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Gene regulation in eukaryotes involves a complex interplay between the proximal promoter and distal genomic ele-
ments (such as enhancers) which work in concert to drive precise spatio-temporal gene expression. The experimental
localization and characterization of gene regulatory elements is a very complex and resource-intensive process. The
computational identification of regulatory regions that confer spatiotemporally specific tissue-restricted expression of
a gene is thus an important challenge for computational biology. One of the most popular strategies for enhancer
localization from DNA sequence is the use of conservation based prefiltering and more recently, the use of canon-
ical (transcription factor motifs) or de-novo tissue-specific sequence motifs. However, there is an ongoing effort in
the computational biology community to further improve the fidelity of enhancer predictions from sequence data by
integrating other, complementary genomic modalities.

In this work, we propose a framework that complements existing methodologies for prospective enhancer identi-
fication. The methods in this work are derived from two key insights; one, that chromatin modification signatures can
discriminate proximal and distally located regulatory regions. Second, that the notion of promoter-enhancer cross-talk
(as assayed in 3C/5C experiments) might have implications in the search for regulatory sequences that co-operate
with the promoter to yield tissue-restricted, gene-specific expression.
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GATA genes, comparative genomics, functional genomics, tissue-specific genes, network analysis, directed information,
heterogeneous data integration.

1. INTRODUCTION cruited at the proximal promoter of the gene as well
as at sequence elements (enhancers/silencers) which
can lie several hundreds of kilobases from the gene’s
transcriptional start site (Figs. 1 and 2).

Understanding the mechanisms underlying regula-
tion of tissue-specific gene expression remains a chal-
lenging question. While all mature cells in the body
have a complete copy of the human genome, each

cell type only expresses those genes it needs to carry TATA box

out its assigned task. This includes genes required  TF Complex Distal
for basic cellular maintenance (often called “house- TS Enhancer
keeping genes”) and those genes whose function is T T <]
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tional protein from messenger RNA. During gene ex- Fig. 1. Schematic of Transcriptional Regulation. Sequence
pression, transcription factor (TF) proteins are re- motifs at the promoter and the distal regulatory elements to-

gether confer specificity of gene expression via TF binding.
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It is hypothesized that the collective set of tran-
scription factors that drive (regulate) expression of
a target gene are cell, context and tissue dependent
[26, 20]. Some of these TFs are recruited at proxi-
mal regions such as the promoter of the gene, while
others are recruited at these distal regulatory re-
gions. There are several (hypothesized) mechanisms
for promoter-enhancer interaction through protein
interactions between TF's recruited at these elements
during formation of the transcriptional complex [25].
A commonly accepted mechanism of distal interac-
tion, during regulation, is looping [31, 7, 19], shown
in Fig. 2, wherein intervening DNA between the en-
hancer and promoter is “looped out” to facilitate the
interaction between the TF's of the promoter and the
enhancer, leading to formation of the transcriptional
complex.

An important challenge in current biology is
to understand where functional regulatory elements
(like enhancers) are located for a gene of interest.
Given the complexity of the regulatory process, there
are several instances wherein the enhancer for a gene
is located hundreds of kilobases from the gene it reg-
ulates [7, 16, 9]. One of the typical experimental ap-
proaches to localize a gene-specific enhancer is via
bacterial artificial chromosome (BAC) trap assays
[17, 12].Thereafter, using conservation and TFBS
based criteria, smaller genomic sequences (1 — 2kb)
are isolated for subsequent transgenic analysis. How-
ever, even short genomic regions can have several
conserved sequence elements (CSEs) worthy of ex-
perimental testing (e.g. ~ 120 CSEs surpass a 70%
conservation in a 45kb human-mouse aligned region).
Since an experimental analysis of each of these sev-
eral regions is clearly unfeasible, there is a need for
the use of principled methodologies that could poten-
tially reduce this large list of enhancer candidates to
a much shorter high-confidence list for experimental
validation.

Since the main problem of interest is the prospec-
tive discovery of enhancers in a pre-specified se-
quence region, it would seem imperative to explore
modalities that supplement conservation and TFBS
criteria to reduce false positives. In this work, we
explore two such modalities that emerge from func-
tional genomic assays (from several recent indepen-
dent studies as well as from the ENCODE project).
These two modalities reveal some interesting new
features of regulatory regions that are potentially of

great use in discriminating gene-specific enhancers
vs. other neutral regions. We note that there are
promoter-independent enhancers too, and their com-
putational study has been far more principled [26,
27]; however, their study is outside the scope of this
study where we focus on gene-specificity in addition
to tissue-specificity. Understanding the characteris-
tics of such regulatory regions entails several aspects:

(1) Do regulatory regions like promoters and en-
hancers have any interesting sequence proper-
ties depending on their tissue-specificity of gene
expression? Such properties can be examined
based on their individual sequences or their epi-
genetic preferences. A common approach is
the identification of canonical or de-novo tissue-
specific motif-signatures [20, 15] for such ele-
ments, and has been applied quite extensively.
In this work, however, we focus on the epige-
netic preferences of distal regulatory regions (en-
hancers) vs. proximal regulatory regions (pro-
moters).

(2) To reduce the large number of false positives that
arise from sequence comparisons alone, we ap-
peal to a mechanistic insight from biology. For
long-range transcriptional regulation to be pos-
sible, there has to be an enhancer-promoter in-
teraction during formation of the tissue-specific,
gene-specific transcriptional machinery.  Lit-
erature suggests that such interaction is me-
diated by protein-protein interactions between
promoter TFs and enhancer TFs after looping
along the chromosomal length [19, 2, 31]. This
insight (Fig. 2) leads to two further questions:

e Which TFs bind the promoter and the pu-
tative enhancer(s)?

e Does this resultant “interaction-graph” be-
tween enhancer and promoter TFs have any
special structural characteristic that can
discriminate functional non-coding regula-
tory regions from non-functional ones?

The primary goal with answering the questions
above is to build an enhancer discovery program
that can localize tissue-restricted gene-specific en-
hancers in a given chunk of genome sequence (within
a ~ 200kb genomic window, as obtained from BAC
trap strategies [12]). These questions will help us un-
derstand the nature of distal regulatory regions and
provide a way to complement existing approaches in



enhancer localization [27, ?] to achieve lower false
positive rate and higher experimental efficacy.
As a case study to answer these questions, we

signatures of genomic elements that are poten-
tially enhancers. Though this data source is not
kidney specific, we observe that these epigenetic

examine the distal regulation of Gata2 regulation
in the developing kidney. Gata2 is a gene belong-
ing to the GATA family of transcription factors
(GATA1-6), and binds the consensus ~-WGATAR~-
motif on DNA. It is located on mouse chromo-
some 6, and plays an important role in mammalian
hematopoiesis, nephrogenesis and CNS development,
with important phenotypic consequences. The study
of long-range regulatory elements that effect Gata2
expression has been on for several years now.

Recently, [12] reported the characterization of
two enhancer elements, conferring urogenital-specific
(UG) expression of Gata2, between 80— 150kb down-
stream from the Gata2 transcription start site, on
chromosome 6. In this experiment, 4 regions were
selected for transgenic analysis based on sequence
identity and TF motif matches. However, only two of
these worked in-vivo. Based on the insights from the
various individual studies since and the ENCODE
project, outlined above, we asked if it might now
be possible to explain the behavior of these 4 re-
gions along these new modalities (epigenetic signa-
tures and TF-interaction graphs), thereby enabling
the proposal of a framework for promoter-specific en-
hancer discovery from sequence.

2. RATIONALE AND DATA SOURCES:

The overall schematic of distal transcriptional regu-
lation via looping is given in Fig. 2. This schematic
and the discussion in section. 1 suggests the decom-
position of the regulatory process along three main
modalities: sequence, expression and interactome.
Our main goal in this paper is to understand uro-
genital enhancer potential of these 4 UG sequence
candidates [12] from these three perspectives. These
attributes are discussed below:

(1) Sequence Perspective: To build motif sig-
natures underlying kidney-specific enhancer ac-
tivity, it would be ideal to have a database
of known, previously characterized, urogenital
(UG) enhancers so that we could learn the se-
quence preferences of such tissue-specific regula-
tory regions. Here however, due to the unavail-
ability of such data, we take a different approach
and examine a public dataset of histone-modified
sequences of regulatory regions to find motif-

signatures have a strong, discriminative associa-
tion with distal regulatory regions.

Distal enhance

Proximal promoter

Enhancer TFs (identified from phylogenetic
conservation and UNIPROT specificity)

Promoter TFs (identified from phylogenetic
conservation and expression DTI)

>

Fig. 2. Distal enhancer-promoter interaction via looping is
mediated via protein interactions during TF complex forma-
tion. The set of TF's that are putatively recruited at the proxi-
mal promoter and distal enhancer can be found from sequence
and expression data. Evidence of protein-interaction between
proximal and distal TFs can be found from interaction data-
bases.

Protein:Protein interactions between
promoter TFs and enhancer TFs

e Chromatin marks in known regulatory elements:

The ENCODE project suggests that mono-
methylation of the lysine 4 residue of Histone
H3 is associated with enhancer (or distal regu-
latory) activity [10] whereas tri-methylation of
H3K4 and H3 acetylation are associated with
promoter activity. Using this set of H3K4mel,
H3K4me3 and H3ac sequences, we aim to find
sequence motifs that are indicative of such epige-
netic preferences during transcription. Though
such epigenetic data is available for five differ-
ent cell lines, we choose the HeLa cell line data
because of its widespread use as a model system
to understand transcriptional regulation in-vitro
in the laboratory.

For simplicity, we find the frequencies of
six-nucleotide long motifs in the H3K4mel and
H3K4me3/H3ac sequences. Then, we build
a random forest (RF) classifier to discrimi-
nate monomethylated H3K4 sequences from
trimethylated H3K4/acetylated H3 sequences
based on motif occurrence. We note that even
though this data is not kidney cell-specific, it has
favorable specificity and sensitivity characteris-



tics. The motifs thus obtained are putatively as-
sociated with epigenetic properties of proximal

the putative enhancer candidate regions, lead
to the exploration of protein-interactions (PPI)

and distally located regulatory regions (such as
enhancers), and are predictive of the regulatory
potential of new sequences (section: 8).

between these TFs, during distal enhancer-
promoter interaction (Sec:9). The STRING
database (http://string.embl.de) integrates var-

Expression Perspective: There is limited ex-
pression data for the developing mouse kidney,
mainly due to small tissue yield at such early
time points. For this study, we use microar-
ray expression data from a public repository of
kidney microarray data (http://genet.chmcc.org
[32, http://spring.imb.uq.edu.au/ 4]. Each of
these resources contain expression data profiling
kidney development from about day 10.5 dpc to
the neonate stage. Such expression data can be
mined for potential regulatory influence between
upstream TF genes and Gata2 [21, 28].

o Inference of TF effectors at the promoter
region: The TFs putatively recruited at the
proximal promoter are identified using the di-
rected information (DTT) metric, that uses gene-
expression (mnRNA-level) influence in addition to
phylogenetic conservation of the corresponding
binding site. We have earlier shown that DTI
is a good predictor of gene influence and can be
used to infer transcriptional regulatory networks
[28].

e Inference of TF effectors at each non-coding re-
gion: At the distal enhancer, it is believed that
there is recruitment of tissue-specific transcrip-
tion factors that co-operate with the basal tran-
scriptional machinery (at the promoter) to direct
tissue-specific gene expression [13, 20]. Whereas
phylogeny and expression-based influence met-
rics can yield high confidence candidates for pro-
moter TFs, a similar analysis for enhancers is not
possible, because of higher order effects [20, 15].
To this end, the only way to search for puta-
tive enhancer TFs is to combine phylogeny with
tissue-specific annotation (from UNIPROT or
MGI). Hence, every transcription factor, whose
motif is conserved at a non-coding (putative en-
hancer) region and is tissue-specific in annota-
tion is considered a likely candidate TF at that
non-coding region.

Interactome Perspective: The identifica-
tion of phylogenetically conserved effector TF's
at the promoter (identified via DTI), as also
those that are phylogenetically conserved at

ious experimental modalities (genomic con-
text, high-throughput experiments such as co-
immunoprecipitation, co-expression and litera-
ture) to maintain a list of organism-specific
functional protein-association networks that is
amenable to such exploration.

In this work, the above perspectives are exam-
ined in the context of the urogenital enhancers iden-
tified in [12]. We aim to show that each of these
modalities (epigenetic signatures and TF-interaction
graphs) has a predictive value for the identification
of enhancers and the integration of these heteroge-
neous perspectives can lead to potential reduction
in false positive rate during large-scale enhancer dis-
covery, genome-wide. To date, there has been no
comprehensive study for summarizing these various
heterogeneous data sources to understand the char-
acteristics of such regulatory regions.

3. VALIDATION/BIOLOGICAL
APPLICATION

As suggested in Sec: 1, we use the recently identi-
fied Gata2 urogenital (UG) enhancers to validate our
computational approach. All the data sources (and
their analysis) are therefore going to be focused on
the kidney.

The experimental characterization of these en-
hancers was done as follows. Based on BAC trans-
genic [12] studies, the approximate location of the
urogenital enhancer(s) of Gata2 were localized to a
70 kilobase region on chromosome 6. Using inter-
species conservation plots, four elements were se-
lected for transgenic analysis in the mouse. These
were designated UG1, 2, 3 and 4. After a lengthy
and resource-intensive experimental effort, two out
of these four non-coding elements, UG2 and UG4
were found to be true UG enhancers. Our goal is
to find preferences at the sequence, expression and
interactome level, that can explain these experimen-
tal observations: i.e, that UG2,4 are Gata2-specific
urogenital enhancers and UG1, 3 are not urogenital
enhancers for Gata2.

It is easy to see the utility of such a “enhancer
discovery” methodology, since this can be applied



also to other genes of interest. Given the complexity
of 1% of the genome, made possible by the ENCODE
project, the search for functional elements genome-
wide is going to be an important and challenging
exercise.

4. ORGANIZATION

With a view to understanding the discriminating
characteristics of transcriptional regulatory regions,
the first part of this paper (Sections 5-8) addresses
identification of motif signatures representative of
transcriptional control from epigenetically marked
sequences. The second part of this work (Sections
9.1-9.2) integrates phylogeny and expression data to
find regulatory TF's at the proximal promoter and en-
hancer(s) of Gata2. Using the notion of TF interac-
tions between enhancer and promoter, we examine if
protein-interaction data (Sec: 9.3) can offer support-
ing evidence for the observed in-vivo behavior of the
four Gata?2 candidate sequences. Classifiers are de-
signed to discriminate regulatory vs. non-regulatory
regions based on these two modalities (epigenetic sig-
natures and TF-interaction graphs). Finally, a prob-
abilistic combination of these classifiers is done to
obtain a validation (Sec: 10) of the Gata2 UG en-
hancer (UGE) candidates (UG1 — 4). Sections: 11
and 12 conclude the paper.

5. Sequence Data Extraction and
Pre-processing

Before proceeding to motif identification, a ma-
trix of motif-chromatin-sequence correspondences is
created. In this matrix, the counts of hexamer
(six-nucleotide) motif occurrence in the ‘H3K{mel’
and ‘H3K/me3/H3ac’ regions is obtained using se-
quence parsing (R package: ‘seqinr’). The motif
length of six is not overly restrictive, and can be
changed based on biological insight. A Welch t-
test is then performed between the relative counts
of each hexamer in the two epigenetic-modification
categories (‘H3K4mel’ and ‘H3K{me3/H3ac’) and
the top 1000 hexamers with p — value < 1076
are selected. rI;}}liS set of discriminating hexamers
is designated (H = Hy, Ho,...,Hioo0). This pro-
cedure resulted in two hexamer-gene co-occurrence
matrices, — one for the ‘H3K4mel’ (or +1) class
of dimension N¢rgin,+1 X 1000 and the other for
the ‘H3K{me3/H3ac’ (or —1) class — dimension
Nirgin,—1 % 1000. Here Nipgin, 41 is the matrix of

H3K4mel sequences corresponding to distal regula-
tory regions. Nypqin,—1 is the set of ‘H3K/me3/H3ac’
sequences that are associated with proximal promot-
ers.

This dataset is obtained from the Sanger EN-
CODE database
(http://www.sanger.ac.uk/PostGenomics/encode/data-
access.shtml), and contains 298 sequences that un-
dergo modification (mel/me3/ac) in histone ChIP
assays. 140 of these correspond to H3K4mel (en-
hancers), and 158 correspond to H3K4me3/H3ac
marks (promoters).

Table 1. The ‘motif count matrix’ for a set of histone-modi-
fied sequences. The first column is their genomic locations along
the chromosome, the next 2 columns are hexamer quantile la-
bels, and the last column is the corresponding sequence class
label (+1/ —1).

Sequence AAAATA AAACTG Class
chr2:41410492-41411867 2 1 +1
chr6:41654502-41654782 4 2 +1
chr3:41406971-41408059 1 1 -1
chr2:41665970-41667002 2 3 +1
chr4:41476956-41478365 1 2 -1
chrX:41783327-41784532 1 2 +1

6. MOTIF-CLASS
CORRESPONDENCE MATRICES

From the above, Nirgin,+1 % 1000 and Nipgin,—1 X
1000 dimensional count matrices are available for
the chromatin-modified sequences. Before proceed-
ing to the feature (hexamer motif) selection step,
the counts of the M = 1000 hexamers in each
training sample are normalized to account for vari-
able sequence lengths.
trix, let gc; i, represent the absolute count of the
k" hexamer, k € 1,2,...,M in the i** chromatin-
sequence. Then, for each sequence g;, the quan-
tile labeled matrix has X;;, = [ if 9C; (=1 ) <
gcik < 9¢; Ly, K = 4. Matrices of dimension
Nirgin,+1 X 1001, Nirgin,—1 % 1001 for the specific
and non-specific training samples are now obtained.
Each matrix contains the quantile label assignments
for the 1000 hexamers (X;,7 € (1,2,...,1000)), as
stated above, and the last column would have the
corresponding class label (Y = —1/ + 1). Hav-
ing constructed two groups of sequences for analy-
sis, enhancer-associated (‘H3K4mel’) and promoter-
associated (‘H3K4me3/HS3ac’) — we seek to find the

In the co-occurrence ma-



smallest set of hexamer motifs that are most discrim-
inatory between these two classes.Towards this goal,

and H3ac), as mentioned in Section: 2.These are de-
rived from the HeLa cell line and are not necessarily
context-specific for kidney development. However,

we use random forest classifiers (RF) [3] for finding

such a discriminative hexamer subset.

given the widespread use of this cell line for tran-
scriptional studies, we aim to find if the motifs asso-

7. RANDOM FOREST CLASSIFIERS

A random forest (RF) is an ensemble of classifiers
obtained by aggregating (bagging) several classifica-
tion trees [3]. Each data point (represented as an
input vector) is classified based on the majority vote
gained by that vector across all the trees of the for-
est. Each tree of the forest is grown in the following

way:

ciated with regulatory elements are indeed predictive

of enhancer activity.

—

=
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e A bootstrapped sample (with replacement) of
the training data is used to grow each tree. The
sampling for bootstrapped data selection is done
individually at each tree of the forest.

e For an M-dimensional input vector, a random
subspace of m (<« M)-dimensions is selected,
and the best split on this subspace is used to
split the node. This is done for all nodes of the

tree.

During the training step, before sampling by re-
placement, one-third of the cases is kept “out of the
training bag”. This OOB (out-of-bag) data is used
to obtain an unbiased estimate of the classification
error as trees are added to the forest. It is also used
to get estimates of variable importance.

Several interesting insights into the data are
available using random forest analysis. The variable
importance plot yields the variables that are most
discriminatory for classification under the ‘ensemble
of trees’ classifier. This importance is based on two
measures— ‘Gini index’ and ‘decrease in accuracy’.
The Gini index is an entropy based criterion which
measures the purity of a node in the tree, while the
other metric simply looks at the relative contribution
of each variable to the accuracy of the classifier. For

our studies, we use the ‘randomForest’ package for
R. The classifier performance on the individual data
and the related diagnostics are mentioned under Sec:

8.

8. RFs ON CHROMATIN-MODIFIED
SEQUENCES

We train the RF classifier on the set of 298 chromo-
some sequences that have varying chromatin modifi-
cations associated with them (i.e., H3K4mel/me3,
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Fig. 3. GC plots for sequence bias in H3K4mel histone se-
quences vs. H3K4me3 and H3ac sequences. We observe that
there is no significant bias in GC content.
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Fig. 4. Top hexamers which can discriminate between

H3K4mel histone sequences vs. H3K4me3 and H3ac se-

quences.

Before proceeding to motif identification, we
check for possible sequence bias (such as GC-
nucleotide composition) between these two classes of
chromatin modified sequences. If there is a signif-
icant bias, then the motifs turn out to be just GC
rich sequences that are not very biologically informa-
tive for determination of regulatory potential. The
GC composition of these two classes of sequences is
represented in Fig. 3. As can be seen, the aver-
age GC composition is the same and that there is no



such sequence bias that would skew the discovery and
subsequent interpretation of these epigenetic motifs.

phylogenetic conservation or co-expression studies.
In this approach, the promoter sequence (here, the

The performance of the histone-RF classifier is ex-
plained in the context of the classifier combination
in Section:10.

The motifs obtained from the random forest
analysis indicate the “sequence-preferences” of reg-
ulatory elements that are nucleosome-free in HeLa
cells (Fig. 4). We analyze the performance of these
classifiers on the 4 UG candidate regions, mentioned
previously. In both cases, UG2 — 4 are classified
as enhancers, whereas UG1 is correctly classified as
not being regulatory. Additionally, a control set of
“promoter-independent” enhancers derived from the
Mouse Enhancer database [26] was also classified as
enhancers based on these chromatin-sequence motif
signatures. This high prediction accuracy inspite of
non-specificity of cell context (HeLa cell line) is very
interesting and has potentially high predictive value.

9. PPI BETWEEN PROMOTER AND
ENHANCER TFs

In order to understand the nature of interactions be-
tween the enhancer and promoter TFs (Fig. 2), we
decouple the overall regulation problem into three
parts:

Gata?2 promoter) is aligned across multiple species
and the TFBS motifs that are conserved in the multi-
ple alignment are considered to be putative effectors
of gene regulation. Such sequence-based approaches
have been examined in literature [20, 15].

Since the list of putative TF's (identified above)
that potentially bind at the promoter is still
large, there have been efforts to incorporate gene-
expression data to reduce the set of potential TF
effectors. In this scenario, if the gene correspond-
ing to the conserved TF has a high expression-level
influence on Gata?2 expression, then that TF has
stronger evidence for being a potential regulator [21
]. Recently, we introduced the directed information
(DTI) as a metric to infer expression-level influence
between any putative transcription factor (TF) gene
and a target gene (such as Gata2) [28]. This seeks
to integrate sequence and expression data into the
determination of relationships between transcription
factors and their target-genes. All additional details
(performance on synthetic data, other biological data
and comparison with other metrics) are available in
[28]. Information-based measures have enabled the
investigation of non-linear gene relationships in the
presence of measurement noise [21]. An important

(1) Identification of putative TF effectors at the pro-
moter (Section: 9.1),

(2) Identification of enhancer TFs (Section: 9.2),
and

(3) Examination of the interaction-graph formed be-
tween enhancer-TFs and promoter TFs (Section:
9.3).

The key question that is explored in the follow-
ing sections is: having identified the set of tissue-
specific TF's that might putatively bind the promoter
and the candidate regulatory regions, does the struc-
ture of the bipartite TF-interaction graph (across the
promoter TFs and the enhancer TFs) reveal any in-
teresting features that discriminate the functional
UG2,4 regions from the non-functional UG1, 3 re-
gions.

9.1. TF effector identification at
Promoter and Enhancer

Promoter TF identification: TFs that regulate basal
transcription at the promoter can be identified from

point to note is that unlike mutual information, the
DTI is a directed metric that enables the determi-
nation of the strength, significance and direction of
gene influence. For Gata2, this list of effectors is
listed in Fig. 5 below.

Fig. 5. Putative upstream TFs using DTI for the Gata2
gene.

9.2. Enhancer TF identification

In section 9.1, we have examined the identification of
promoter TF's using phylogenetic sequence conserva-
tion of TFBS motifs in conjunction with expression
level influence using DTT. The next key step towards
determining the structure of promoter-enhancer TF
interactions is the identification of enhancer-TFs. As



has been alluded to earlier, there is no method to
precisely infer which transcription factors bind a cer-

interactions. These interactions are obtained
from the STRING (http://string.embl.de/) and

tain regulatory element during long-range gene regu-
lation. Thus, we appeal to a traditional approach of
finding tissue-specific transcription factors that are
phylogenetically conserved at any potential regula-
tory region [27, 20](one caveat, however, is that con-
servation is not a very reliable predictor of TF bind-
ing [22, 23]). This is consistent with earlier obser-
vations that enhancers recruit tissue-specific tran-
scription factors during the formation of the over-
all transcriptional machinery during gene expression,
whereas promoters recruit components of the basal
transcriptional machinery [13, 20, 15, 31].

To ascertain the tissue-specificity of each TF
that putatively binds a regulatory element (identi-
fied via phylogenetic conservation), we examine that
TF’s annotation in the UNIPROT or MGI database.

9.3. ENHANCER-PROMOTER DISTAL
INTERACTION VIA
PROTEIN-PROTEIN
INTERACTIONS - A GRAPH
BASED ANALYSIS

Using the notion of protein-protein interaction (PPI)
mediating long-distance interactions between pro-
moters and enhancers during looping [25, 2, 8], we
explore the interactome to look for within-group and
between-group interactions in the promoter-TF and
the enhancer-TF groups.

The interaction-graphs (e.g: Fig. 6) are obtained
in the following manner:

e One part of the graph (hollow circles) corre-
sponds to the TF effector group at the promoter.
These V,, TFs are identified based on phyloge-
netic conservation, tissue-specificity and directed
information (section: 9.1).

e The other part of the graph (filled circles) cor-
responds to the V. tissue-specific TFs group at
the enhancer, identified based on phylogeny and
tissue-specificity annotation (section: 9.2).

e The interaction-graph is defined by the ver-
tices V. = (V, U V,), and the edges E = e¢;,
i,j € (1,2,...,|VpUVe]). Each bidirectional edge
E = (e;;) is derived from an annotated interac-
tion between TF's ¢ and j, based on an interac-
tion database. These edges describe both within-
group TF interactions as well as between-group

MiMI  (http://mimi.ncibi.org/MiMI/home.jsp)
databases, both of which contain data derived
from multiple sources, such as yeast-2-hybrid
screens, literature etc.

Though it would be of great value to use a catalog
of gene-specific and tissue-specific regulatory regions
(with all possible transcription factors) from which
to find such interaction characteristics - such a repos-
itory does not yet exist. In this section, we use a few
examples (Gatad OVE, Gata3 KE, Fgf OVE, Mecp2
F21/F6 , Shh FE) of known tissue-specific and gene-
specific regulatory elements from literature, as a pos-
itive training set. For the negative training set, we
consider the set of regions that were reportedly in-
vestigated in these transgenic experiments but did
not yield gene-specific regulatory activity.

We have presented a preliminary analysis of
enhancer-promoter TF interaction-graphs for some
genomic elements with known regulatory or non-
regulatory activity [19, 18, 9, 24] in Table. 2. The ta-
ble represents the listing of some of the structural at-
tributes of these interaction-graphs, following analy-
sis methods from literature [1]. A deeper analysis
of other graph topology metrics and their relation
to functional enhancer activity is a topic of future
interest.

e Clustering coefficient: The clustering coeffi-
cient of a node is always a number between 0 and
1. The network clustering coefficient is the average
of the clustering coefficients for all nodes in the net-
work.

e Characteristic Path length: The characteristic path
length denotes the average shortest-path distance of
the graph. This gives the expected distance of any
two connected nodes in the graph and is a global in-
dicator of network-connectivity.

e Heterogeneity: Network heterogeneity denotes the
coefficient of variation of the degree distribution.

e Centralization: This refers to the overall connec-
tivity (cohesion) of the graph. It indicates how
strongly the graph is organized around its most cen-
tral point(s).

e Density: It shows how densely the network is pop-
ulated with edges (i.e. how “close-knit” an empirical
graph is). A network which contains no edges and
solely isolated nodes has a density of 0, whereas the



Table 2.

The first column is the various regulatory and non-regulatory elements from literature, the

next column corresponds to its class label (+1/—1). The subsequent columns correspond to the attributes

of the overall TF-interaction graph (both within-group and between-group interactions).

Sequence Class  Clustering  Characteristic =~ Heterogeneity = Centralization  Density
Coefficient  path length

Mecp2 F21 [19] +1 0.208 2.824 0.668 0.184 0.133
Mecp2 F6 [19] -1 0 1.75 0.342 0.067 0.145
Gata3 OVE [9] +1 0.036 2.254 0.779 0.359 0.154
Gata3 KE [9] +1 0.409 2.0 0.813 0.684 0.216
Gata3 NE1 [9] -1 0.383 2.131 1.139 0.757 0.15
Gata3 NE2 [9] -1 0.458 2.013 0.872 0.699 0.203
Fgfl0 OVE [24] +1 0.313 2.433 0.72 0.323 0.133
Shh FE [18] +1 0.394 2.312 0.797 0.49 0.175

density of a clique (completely connected graph) is
1.

The above mentioned several network properties
(as well as clustering coefficients, number of con-
nected components etc.) are examined for the overall
interaction-graphs for the reported enhancers from
literature. A logistic regression reveals that low val-
ues of heterogeneity, characteristic path length and
centralization are strong predictors of potential en-
hancer activity. All of these attributes point to
the decentralized, homogenous and somewhat tighter
connectivity of the interaction-graphs for true en-
hancers. We note that the OOB error rate of the
RF here is about 20%. The quality of this classi-
fier can be expected to improve as we obtain more
data (gene-specific regulatory regions) from which to
extract features.

We now examine the interaction-graphs for the
test set, i.e. the four Gata2 UGE candidates. For
illustration, we only show the largest connected com-
ponent of the inter-group edges for each interaction
graph (Fig. 6).

This figure indicates a very interesting property
of the real enhancers vis-a-vis the other conserved el-
ements. We see that the TF effectors for Gata2 such
as SP1, POUSF2 (identified in the TF effector net-
work above, Fig. 5), are involved in cross-element in-
teractions at the protein level, between the promoter
and true enhancers (UG2/4). However, the network
linkage in the elements that showed no enhancer ac-
tivity is very sparse suggesting low cross-talk be-
tween promoter and enhancer. Also, the TFs at the
enhancer nodes (dark circles) have a more uniform
degree distribution in the functional elements UG2/4
as compared to the non-functional ones. Both these
observations suggest lower heterogeneity and central-
ization of such functional interaction-graphs. Thus,

the extent of TF cross-talk is a potential discrimina-
tor of possible enhancer function. This shows that
superimposing such PPI information along with se-
quence and expression data helps reduce the number
of false positives while integrating various aspects of
distal regulation.

ATF6
SP1 SP1 NFYB!
Rara. POU3F2 SP1 CEBPB TALY

CEBPB E2F EGR1 Tep
wrt e sP1

EGR1 AMLY MYOD
cEBPZ E2F1 i
UG1 EGR1 MSXi
AREG NFYB sP1
- MsX1
E2F1 oot POU3F2
el
sP1 uG2
ESA1 uG4
NR2F1
HNFAA Pt
uGs

Fig. 6. Protein-protein interaction between putative Gata2
TFs (hollow circles) and putative UG element TFs (filled cir-
cles). Note: This only shows the connections between two
groups for one of the connected components. For our analy-
sis, we consider both intra- and inter-group connections. From
http://string.embl.de/

10. HETEROGENEOUS DATA
INTEGRATION AND VALIDATION
ON GATA2 UGE CANDIDATE
SEQUENCES

As mentioned previously, the primary goal of the
framework developed above is to understand the be-
havior of known regulatory elements along different
genomic modalities. To validate their predictive po-
tential, we demonstrate their application to predict-
ing the behavior of the experimentally-verified Gata2
UG enhancer candidates (which is our test set). Here
we combine the results of the individual classifiers
(histone RF and interactome-RF) to obtain an in-



tegrated prediction that a candidate sequence is an
enhancer. For combining heterogeneous classifiers,
we use a “probabilistic belief fusion” approach.

The framework involves combining the ‘beliefs’
of the individual classifiers to obtain a combined be-
lief of prediction. To compute the belief of each clas-
sifier we start with examining the confusion matrices
for each of the classifiers (histone-RF and graph-RF),
following ([33]. Since each of the classifiers are ran-
dom forests, we can obtain their OOB error estimates
through these confusion matrices. For the graph-RF,
this confusion matrix is as below,

Class —1 1 class.error
CMguaph-rr=| —1 41 020 ,
1 1 4 0.20

thereby yielding an OOB error estimate of ~ 20%.
Similarly, we have,

Class —1 1 class.error
—1 134 24 0.15 ,
1 21 119 0.15

CMhistone—RF =

yielding an OOB error estimate of ~ 15%.

As can be seen, these classifiers have fairly good
sensitivity and specificity characteristics. This is ex-
pected to improve as more training data for these
classifiers becomes available. Moreover these are two
complementary data sources and can be effectively

Note: J = 2 and K = 2. Depending on the belief
value bel(i), the decision rule (E(z)) for classifying
data point z is,

E(x) = j,if bel(j) = max; bel(i),
or, E(z) = j,if bel(j) = max; bel(i),and, bel(j) > a,

where 0 < a < 1, with a being a threshold.

We now show the output classes of each of the 2
classifiers as well as the combined belief on the Gata2
UG enhancer candidates in Table. 3. More specifi-
cally, for the first row in Table. 3, the overall belief
equation above becomes,

[T, Plugl = +1]ex(z) = ji)

bel(ugl = +1) =
(ugl = +1) [T, [P(ugl = +1lep(z) = ji)]+

[Tre [P(ugl = —1|ex(x) = ji)]
[T, (1 — preca)
[Hf:l(l - precnvk) + H£(=1 precnvk]

Here, prec, i, = WN};M Similarly, precpr =
TP, . o .
TP I FP These are the negative and positive preci-

sion values respectively, for the k*" classifier. These
rates are obtained from the corresponding confusion
matrices shown above. This approach is followed for
each of the UG1 — 4 elements (Table. 3).

If we set a threshold of @ = 0.60 or 0.90, we
would get UG2 and UG4 to be the true enhancers

combined to improve detection reliability. Since they
are trained on very different modalities, they can be
assumed to be independent. It can also be seen that
this method of belief combining is applicable to as
many modalities (K) as necessary to the biological
problem of interest, and hence is truly scalable.

Let each classifier be characterized by its deci-
sion function ey(x) = ji that maps a data point (x)
to the class ‘5, for k =1,2,..., K and j, € (—1,1).
Here, K =2, and J = 2 classes.

The belief of the k" classifier is defined as,

belp(z € Cilex(x) = ji) = P(z € Cilex(x) = ji)

The overall belief, bel(i), is computed using Bayes
rule,

[y, P(z € Cilex(x) = ji)

bel(i) = P(x € C;). 15 Pz
k=1 4\ i

bel(Cy) = FfﬂKp(l’ € Gilew(®) =ju)
Zi:l Hk:] P(«'If S Cz|ek(ﬁc) = ]k)

(100% accuracy). However, for a choice of a = 0.50,
UG3 is predicted to be an enhancer in spite of being
declared a member of the (—1) class by the graph-
RF. This choice of threshold thus determines the per-
formance of the combined classifier (just like in any
other hypothesis-testing scenario). We note that at
the present time, there is no known repository of
promoter-specific regulatory elements to carry out
such graph-analysis on each element.

Under the o = 0.50 case, however, the results are
not to be interpreted as a 25% error rate since the
nature of the test set (Gata2 UG enhancers) are very
different from the training data of each modality (hi-
stone sequences are for a different cell-context; and
interaction-graphs are obtained over different genes).
The fact that we are getting such good prediction
in spite of the training sets being so different is a
strong point in favor of examining and integrating
these data sources. The test-error rates are given by
the OOB error estimates of the individual classifiers.



Table 3. Combined belief generation during heterogeneous classifier integration. The
last column represents the combined belief (probability that the UG candidate sequence
is an enhancer) as a result of integrating the histone-RF and graph-RF predictions.

Sequence True Histone RF
Class prediction e (x)
Gata2 UG1 -1 -1
Gata2 UG2 +1 +1
Gata2 UG3 -1 +1
Gata2 UG4 +1 +1

11. SUMMARY OF APPROACH

In this work, we have shown that,

e Chromatin modification motif signatures are
predictive of regulatory element location. These

Interaction-graph RF

P(Class=+1)

prediction ea(z) (Overall Belief)

-1 0.0377
+1 0.9520
-1 0.5535
+1 0.9520

of DTI as a metric to infer putative TF to target-
gene influence is a recent one that serves to integrate
phylogenetic TFBS conservation along with expres-
sion data. Finally, the utilization of graph-based
analysis techniques to understand the “structure”

point to the cell-specific epigenetic preferences of
distally located regulatory regions.

e Promoter and enhancer TFs that are putatively
recruited during gene (Gata2) regulation can
be identified using a combination of phyloge-
netic conservation, expression data, and tissue-
specificity annotation.

e Effector TFs at the gene proximal promoter have
high network linkage with enhancer TFs in case
of functional enhancers. The TF interaction-
graphs of truly functional elements are seen to be
have a lower centralization, characteristic path
length and heterogeneity suggesting higher cross-
talk during formation of the transcription factor
complex.

These diverse perspectives (based on sequence,
expression and interactome data) shed some light on
the sequence and mechanistic preferences of true reg-
ulatory regions interspersed genome-wide. It is to be
noted that this model is data-driven and needs fur-
ther validation to correspond directly with the biol-
ogy of transcription.

12. CONCLUSIONS

The novelty of the proposed work spans several ar-
eas. Firstly, data sources that are relevant to under-
stand the mechanism of gene regulation (with Gata2
as an example) have been identified. We have devel-
oped methods that reconcile the behavior of known
regulatory elements along each of these modalities.
The utilization of histone-modified sequences and
their exploration for sequence motifs are indicative
of epigenetic-preferences and nucleosome-occupancy
patterns. This has not been explored before for the
characterization of distal regulatory regions. The use

of the TF interaction-graph between enhancer and
promoter helps us understand true enhancer behav-
ior from a mechanistic viewpoint. The probabilis-
tic combination of multiple classifiers (each deriving
from a unique data resource) aims to reconcile the
behavior of existing enhancers along multiple modal-
ities. We hope to demonstrate that a principled in-
tegration of non-overlapping genomic modalities can
be used to interpret the context and specificity of
gene regulation.
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