
A SET-COVER-BASED APPROACH FOR INEXACT GRAPH MATCHING

M. Mongiov̀ı∗, R. Di Natale, R. Giugno, A. Pulvirenti and A. Ferro

Dipartimento di Matematica ed Informatica, Università di Catania,
Catania, 95125, Italy

∗Email: {mongiovi,dinatale,giugno,apulvirenti,ferro}@dmi.unict.it

R. Sharan

Blavatnik School of Computer Science, Tel Aviv University,
Tel Aviv, 69978, Israel
Email: roded@tau.ac.il

Network querying is a growing domain with vast applications ranging from screening compounds against a database
of known molecules to matching subnetworks across species. Graph indexing is a powerful method for searching for
queries in a large database of graphs. Most graph indexing methods to date tackle the exact matching (isomorphism)
problem, limiting their applicability to specific instances in which such matches exist. Here we provide a novel
graph indexing method to cope with the more general, inexact matching problem. Our method, SIGMA, builds on
approximating a new variant of the set-cover problem that concerns overlapping multi-sets. We extensively test our
method and compare it to a layman approach and to the state-of-the-art Grafil. We show that SIGMA outperforms
both, providing higher pruning power in all the tested scenarios.

1. INTRODUCTION

Data in many biological domains are represented as
graphs, where nodes correspond to molecules and
edges connect related molecules. Mining such data
to search for specific subgraphs is a fundamental step
in identifying similarities among molecules, molecu-
lar networks etc. For example, querying for protein
pathways within a collection of protein-protein inter-
action networks can identify matching pathways that
are conserved in evolution and assist in the functional
annotation of proteins and the prediction of their in-
teractions.

Graph indexing is a common technique for per-
forming searches in large databases. In a preprocess-
ing phase, each graph of the database is analyzed
in order to extract and store its features (composing
the graph index). These could be either all the paths
up to a certain length7, 9, 12, 14, 6, trees18 or general
subgraphs3, 16. These indices are then used by a fil-
tering phase to prune graphs that cannot contain in-
stances of the query. The remaining candidates are
finally verified in a matching phase through a sub-
graph matching algorithm4.

While many graph indexing algorithms have

been suggested for the exact search (subgraph iso-
morphism) problem, very few algorithms exist for
the inexact search case. In the most basic variant of
the problem, the goal is to allow matches that are iso-
morphic to the query up to a few edge indels. Since
edge insertions (i.e., extra edges in the match that do
not have counterparts in the query) can be discarded
while only improving the quality of the match, the
core of the problem is handling edge deletions. More
general variants allow label mismatches, node inser-
tions and deletions and so on.

Molecular compounds, for instance, can be rep-
resented as graphs where atoms are vertices and
bounds are edges. Molecules which share part of a
given molecular structure often have similar chemical
properties. Here inexact matching may assist in the
identification of drugs which are active against some
pathologies or have side effects, when the molecu-
lar structure responsible for a particular activity or
side effect is known. Figure 1 shows that antide-
pressive molecules such as L-tryptophan share com-
pounds with alkaloids, amines isolated from plants,
including poisons such as strychnine and with pow-
erful hallucinogenic drugs such as LSD. The shared
compounds are highlighted. Molecules in 2d format

∗Corresponding author.

may be represented as graphs; the vertices represent
the atoms and the edges represent the links between
the atoms. By deleting 7 edges from L-tryptophan,
the remaining compound has a match in Strychnine,
while 5 deletions are needed to find a match in LSD.
In 2 it is shown that both L-tryptophan and LSD are
involved in serotonin syndrome and that strychnine
poisoning produces similar symptoms, being involved
in differential diagnosis.

To tackle the inexact matching problem, sev-
eral systems14, 6 apply exact search techniques to
queries that contain wildcard-nodes that can match
any node and wildcard-paths, which are paths of any
length that connect the two nodes. Indexing is used
to filter out graphs in the database that do not con-
tain the subparts of the query that are completely
specified. A shortcoming of this approach is the need
to specify in advance the parts of the query that may
change.

Grafil17 has been the first attempt to realize in-
dexing for inexact searches. It transforms the edge
deletions into feature misses in the query graph, and
uses an upper bound on the maximum number of
allowed feature misses for graph filtering. Grafil in
fact clusters the features according to their selectiv-
ity and applies a multi-filter strategy, where each fil-
ter uses a distinct cluster and the filtering results are
combined. SAGA15 is a more flexible indexing sys-
tem, which can handle also node insertions and dele-
tions. Key to the algorithm is a distance measure be-
tween graphs. Fragments of the query are compared
to database fragments using the distance measure.
Matching fragments are then assembled into larger
matches using a clique detection heuristic and, fi-
nally, candidate matches are evaluated. The SAGA
algorithm was successfully applied to mine biologi-
cal pathways, but its distance metric limits its appli-
cability in other domains in which one seeks direct
control over the number of edge deletions introduced.
Closure-Tree8 is another tool for inexact matching,
which focuses on the edit distance between the query
and its candidate matches. However, for efficiency
reasons, the edit distance computations are approx-
imate and, hence, the tool can miss true matches.

In this paper we present the Set-cover-based In-
exact Graph Matching Algorithm (SIGMA), an ef-
ficient feature-based filtering algorithm for inexact

graph matching. The algorithm is based on associ-
ating a feature set with each edge of the query and
looking for collections of such sets whose removal will
allow exact matching of the query with a given graph.
This translates into the problem of covering the miss-
ing features of the graph with overlapping multisets.
We formulate this new variant of set cover and pro-
vide a greedy-based approximation for it. We ex-
tensively test SIGMA in querying small molecules
against a database of molecular compounds. We
compare it to a layman filtering approach and to the
state-of-the-art Grafil; we show that SIGMA exhibits
consistently higher filtering power, where the differ-
ence grows with the size of the query.

Our contribution is three-fold: (i) we define a
new effective pruning rule for inexact matching based
on multiset multi-cover, a variant of the well known
set-cover problem; (ii) we provide a tight greedy ap-
proximation for multiset multi-cover, which is crucial
for efficient and effective pruning; and (iii) we eval-
uate the performance of the proposed method, com-
pared to a state-of-the-art approach, over a molecu-
lar compound data set.

The paper is organized as follows: Section 2 pro-
vides the basic definitions of graph indexing. Section
3 derives new pruning rules for inexact matching that
are based on several variants of the set cover prob-
lem. Finally, experimental results and a comparison
to Grafil are presented in Section 4.

2. PRELIMINARIES

An undirected labeled graph (in the following, sim-
ply a graph) is a 4-tuple G = (V,E, Σ, l) where V

is the set of vertices, E is the set of edges, Σ is the
alphabet of labels and l : V → Σ is a function which
maps each vertex to a label. We denote by V (G) the
set of vertices of G and by E(G) the set of edges of G.
We say that a graph G1 is subgraph of G2, denoted
G1 ⊆ G2, if V1 ⊆ V2 and E1 ⊆ E2.

Given two graphs G1 = (V1, E1,Σ, l), G2 =
(V2, E2,Σ, l) an isomorphism (that respects the la-
bels) between G1 and G2 is a bijection φ : V1 → V2

so that:

• (u, v) ∈ E1 ⇔ (φ(u), φ(v)) ∈ E2

• l(u) = l(φ(u)), ∀u ∈ V1

A subgraph isomorphism between G1 and G2 is an

Fig. 1. An example of inexact matching on molecular compounds. The compounds are represented as graphs where vertices
are atoms and are labeled with their element symbol (unlabeled vertices corresponds to C atoms), and edges are bonds (double
bounds are represented as single edges). The red-colored part of Strychnine and LSD matches a part of the Tryptophan structure.
Finding this matches allows to identify compounds which share chemical properties.

isomorphism between G1 and a subgraph of G2. We
say that a graph G1 admits an exact match in G2 if
there exist a subgraph isomorphism between G1 and
G2. We say that a graph G1 admits an inexact match
in G2 with r deletions if there exists a subgraph iso-
morphism between a graph Gr obtained from G1 by
removing arbitrarily r edges, and G2. We say also
that G1 is contained in G2 with r deletions.

We define a multiset as a pair (A,m) where A

is a set and m is a function from A to the set N+ of
positive natural numbers. We say that m(a) is the
multiplicity of the element a. Given a set U , we say
that A′ = (A,m) is a multiset of U if A ⊆ U . For
simplicity, we extend the function m() to all element
of U by setting m(u) = 0 for each u ∈ U − A. We
define the cardinality of a multiset A′ = (A, m) as
|A′| = ∑

a∈A m(a)
Let A′ = (A,m) and B′ = (B, n) be two mul-

tisets. We define the difference A′ − B′ as the set
C ′ = (C, p) where C = {c ∈ A|m(c) > n(c)} and
p(c) = m(c)−n(c) for each element c ∈ C. We define
the intersection A′ ∩B′ as the set C ′ = (C, p) where
C = A ∩B and p(c) = min(m(c), n(c)) for each ele-
ment c ∈ C. We define the union A′ ∪ B′ as the set
C ′ = (C, p) where C = A∪B and p(c) = m(c)+n(c)
for each element c ∈ C. We say that A′ ⊆ B′ if for
each a ∈ A we have a ∈ B and m(a) ≤ n(a).

Given a multiset C and two multisets A,B ⊆ C,
it is easy to verify that the following relations hold:

• C − (C −A) = A

• C −A ⊆ C −B ⇔ B ⊆ A

2.1. Filtering techniques for exact
matching

Given a database D = {G1, G2, ..., Gn} of graphs,
performing an exact graph query Q in D calls for
finding all graphs G in D such that Q ⊆ G.

Since checking all graphs of D is very expen-
sive, a feature based indexing system applies a filter-
and-verification framework which allows to prune the
graphs of the databases which cannot contain the
query. A feature is a small graph which allows to dis-
criminate the graphs which could contain the query
from the graphs that cannot contain it. We denote
by F the set of all possible features. The choice of F
depend on the particular system used. In this paper
we refer to a generic set of feature F .

Basically, graph-based graphs indexing systems
are based on the observation that for a query Q to
admit a match in the graph G, it is necessary that
each feature of F contained in Q is also contained in
G. More precisely, when we say that a feature f is
contained in G we mean that there exists an isomor-
phism between f and a subgraph of G. The pruning
is performed by the following phases:

• Preprocessing: this phase is off-line and is in-
dependent from the query. Each graph of the
database is examined in order to extract all fea-

tures of F which are contained in the graph. The
set of features of all graphs are recorded in a data
structure called graph index.

• Filtering: the given query Q is examined in or-
der to extract a set of features contained in Q.
A candidate graph set is computed comparing the
extracted set of features against the corresponding
sets in the graph index.

• Matching: each candidate graph is examined in
order to verify if there are matches between the
query and the graph.

Fig. 2. An example of exact matching in a database of
graphs. Here we consider as features simply edges (graphs
with size 1). The first row show the query graph Q and the
database of graphs {G1, G2, G3}. The second and third rows
report respectively the sets of features and the multisets of
features associated to each graph. The multiplicity of multi-
sets take into account the number of feature occurrences. For
instance the query Q contains two occurrences of the feature
triangle-square, one over the nodes 1-2 and the other over
the nodes 3-2. In this example the query Q is contained in
the graph G1 but not in the graphs G2 and G3. G2 can be
discarded by the filtering process because the feature triangle-
square is not contained in HG2 . G3 can be discarded taking
into account the number of occurrences by observing that the
feature triangle-square have two occurrences in the query and
only one in the graph.

The feature-based condition for Q to be con-
tained in G can be expressed as a pruning rule. We
denote by HG the set of features contained in the
graph G. Given a query Q, the graph G can be dis-
carded if HQ * HG. To apply this pruning rule we
only check the existence of a subgraph isomorphism

between features and graphs. Given a feature f and
a graph G there can be several distinct subgraphs
of G which admit an isomorphism with the feature
f . Each subgraph of G which admits an isomorphism
with f is referred as a distinct feature occurrence of f

in G. The pruning power can be increased by consid-
ering the number of feature occurrences. We denote
by FG the multiset of features of the graph G which
associate to each feature, the number of occurrences
of it in the graph. For the query Q to be contained
in the graph G, the number of occurrences of each
feature in Q must be lower or equal to the number of
occurrences of the corresponding feature in G. This
means that we can discard the graph G if FQ * FG.

For example the query Q in Figure 2 matches
with the graph G1 but not with G2 and G3. It con-
tains one occurrence of the feature triangle-triangle
and two occurrences of the feature triangle-square.
G2 can be discarded by observing HQ * HG2 . By
considering the number of feature occurrences, G3

can also be discarded, since FQ * FG3 .

3. A FILTERING TECHNIQUE FOR
INEXACT MATCHING

In this section we develop effective pruning rules for
inexact matching. We focus on the following prob-
lem: Given a query Q and a graph G, does Q admit
an inexact match in G with at most r deletions? The
scheme that we develop is based on associating a fea-
ture set Fe with each edge e of the query (i.e., the
set of features that contain this edge) and looking
for collections of such sets whose removal will allow
exact matching of the query with G. The resulting
problem can be formulated as a set cover problem:
given a set Y (of features of Q which are missing in
G), a family S of sets (of features associated to each
edge) and an integer r, find the smallest subfamily Γ
of S that covers Y , i.e.,

⋃
X∈Γ X ⊇ Y .

Such a subfamily represents a set of query edges
whose deletion assure that a subset of features of Q

are contained in G. If a subfamily Γ of size r does
not exist, we can assume that deleting r edges in any
possible ways there always exist at least a feature of
the query which is not contained in the graph, there-
fore the graph can be discarded.

We can strengthen the above formulation by con-
sidering the multiplicity of feature occurrences. Let

Eγ ⊆ E(Q) be a subset of the query edges. We
denote by FQ the multiset of features of Q and by
FEγ the multiset of features which contain one of
the edges in Eγ . If Q admits an inexact match in G

with r deletions, there must exist an r-size edge set
Eγ such that FQ − FEγ

⊆ FG. Hence the following
pruning rule can be inferred:

Pruning rule 1. Given a query Q with r allowed
deletions, a graph G can be discarded if for each
Eγ ⊆ E(Q) with |Eγ | = r we have:

FEγ
6⊇ FQ − FG

Clearly this pruning rule cannot be applied effi-
ciently because the number of possible r-subsets of
E(Q) grows exponentially with r, and the rule must
be verified for all the graphs in the database. In-
stead, we resort to a multiset cover approach.

In the multiset multi-cover problem Y =
(Y ′,mY) is a multiset and S is a family of multi-
sets. Each element (feature) f of Y has a multiplic-
ity mY (f) which specifies the number of times f has
to be covered, and it occurs in each set X of S with
a given multiplicity mX(f). The goal is to find the
minimum-size set Γ such as

⋃
X∈Γ X ⊇ Y , i.e., for

each f ∈ Y ′,
∑

X∈Γ mX(f) ≥ mY (f). In its general
formulation, a set of S can be chosen several times
(Γ is a multiset too). In what follows we consider the
further constraint that each set of S can be chosen
at most once. In our case, the multiset to be covered
is Y = FQ − FG, and the collection of covering mul-
tisets is S = {Fe}e∈E(Q). If Y admits no multiset
multi-cover of size r then G can be discarded (see
Figure 3).

Set-cover is known to be NP-complete11, but
can be solved by a simple greedy heuristic with ap-
proximation ratio H(max{|X| : X ∈ S}), where
H(n) = 1 + 1/2 + ... + 1/n11, 10. The more gen-
eral multiset multi-cover problem was shown to ad-
mit the same approximation ratio13. Figure 4 de-
scribes a greedy heuristic for the multiset multi-cover
problem. At each iteration, the algorithm chooses
the multiset X of the family S which maximizes the
number of newly covered feature occurrences of Y .
The chosen set is added to the cover, and its elements
are removed from Y .

Fig. 3. An example of a query Q and a graph G which con-
tains a copy of Q with two deletions. We consider as features
all connected subgraphs containing exactly two edges. Left:
Q and all the feature occurrences it contains (FQ). The line
type of feature occurrences is chosen according to the feature
they correspond to. Each set Fi indicates all the feature oc-
currences that contain the edge i. Right: G, its multiset of
features (FG) and the multiset of missing features (FQ−FG).
The minimum cover of FQ−FG by the family {F1, F2, F3, F4}
is of cardinality 2, implying that at least two deletions are
needed for a match. {F1, F2} is a possible cover, implying
that G is a candidate to match Q with edges 1 and 2 deleted.

For the greedy algorithm to be used effectively
for filtering, it is essential to have a tight lower bound
of the optimal solution. We prove a tight lower
bound below.

Let Y = (Y ′, mY) be the multiset of features
to be covered. Let cost(f, i) be a function from
Y ′ × N to R, which assigns a cost to each feature
occurrence covered by the greedy algorithm. The
feature occurrences are ordered by the time they
are covered by the algorithm. The cost is assigned
at each step of the algorithm, spreading a unitary
cost over all the feature occurrences which are be-
ing covered, i.e., each feature occurrence is assigned
with a cost 1/c, where c is the number of newly
covered occurrences. Let Γ be the cover returned
by the greedy algorithm, Γ∗ the exact cover and
rX(f) = min(mX(f),mY (f)). The following the-
orem bounds the size of the cover returned by the
greedy algorithm.

Greedy-Multiset-Multicover(Y, S)
Γ ← φ

whileY 6= φ do
X ← argmaxX∈S |X ∩ Y |
Y ← Y −X

Γ ← Γ ∪ {X}
return Γ

Fig. 4. A greedy algorithm for the multiset multi-cover
problem.

Theorem 1. Let α(f) = cost(f,mY (f)) and β =∑
f∈Y ′

∑mY (f)
i=1 (α(f)− cost(f, i)) then,

|Γ∗| ≥ min
Γ′⊆S:

∑
(X,mX)∈Γ′

∑
f∈X rX(f)α(f)−β≥|Γ|

|Γ′|

Proof. We show that
∑

(X,mX)∈Γ∗

∑

f∈X

rX(f)α(f)− β ≥ |Γ|

The claim follows since Γ∗ ⊆ S and each element of
a set is always greater than or equal to the minimum
over that set.

The total cost assigned to all the feature occur-
rences is equal to |Γ|. Thus:

|Γ| =
∑

f∈Y ′

mY (f)∑

i=1

cost(f, i)

=
∑

f∈Y ′
mY (f) · cost(f, mY (f))

−
∑

f∈Y ′

mY (f)∑

i=1

(cost(f,mY (f))− cost(f, i))

=
∑

f∈Y ′
mY (f)α(f)− β

≤
∑

(X,mX)∈Γ∗

∑

f∈X

rX(f)α(f)− β.

¤

By the above theorem, we obtain the following
pruning rule:

Pruning rule 2. Given a query Q with r allowed dele-
tions and a graph G. Let |Γ| be the cover returned
by the greedy algorithm when executed on FG−FQ.
G can be discarded if:

r < min
Γ′⊆S:

∑
(X,mX)∈Γ′

∑
f∈X rX(f)α(f)−β≥|Γ|

|Γ′|

The right side can be easily computed by rank-
ing the sets of S by the score

∑
f∈X rX(f)α(f) in

decreasing order, and taking them one by one un-
til the sum of the scores is greater than or equal to
|Γ|+ β.

3.1. Increasing the filtering power

Using multisets alone does not capture interdepen-
dencies between them, i.e. two multisets of features
may include the same feature occurrence but in the
cover we may count it twice (see Figure 5).

To this end we introduce a new variant of the set-
cover problem, which we call Multi-cover by Over-
lapping Multisets (MOM). Let U be a set of ele-
ments (feature occurrences), F a set of features and
f a function that associates with each element of
U a feature from F . Given A ⊆ U , we define the
covering of A, denoted as Covf (A), as the multiset
D′ = (D, m) of F so that D = {f(a)|a ∈ A} and
m(d) = |{a ∈ A|f(a) = d}|. We define the MOM
problem as follows: For a multiset Y of F and given
a family S of subsets of U , find the smallest subfam-
ily Γ of S so that Covf (

⋃
X∈Γ X) ⊇ Y .

Note that in Figure 5 the minimum cover for
MOM is {F1, F6, F7}, so G is not a candidate to
match Q with at most two deletions.

It can be shown that this problem is also NP-
hard by reduction from set-cover. A greedy algo-
rithm for it is given in Figure 6. In the greedy algo-
rithm for MOM in Figure 6 a further set Z is used
to keep track of the covered elements. When a set is
added to the cover, its elements are removed from Z

in order to avoid considering them twice.
We can now define a new pruning rule based on

MOM which is equivalent to to pruning rule 1.

Pruning rule 3. Given a query Q with r deletions.
Denote by Fe the set of feature occurrences of Q

which contain the edge e ∈ E(Q). A graph G can be
discarded if for each Eγ ⊆ E(Q) of size r:

Covf (
⋃

e∈Eγ

Fe) 6⊇ FQ − FG

Since Covf (
⋃

e∈Eγ
Fe) = FEγ we get that:

Fig. 5. An example of graph which cannot be pruned solv-
ing the multiset multi-cover problem. Inexact matching with
at most two deletions are searched for. Features are subgraphs
containing exactly two connected edges. The left side shows
the query Q and all its feature occurrences (FQ). The line
type of a feature occurrence is uniquely associated with that
feature. Each set Fi indicates all the feature occurrences con-
taining the edge i. The right side shows the target graph G, its
multiset of features (FG) and the multiset of missing features
(FQ − FG). For the multiset multi-cover problem, {F6, F7} is
a cover of FQ − FG since the feature f is counted twice. This
means that Q is candidate to match G with 2 deletions. Con-
sidering f only once (see MOM defined below) the minimum
cover would be {F1, F6, F7} and G would be discarded.

Theorem 2. Pruning rule 3 is equivalent to pruning
rule 1.

Theorem 1 and pruning rule 2 apply to the MOM
greedy algorithm as well, so the same lower bound
can be used to prune the graphs.

4. EXPERIMENTAL RESULTS

To evaluate our filtering methods we applied them
to query a large database of molecular compounds.
We compared our performance to the state-of-the-
art Grafil17 as well as to a layman filtering method
called Edge17. The latter simply compares the edges
of the query to those of a given graph and discards
all graphs that miss (with respect to the query) more
edges than the number of allowed deletions. This fil-
tering is in fact equivalent to both our filtering and
that of Grafil when considering edge-based features
only.

Greedy-MOM(Y, S)
Z ← U

Γ ← φ

whileY 6= φ do
X ← argmaxX∈S |Covf (X ∩ Z) ∩ Y)|
Y ← Y − Covf (X ∩ Z)
Z ← Z −X

Γ ← Γ ∪ {X}
return Γ

Fig. 6. A greedy algorithm for MOM.

4.1. Implementation

Two versions of our tool have been implemented.
One is based on multiset multi-cover formulation and
the other on the MOM formulation. Both tools use
Edge as a first pruning step and then apply pruning
rule 2. They are compared with our own implemen-
tation of Edge and Grafil (which includes Edge as
part of the filtering). To perform a uniform analy-
sis, paths of length up to 4 were used as features for
all the compared systems. The candidate verification
was performed by enumerating all possible subgraphs
of the query that can be obtained by deleting any set
of r edges, and running an efficient subgraph isomor-
phism algorithm called VF25 over each graph. The
running time of our tools depended on the query size
and ranged from a few tenths of a second to less than
one minute (on a Pentium IV with 1GB of memory).

4.2. Benchmark

For evaluation purposes we used the Antiviral Screen
Dataset (AIDS)1. The AIDS database contains the
topological structures of 42,000 chemical compounds
that have been tested for evidence of anti-HIV activ-
ity. Each compound of the dataset was converted
into a graph where vertices are atoms, edges are
bonds between atoms, and the element symbols are
used to label the vertices. Multiple bonds were rep-
resented by single edges. We obtained a dataset
of graphs ranging from 20 to 270 vertices in size.
Queries were extracted at random from the AIDS
database. The extraction procedure picks a graph
and a vertex of that graph at random; it then gener-
ates a subgraph starting from the picked vertex and
adding edges until a specified size is reached. We

 10000

 20000

 30000

 40000

 50000

 0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 16

Edge
Grafil

SIGMA

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 24

Edge
Grafil

SIGMA

 5000

 10000

 15000

 20000

 0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 32

Edge
Grafil

SIGMA

 1500

 3000

 4500

 6000

 7500

 0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 48

Edge
Grafil

SIGMA

Fig. 7. A comparison of the number of candidates produced by SIGMA, Grafil and Edge. For each query size, the average
number of candidates over 100 queries of that size is reported.

generated queries with size ranging between 16 and
48.

4.3. Results

We applied all three methods (SIGMA, Grafil and
Edge) to the AIDS database with queries of sizes
ranging from 16 to 48. We allowed between 1 to 4
deletions and tested the filtering power of the dif-
ferent approaches. We tried both variants of our ap-
proach, multiset multi-cover and MOM, and got very
similar results, hence we report the latter only. Com-
pared to multiset multi-cover, MOM tends to gener-
ate larger covers, but the computed lower bounds are
often less tight. Therefore we did not obtain a sig-
nificative improvement in pruning power. Moreover,
since MOM needs to keep track of each single feature
occurrence, the resulting filtering time is higher than
the corresponding time obtained by multiset multi-
cover. The design of a specific tight lower bound for
MOM will be object of further investigation. The
comparison against Grafil and Edge is depicted in
Figure 7. For a given number of deletions, the av-

erage number of candidates over 100 queries is re-
ported. The number of candidates of each query is
highly variable, ranging from 1 to the whole dataset.
Evidently, SIGMA outperforms the other two meth-
ods on all query sizes. The gap tend to increase with
larger queries. A more careful check over each single
query has shown that SIGMA outperformed Grafil
in more than 95% of the queries.

To quantify the pruning power, defined as the ra-
tio between the number of verified matches and the
number of generated candidates, we applied an ex-
haustive search algorithm to part of the data. Specif-
ically, we considered a subset of 1000 compounds and
fixed the query size to 16. The results, expressed as
the average over 10 queries, are shown in Figure 8.
On this small data set SIGMA exhibits up to 4-fold
increase in the pruning power.

5. CONCLUSIONS

We have developed novel graph indexing strategies
for inexact graph searches. The resulting tool, called
SIGMA, is based on a novel variant of the set cover

problem and a greedy algorithm to approximate its
solution.

 0.01

 0.1

 1

 0 1 2 3 4 5

P
ru

ni
ng

 p
ow

er

Deletions

SIGMA
Grafil
Edge

Fig. 8. A comparison between the pruning power of SIGMA,
Grafil and Edge.

In extensive tests on a chemical compound
database SIGMA was shown to outperform existing
methods for the problem, including the state-of-the-
art Grafil. Examining the results in detail, we be-
lieve that SIGMA performs better than Grafil be-
cause Grafil uses only information about the number
of query features that are missing in the graph. In
many cases this criterion is not selective enough. In
contrast, SIGMA takes the identity of the features
into account and hence has more filtering power. For
example, consider the query in Figure 9. Compared
to the peripheral edges, the central edges are con-
tained in a higher number of feature occurrences,
thus they dominate the maximum number of feature
misses. As a result, the graph G reported in the fig-
ure cannot be discarded by Grafil but is discarded
successfully by SIGMA.

Future work includes the management of mis-
matches and vertex deletions. Although the pro-
posed system can handle vertex deletions by the in-
duced edge deletions, in some applications the cost
of a vertex deletion may not be necessarily related
to its degree. In summary, the development of graph
indexing methods is essential for efficiently mining
biological databases; methods for inexact matching,
like the one reported here, greatly increase the sen-
sitivity of database searches and promise to take a
leading role in this area as databases continue to ex-
pand.

Fig. 9. An example of a graph which is discarded by SIGMA
but not by Grafil. We search for the query graph Q with at
most 1 deletion, considering paths of length 3 as features.
The query contains 3 occurrences of the feature A-A-B and
3 occurrences of A-B-A for a total of 6 feature occurrences.
By removing the more central edges we miss 3 feature occur-
rences, while by removing the peripheral edges we miss only
one feature occurrence. For one allowed deletion, the maxi-
mum number of possible feature misses is 3. G misses 2 fea-
ture occurrences, thus it cannot be discarded by Grafil. There
are no edges of the query which cover the two missing (in G)
A-A-B features, thus G is discarded by SIGMA.

ACKNOWLEDGMENT

R.S. was supported by a Israel Science Foundation
grant (no. 385/06). R.G., A.P. and A.F. were in part
supported by PROGETTO FIRB ITALY-ISRAEL
grant n. RBIN04BYZ7: Algorithms for Patterns
Discovery and Retrieval in discrete structures with
applications to Bioinformatics.

References

1. Nci dtp antiviral screen data.
http://dtp.nci.nih.gov/docs/aids/aids data.html.

2. D. Bijl. The serotonin syndrome. The Netherlands
journal of medicine, 62(9):309–313, 2004.

3. J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index:
towards verification-free query processing on graph
databases. Proceedings of ACM SIGMOD interna-
tional conference on Management of data, pages 857
– 872, 2007.

4. L. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 26(10):1367–1372,
2004.

5. L.P. Cordella, P. Foggia, C. Sansone, and M. Vento.
An improved algorithm for matching large graphs.
Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern Recognition,
pages 149–159, 2001.

6. A. Ferro, R. Giugno, M. Mongiovi, A. Pulvirenti,
D. Skripin, and D. Shasha. Graphfind: enhancing

graph searching by low support data mining tech-
niques. BMC Bioinformatics, (9), 2008.

7. R. Giugno and D. Shasha. Graphgrep: A fast and
universal method for querying graphs. Proceeding of
the International Conference in Pattern recognition
(ICPR), pages 112–115, 2002.

8. H. He and A. K. Singh. Closure-tree: An index struc-
ture for graph queries. ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering
(ICDE’06), page 38, 2006.

9. C. A. James, D. Weininger, and J.Delany. Daylight
theory manual-Daylight 4.71. Daylight Chemical In-
formation Systems, www.daylight.com, 2000.

10. D. S. Johnson. Approximation algorithms for com-
binatorial problems. J. Comput. System Sci., pages
256–278, 1974.

11. R. M. Karp. Reducibility among combinatorial prob-
lems. Complexity of Computer Computations, pages
85–103, 1972.

12. B. Kelley. Frowns. http://frowns.sourceforge.net/,
2002.

13. S. Rajagopalan and V. V. Vazirani. Primal-dual rnc
approximation algorithms for (multi)-set (multi)-
cover and covering integer programs. In SFCS ’93:

Proceedings of the Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, pages
322–331, Washington, DC, USA, 1993. IEEE Com-
puter Society.

14. D. Shasha, J.T-L Wang, and R. Giugno. Algorith-
mics and applications of tree and graph searching.
Proceeding of the ACM Symposium on Principles of
Database Systems (PODS), pages 39 – 52, 2002.

15. Y. Tian, R. C. McEachin, C. Santos, D. J. States,
and J. M. Patel. Saga: a subgraph matching tool
for biological graphs. Bioinformatics, 23(2):232–239,
2007.

16. X. Yan, P. S. Yu, and J. Han. Graph indexing based
on discriminative frequent structure analysis. ACM
Transactions on Database Systems, 30(4):960–993,
2005.

17. X. Yan, P. S. Yu, and J. Han. Substructure similar-
ity search in graph databases. Proceedings of ACM
SIGMOD international conference on Management
of data, pages 766 – 777, 2005.

18. S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. Proceedings of IEEE 23rd Interna-
tional Conference on Data Engineering, pages 181–
192, 2007.

