s in S(p).

3.2. Software Architecture

For a top-scoring peptide-to-spectrum match (PSM),
ByOnic writes out a scoring report such as the one
shown in Figure 4. The report details each peak
down to rank 20 — 200 (depending upon peptide mass
and the number of peaks in the spectrum), its inten-
sity, its predicted intensity (if any), and so forth. The
report also includes predicted peaks not observed
and large unexplained peaks (at least 0.5% of the
total intensity in the MS/MS spectrum).

LyBrary really consists of two programs:
Archive and LibScore.
mats ByOnic’s scoring reports into a spectrum li-

Archive parses and refor-

brary. The library is organized by precursor mass,
so that one file includes all peptides with precursor
mass 1600 — 1700 Da, another includes all with pre-
cursor mass 1700 — 1800, and so forth. In order to
score an unknown spectrum, LibScore opens the rel-
evant library files and scores all the peptides with the
right precursor mass. For example, if the unknown
spectrum has precursor mass 1708.78, LibScore run

without modifications (and precursor mass tolerance
at most 8 Da) would open only the file with masses
1700 — 1800 Da. If oxidized methionine were en-
abled, then LibScore would also open the file with
masses 1600 — 1700 Da in order to score peptides of
(unmodified) mass 1708.78 —15.995 with one M[+16],
peptides of mass 1708.78 —31.990 with two M[+16]’s,
and so forth. LibScore, like ByOnic, sets reasonable
limits on the numbers of modifications per peptide,
at most two M[+16]’s, at most one sodiation, and so
forth.

LibScore uses ByOnic’s predicted peak intensi-
ties to normalize the previously observed peak inten-
sities; these normalized intensities, an equal-length
but different-direction vector, then substitute for By-
Onic’s predictions in the scoring subroutine. Lib-
Score writes its output in the same plain-text for-
mat as ByOnic, so that subsequent programs like
ComByne!? (a peptide-to-protein integration tool)
can use output from either program, or even concate-
nated files produced by any combination of searches
from either tool. Our hybrid approach actually con-
sists of a run of ByOnic and a run of LibScore (on
a previously built library), a concatenation of the
two outputs, and then a run of ComByne to produce
the final report, which we generally read into an Ex-
cel spreadsheet. ComByne always picks the highest
scoring PSM for each spectrum, regardless of the ori-
gin (ByOnic or LibScore) of the PSM.

LibScore actually has two ways to make modi-
fication identifications: it can use either a previous
observation of the same peptide with (exactly) the
same modifications, or a previous observation of the
same peptide without modifications. (In all the ex-
periments reported in Section 4, however, we used
only the latter path.) LibScore cannot currently use
an observation of DNSTM[+16]GYMMAK to identify
DNSTM[+16]GYM[+16]MAK. When LibScore uses
an unmodified library peptide to identify a modified
unknown, it assumes that the peak intensity pattern
is unchanged, only the masses are shifted. This as-
sumption is reasonable for most low-mass modifica-
tions, and has been validated in Bandeira’s work on
spectral networks analysis,? but the assumption is
not wholly true for M[+16], which sometimes loses 64
Da, and is quite untrue for phosphorylation (s[+80]
and T[+80]), which has a prominent neutral loss of



98 Da. In the case that both modified and unmodi-
fied peptides are in the library, LibScore obliviously
scores the candidate match both ways and retains
only the higher score.

4. EXPERIMENTAL RESULTS

We used two data sets, described below. Due to
lack of sufficient data, we did not attempt to use a
spectrum library built for one type of instrument to
make identifications on another type, nor did we at-
tempt to identify the same peptide in different charge
states.

(1) Jurkat Cell Lysate. Five LC-MS/MS runs on
a Thermo LTQ Orbitrap, with Orbitrap single-
MS and LTQ MS/MS. These runs are essentially
technical replicates, differing only in details of
the data acquisition (e.g., whether the top 5 or
10 peaks in the single-MS scan were selected for
MS/MS).

(2) Mouse Blood Plasma. Six LC-MS/MS runs
on a Thermo LTQ of MARS-depleted mouse
blood plasma, spiked with low concentrations of
13 soluble human proteins. (MARS is “multiple
affinity removal system” for removing serum al-
bumin and 5 other abundant proteins in order
to improve dynamic range.) The spiked proteins
were at two different concentrations, 1 pg/ml
and 10 pg/ml, with 3 technical replicates at each
concentration.

4.1. Complete Coverage

We used the Jurkat sample to test how much sensi-
tivity gain is possible with the spectrum library ap-
proach, assuming a best-case scenario in which the
library has complete coverage of all the peptides in
the sample. In this computational experiment, we
first used ByOnic for a conventional database search
using the IPI human protein database with about
49,000 protein sequences. We included reversed pro-
tein sequences as “decoys” in order to measure false
positive and false discovery rates.?! We ran searches
with and without modifications enabled; the modifi-
cations considered were oxidation (M), deamidation
(N and Q), pyro-glu (N-terminal E and Q), acetyla-
tion (C, s, K and N-terminus), disulfide bridge (since

the sample had no cysteine treatment), carbamyla-
tion (K, R and N-terminus).

Orbitrap precursor masses were good to about
+7 ppm, so we judged 20 ppm to be a safe tolerance
for precursor masses. High precursor mass accuracy
alone is very informative and hence can mask dif-
ferences between scoring algorithms, so we also ran
searches with a “fictitious” precursor mass tolerance
of 5 Da.

Table 1. Numbers of matches to 30 abundant peptides for
database search (ByOnic) and spectrum library (LyBrary),
using either 20 ppm or 5 Da precursor mass tolerance. We
report average numbers over the 5 runs, for two different
searches: a no-modification search, and a search with 13
modifications enabled. The first four lines of the table show
that library search with rank-based weighting gives about
10% — 20% greater sensitivity than database search with
rank-based weighting. The last three lines show that rank
and square-root weighting beat relative intensity.

Search # No mod # Mods
ByOnic (5 Da) 133.6 142.0
ByOnic (20 ppm) 137.4 146.4
LyBrary (rank, 5 Da) 147.0 155.8
LyBrary (rank, 20 ppm) 157.6 172.6
LyBrary (sqrt root, 5 Da) 145.6 154.0
LyBrary (relative, 5 Da) 133.4 142.2

The spectrum library for run 1 included all
high-scoring spectra from runs 2—4, even those that
matched decoy peptides. This “aggressive” policy al-
lowed us to generate the library automatically, with-
out any manual curation. The library for run 1 in-
cluded 6804 peptides, including 348 reversed pep-
tides. We used a similar leave-one-out approach for
all 5 runs. For both database search and library
search, we counted the number of matches (of any
score) to 30 abundant tryptic peptides found in all
5 runs, all of which are true (non-reversed) peptides.
This simulates the case of complete coverage, be-
cause we only count peptides represented in all spec-
trum libraries. Matches to the top 30 peptides are
presumed correct, because the top 30 peptides repre-
sent less than 0.5% of the spectrum library and less
than 0.01% of the protein database. We use the num-
ber of matches to the top 30 peptides as a proxy for
the overall number of correct matches (“sensitivity”
or “recall”), because it is hard to validate matches to
low-ranking peptides or proteins in complex natural
samples.



Table 2.

Numbers of matches to the top 100 proteins in run 1 of the Jurkat cell lysate for database search (ByOnic),

spectrum library (LyBrary), and combined search. The spectrum library was built using runs 2 — 5.

Search # Spectra  # Mod Spectra  # Unique Coverage of Top 3 Proteins
ByOnic 1567 216 1241 32.6% 44.7% 20.7%
LyBrary (rank-based) 1717 208 1206 24.6% 30.0% 16.5%
LyBrary (relative intensity) 1704 195 1184 25.6% 30.0% 17.4%
LyBrary (sqrt relative intensity) 1715 194 1199 24.6% 30.0% 16.5%
ByOnic + LyBrary (rank-based) 1846 255 1406 34.1% 43.8% 22.1%

As shown in Table 1, library search outperforms
database search by a small amount. Rank-based and
square-root of relative intensity outperformed raw
relative intensity, which gave the top few peaks too
much consideration. Top peaks such as “All-18 24”7
(the entire peptide, doubly charged, with one wa-
ter loss) do not discriminate between candidate pep-
tides of the same precursor mass very effectively be-
cause most peptides can lose water. Frewen et al.lf
also found that using the square-root gave better re-
sults. Surprisingly, high precursor mass accuracy
gave LyBrary a bigger boost than it gave ByOnic.
We attribute this to the sizes of the library and the
database. 20 ppm precursor accuracy typically limits
the number of library possibilities to about 10 (100
if modifications are enabled) so that even very poor
spectra with few fragment peaks can be identified,
but the number of database possibilities is still on
the order of 10* (or 10° with modifications).

The experiment described in this section also
gives a partial answer to another of our questions.
If we continue to develop ByOnic’s intensity predic-
tion, without making any other improvements, we
can expect to achieve only moderate gains in sensi-
tivity, at most about 20% more identifications at the
spectrum level.

4.2. Incomplete Coverage

In this section, we drop the complete-coverage as-
sumption and address a more realistic scenario in
which the spectrum library is built from a small num-
ber of similar samples and hence has incomplete cov-
erage. We again used a leave-one-out approach, with
the spectrum library for run 1 built using runs 2 —
5, but now we consider not just the top 30 peptides,
but all peptides in top proteins. Table 2 reports the
number of spectra matched to peptides from the top
100 proteins in run 1 of the Jurkat cell lysate, for
ByOnic, LyBrary, and a hybrid run, which ran both

ByOnic and LyBrary as explained above. We used 20
ppm precursor mass tolerance and searched tryptic
and semitrypic +2 peptides with the same modifi-
cation list as above. The top-100 protein list was
compiled by an initial run of ByOnic and ComByne,
but a protein list compiled using LyBrary and Com-
Byne is not much different.

As shown in the table, ByOnic alone matched
fewer spectra to the top 100 proteins, but found
more unique peptides and more modified peptides.
The difference in performance was modest—LyBrary
gave less than 10% more matched spectra. Runs 2
— 5 (not shown) give similar results, with LyBrary’s
edge varying from 9% to 12%. On all runs, the hy-
brid approach gave the best results on all measures,
with an edge of 15% to 21% over ByOnic alone.

On this sample, it appears that a set of four runs
of exactly the same material on exactly the same pro-
teomics set-up gives decent but not complete cover-
age. LyBrary found almost as many unique pep-
tides as database search, but its coverage of the top
3 proteins fell short of ByOnic’s coverage. This is
consistent with MS/MS studies?? in which repeat
runs consistently yield some new peptide and pro-
tein identifications. Table 3 gives our own study
of this type. ByOnic can make these new identifi-
cations, but LyBrary alone cannot identify peptides
not represented in the library. Conversely, LyBrary’s
identifications that were not found by ByOnic of-
ten matched poor spectra to already-identified abun-
dant peptides at the beginning or end of their elution
pulses, or matched poor spectra to modified versions
of abundant peptides. The first type of extra identi-
fication is not especially useful, but the second type
may be quite important if the modifications are bio-
logically active. Because ByOnic and LyBrary have
different strong points, the hybrid approach gives the
best overall analysis of the data.



Table 3. Numbers of peptides and proteins found by
combining ByOnic’s database-search identifications from
6 repeat runs of the mouse blood plasma sample. The
peptide number is the number of distinct peptides in the
3 most abundant proteins (Alpha-2-macroglobulin, com-
plement C3, and murinoglobulin), with different modifi-
cation states considered distinct. Coverages gives percent
coverage for the top 3 proteins. The protein number is the
number of proteins ranked above the 3rd highest reverse.

Runs # Peptides Coverages # Prots
1 281 58% 61% 50% 139

1-2 353 61% 67% 54% 150

1-3 388 62% 69% 57% 154

14 450 67% 5% 60% 161

1-5 506 67% 7% 61% 167

1-6 535 68% 9% 61% 167
What about protein sensitivity?  We used

ComByne!? to integrate peptide identifications into
protein identifications. ByOnic finds 269 proteins at
1% FDR as measured by the number of reversed pro-
teins, that is, ComByne’s ranked list put the third
highest reversed protein at rank 272. LyBrary alone
finds fewer proteins—typically around 200—and the
number is unstable and hard to estimate because the
spectrum library contains only a few reversed pep-
tides for gauging FDR. The best result was obtained
by ByOnic plus LyBrary (rank-based) using a con-
servative spectrum library, which included only ex-
tremely high-scoring spectra and no spectra match-
ing reversed peptides. This combination found 296
proteins at 1% FDR.

4.3. Improved Limit of Detection?

Sample 2 consists of mouse blood plasma, spiked
with either low (1 pg/ml) or high (10 pg/ml) con-
centrations of 13 soluble human proteins. We built a
spectrum library using 3 chromatographic runs with
high concentrations, where the spiked proteins are
fairly easy to detect, to test whether the spectrum
library approach would help find the spiked proteins
in the lower concentration samples, where many of
the spiked proteins are missed by ByOnic (and every
other database search engine we have tried). The
question we would like to answer is whether low-
abundance proteins are missed because they have no
MS/MS spectra or because their MS/MS spectra are
too poor to be identified.

Again we used an aggressive spectrum library
including both forward and reversed proteins. We

searched the spectra for tryptic and semitryptic pep-
tides, assuming only +2 precursor charge, without
any modifications enabled. For the mouse blood
plasma sample, which was taken on a Thermo LTQ
instrument (without Orbitrap), the charge cannot
be reliably determined in advance, but previous
searches on this sample showed that +2 precursors
predominate and that less than 10% of the peptides
carry modifications. Overall results were consistent
with the earlier experiments. ByOnic alone matched
1516 spectra representing 894 unique peptides to
the top 100 proteins. LyBrary alone matched 1582
peptides representing 614 unique peptides. The hy-
brid approach matched 1778 spectra representing 916
unique peptides. The top-ranked reversed protein
had rank 120 for ByOnic, 110 for LyBrary, and 113
for ByOnic + LyBrary. All three approaches found
the same 8 spiked proteins with about the same con-
fidence, in the sense that for all three approaches 5
of the 8 proteins were reliably identified (above the
top-ranking reverse protein) and 3 were in the gray
zone (below the top-ranking reverse, but well above
the noise zone, the point in the ranked list at which
half of the protein identifications are reversed).

This result suggests that although the hybrid
approach does indeed offer higher sensitivity at the
spectrum level (17% more matches to the top pro-
teins, consistent with the results on the Jurkat sam-
ple), it does not offer commensurate improvement
at the protein level. We believe that low-abundance
proteins, at least in single-LC runs of blood plasma,
are most often missed because they have no MS/MS
spectra at all. Blood plasma is very rich in peptides,
so that the usual top-5 or top-10 approach to shotgun
proteomics (picking only the 5 or 10 biggest single-
MS peaks for MS/MS) will fail to acquire MS/MS
spectra for many low-abundance proteins.

5. DISCUSSION

Library search potentially improves sensitivity in two
ways. First, it provides a focused database contain-

9 Even

ing only observable “proteotypic” peptides.
our aggressive library-building strategy gave libraries
of less than 10,000 peptides, but the full IPI human
protein database contains on the order of 10° tryptic
peptides. Second, library search gives more accurate

intensity predictions for fragment peaks, because the



predictions are based on previous observations rather
than general principles. Thus one might hope that
library search would give very large sensitivity gains
over database search. Unfortunately this does not
seem to be the case. Craig et al.!® reported 50%
greater sensitivity in the complete-coverage case; and
we report much less, only 10% — 20% improvement,
in Table 1.

Why did our library search program fall short?
We think that ByOnic provides a better baseline
than X!Tandem and leaves less room for improve-
ment. X!Tandem does not predict peak intensities,
and does not score neutral losses nor doubly charged
ions, which are often among the top 20 peaks. Even
though ByOnic’s expert system cannot predict rela-
tive intensity very accurately, it can predict rank-
based intensity reasonably well. ByOnic’s predic-
tions of rank-based intensity have median correlation
coefficient 0.559 with observed rank-based intensi-
ties. This number is the correlation of columns 4 and
5 (Rank Wt and Wt Factor) of the scoring reports
(Figure 4), with the median taken over 920 unique
peptides from the blood plasma sample. Observed
and re-observed rank-based intensities—the analo-
gous statistic for LyBrary—give median correlation
coefficient 0.780. The correlation coefficient for ob-
served and re-observed relative intensities is higher
(around 0.9) because a few strong peaks dominate.

Finally, we return to the question of whether the
library approach should use spectra containing all
observed peaks as in GPM and PeptideAtlas or only
identified peaks. In this work we used only identified
peaks for compatibility with database search. After
running our computational experiments, we tenta-
tively conclude that this choice did not adversely af-
fect the spectrum library approach. The number of
large unexplained peaks (greater than 0.5% of total
ion current) is not overwhelming. For example in the
aggressive library for run 4, there are about 28,000
large unexplained peaks and 174,000 explained peaks
(large and small) in 6606 library spectra. Predicted
but unobserved peaks are common—129,000 in the
same library.

What are the large unexplained peaks? Are they
ion types not considered by ByOnic? For CID ion-
trap spectra of +2 precursors, ByOnic considers the
following peaks (and scores them if they fall into the

right m/z range): bl —b,,_1, where n is the length of
the candidate peptide, y1 — y,_1, along with single
water and ammonia losses from these ions. ByOnic
also scores doubly charged y-ions from y4 to y,_1,
the a-ions a2 — a8, and single and double neutral
losses from the precursor ion. ByOnic does not score
the following ions: internal fragments, a-ions larger
than a8, doubly charged b-ions, double neutral losses
(e.g., two waters or one water and one ammonia)
from b- or y-ions, and triple neutral losses from the
precursor ion. We have observed all of the ignored
ions just named, but statistics on our training sets
suggest that these ions are infrequent and not worth
scoring. In fact, ByOnic deliberately “over-scores”,
including some infrequent peaks (b1, a3, water losses
from small y-ions) just for completeness.

In manual inspection of a small number (10s) of
library spectra, the single most common explanation
for large unexplained peaks was unrecognized iso-
tope peaks. ByOnic requires fairly tight tolerances
on m/z and intensity in order to dismiss a peak as
an isotope peak of another (explained) peak. If a
peak does not fit within these tolerances, then it is
considered unexplained. The second most common
explanation was no explanation—expert inspection
could find no ion from the identified peptide that
would explain the peak.
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