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Integrating different types of biological networks and aligning networks across species are two useful but challenging

comparative methods in systems biology nowadays. By combining these in one framework, we can expect to generate
more reliable information and hypotheses. In this study, we systematically integrate the transcriptional regulation

network of enzyme-coding genes and the corresponding metabolic network, and align these integrated networks be-

tween two species. By applying a comprehensive yet flexible scoring function to measure the alignment similarity, our
method can be used to identify conserved elements (allowing for small variations) of evolution at both the regulatory

and metabolic level, to reveal the interrelation and divergence between species and to use information at one level to

predict missing information at the other level.

1. INTRODUCTION

Most metabolic reactions in cells are catalyzed by en-
zymes, and the genes which code for these enzymes
are regulated by transcription factors (TFs). That
is, TFs can bind to the promoter sequence of genes
and subsequently activate or repress the transcrip-
tion of these genes. This information flow from the
regulatory level to the metabolic level is illustrated
in Figure 1a. At each level, these interactions form
a network, i.e. a transcriptional regulatory network
and a metabolic network, respectively.

Comparing networks between species at each
level individually can help to filter noise, and pro-
duce insights into the principles governing evolution.
For example, Gasch et al.1 found that many of the
known cis-regulatory systems in Saccharomyces cere-
visiae (yeast) have been conserved in 13 ancient fungi
species. Tanay et al.2 studied the promoter evolu-
tion of co-regulated genes in 17 yeast species, and
suggested an intermediate redundant regulatory pro-
gram underling the evolvability and increased redun-
dancy of transcriptional regulation in higher organ-
isms. Alkema et al.3 improved the prediction of co-
regulated genes based on the conservation of pro-
tein sequences and regulatory mechanisms. At the
metabolic level, Jeong et al.4 and Ravasz et al.5 stud-
ied the global topological properties of the metabolic

networks in 43 species. Heymans et al.6 derived phy-
logenetic trees based on metabolic pathway compar-
ison.

Comparing networks at different levels simulta-
neously can be even more informative. Since differ-
ent types of network present different perspectives
on the biological system, integrating them may offer
a more comprehensive picture. Particularly when el-
ements are conserved at multiple levels, we can be
more confident about the reliability of the observed
conservation. This allows us to make predictions, us-
ing information at one level to infer information at
another level, or using information of one species to
infer information for another species.

Although integrating different types of net-
work within one species has received quite some
attention7–10, little advances have been made on
the alignment of regulatory and metabolic networks
across species. Here we present a method that
searches for network elements that are conserved in
evolution at both the regulatory and metabolic level,
and measures the extent of this conservation. A
schematic overview of our goal is given in Figure 1a.

Previously we developed M-PAS11, a framework
for metabolic pathway alignment and scoring based
on the notion of building blocks (see Figure 2), to
align the metabolic networks of Saccharomyces cere-
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Fig. 1. Method overview. a) The goal of our method is to align metabolic pathways and their regulation between two species,

using suitably defined similarity measures between compounds, enzymes and transcription factors (illustrated by the dotted
lines), in order to find conserved elements and learn about differences between species (illustrated by the exclamation mark).

From missing links in an otherwise conserved context, we can infer missing reactions or regulation within species (illustrated by

the question marks). b) The RM-PAS flowchart.

visiae and Escherichia coli. In the current work, we
integrate TF-gene interaction and TF binding site
(TFBS) information into M-PAS, and form a more
comprehensive method, RM-PAS. We applied RM-
PAS to S. cerevisiae and E. coli, two of the best-
annotated model organisms, with relatively much
TF binding and TFBS data available. Since these
species are not closely related, many differences are
expected, and the resulting conservation is expected
to be quite informative.

2. Methods

The building block method used in M-PAS has shown
to be an appropriate approach to align metabolic
pathways11, 12. It is described briefly in Figure 2 and
Appendix A. First, it is able to explore topological
arrangement possibilities of reactions both between
species (by building block construction) and within
species (by pathway assembly). Second, by defining
building blocks, we can focus on conserved pathways
while allowing small variations. Third, the method
is adaptable and can easily be extended to include
more information.

Here, we extend the building block construction
and the scoring function to include transcriptional

regulation information. That is, for every enzyme in
a reaction, we add the transcription factors that reg-
ulate the enzyme-coding genes. In the end, we con-
sider the building blocks be the conserved elements
that we are interested in. The flowchart is given in
Figure 1b and will be explained in the remaining of
this section. Note that given curated databases (see
section 3) and user-defined parameters as input, each
step in the flowchart is automated.

2.1. Regulatory-metabolic building
blocks

We add transcriptional regulation to the metabolic
building blocks in M-PAS, to construct regulatory-
metabolic (RM) building blocks. That is, we add a
link between a transcription factor and the enzyme
in the reaction. This is only done when there is ex-
perimental evidence showing that the transcription
factor indeed regulates the gene coding for the en-
zyme.

Like in the metabolic building block approach,
we also categorize the RM building blocks with differ-
ent TF regulation scenarios in the two species, as well
as different TF similarity scenarios, i.e. (1) whether
the TFs which bind to the enzyme-coding genes are



Fig. 2. Illustration of the six types of metabolic building blocks. A metabolic building block is formed if two reactions from

two species transform the same substrate into the same product, by a) the same reaction which is present in both species, or
b-c) different reactions with similar or dissimilar enzymes, or d-e) different number of reactions in two species, or f) different

sequential order of the transformation. Note the reaction directions are omitted for simplicity. A compound supernode is the set
of all substrates or products in a reaction. Enzyme supernodes are defined similarly. Two compound supernodes are considered

similar if they share at least one common compound. Two enzyme supernodes are considered similar if there exists a pair of

enzymes sharing the same first two digits in their EC numbers.

similar (“direct TF”) or dissimilar (“mismatch TF”),
and (2) whether there exist additional TFs (“alter-
native TF”) in one species which are similar to the
TFs in another species, but are not found to bind
to the genes in that reaction. When one species has
neither bound TFs nor alternative TFs, we call the
RM building block has “absent TF” in that species.
The seven possible cases where TFs are added to
the metabolic building blocks are shown in Figure 3,
cases 1-7.

In addition to the reactions present in the
database, we also look for possible reactions which
are currently missing in one of the species (“miss-
ing”). In this scenario, one reaction is present in
only one species, but the other species does contain
the reaction’s compounds and enzymes with identi-
cal function in terms of EC number. An RM building
block is then constructed when there is evidence from
the transcriptional regulation control indicating that
the missing reaction might be present. That is, when
there exist “direct” and/or “alternative” TFs, we hy-
pothesize the reaction might exist in both species.

These three cases are shown in Figure 3, cases 8-10.

2.2. Pathway assembly

After building blocks are constructed, they are con-
catenated into pathways, if the product of the up-
stream building block is the substrate of the imme-
diate downstream building block. Since we are inter-
ested in small differences (as illustrated in Figure 2
and Figure 3), instead of generating a few highly con-
served longer pathways, we generate a ranked list of
short pathways with the same length. Because the
amount of overlap between pathways increases sub-
stantially when pathway length increases, we limit
each pathway to contain four building blocks.

To implement an exhaustive search for all length-
four pathways, we start a backtracking search from
each substrate. During the search, all building
blocks in a pathway should be different, and one
reaction cannot appear more than once in one
species. Note that twenty-six currency metabolites
(ATP, ADP, UTP, UDP, GTP, GDP, AMP, UMP,
GMP, NAD, NADH, NADP, NADPH, acetyl-CoA,
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more similar than average, i.e. for “direct TF”: ZTB(B) > 0 (Eq. 6), and for “alternative TF”: ZTU (B) > 0 (Eq. 8). In cases
8-10, the two enzyme supernodes have the same EC number.

CoA, propanoyl-CoA, L-glutamine, L-glutamate, 2-
oxoglutarate, CTP, CDP, CMP, H2O, CO2, NH2,
and phosphate) are excluded from consideration dur-
ing pathway assembly to avoid finding large numbers
of pathway shortcuts5, 13. That is, we do not match
or connect two reactions if they only share the same
currency metabolites.

2.3. Scoring function

We rank the aligned pathways according to the ex-
tent of conservation, in order to prioritize the inter-
esting pathways for further investigation. The M-
PAS scoring function11 integrates multiple similarity
scores of all reaction components. It has a generic
form and is capable of measuring pathway similarity
given different biological emphases. This allows user
to specifically look for certain characteristic differ-
ences between species in otherwise highly conserved
pathways: by setting the appropriate parameters,
differences will be allowed between enzymes, com-
pounds and/or TFs. Due to its hierarchical inte-
gration structure, it is readily extensible to include
other relevant similarity measures. In this study, the
M-PAS scoring function11 is adapted such that tran-
scriptional regulation similarities are included.

2.3.1. Total score

Our goal is to reflect all aspects of an aligned path-
way in the total similarity score. These include sim-
ilarities at the regulatory level and the metabolic
level, i.e. similarities between transcription factors,
substrate sets, product sets, enzyme functions, en-
zyme sequences and alignment topology, respec-
tively.

To account for their diverse distributions of sim-
ilarities, we first compute similarity scores indepen-
dently for each aspect, and then convert the raw
scores into z-scores before integration. The integra-
tion of multiple z-scores is done hierarchically using
Liptak-Stouffer’s method14. In this way, we obtain a
decomposable score for a pathway:

Z(P ) =
1√
N

∑
∀B∈P

Z(B) (1)

=
1√
N

∑
∀B∈P

1√
3

[Z0(B) + ZR(B) + ZT (B)]

where Z(P ) denotes the total z-score of an aligned
pathway P , which contains N building blocks B.
Z0(B) is the user-specified bias for the building block
alignment type. For example, if the user is interested
in building blocks with gaps, then the building blocks
with gaps, i.e. “direct-gap” and “enzyme mismatch-
gap” in Figures 2d-e, can be assigned a large posi-
tive bias. ZR(B) and ZT (B) denote the reaction and
transcription factor similarity z-scores in B. ZR(B)



is discussed in detail in ref. 11, and will be briefly
described below and in Appendix A. Here we mainly
focus on the TF similarity score.

2.3.2. Reaction score

The reaction similarity score ZR(B) is a weighted
sum of its compound score Z(CB) and enzyme score
Z(EB) (Appendix A):

ZR(B) =
1√

ω2
c + ω2

e

[ωcZ(CB) + ωeZ(EB)] (2)

Compound weight ωc and enzyme weight ωe can be
used to assign different relative importance to com-
pound similarity and enzyme similarity. The com-
pound score Z(CB) combines the similarities be-
tween the substrate sets and between the product
sets in a building block B, considering the amount
and specificity of the overlapping compounds. The
enzyme score Z(EB) is a weighted sum of a func-
tional similarity score (with weight ωf ) and a se-
quence similarity score (with weight ωq).

2.3.3. Transcription factor score

We measure TF similarity to see whether regula-
tion is conserved in the two species, and whether we
can find possible alternative TFs. Therefore, the TF
score contains two parts: (1) the similarity between
the bound TFs in two species (ZTB), and (2) the
similarity between the bound TFs in one species and
TFs that are not found to bind in the other species
(ZTU ). Weights are given to these two parts for find-
ing different cases in Figure 3. Thus the TF score can
be written as an integrated z-score:

ZT (B) =
1√

ω2
tb + ω2

tu

[ωtbZTB(B) + ωtuZTU (B)]

(3)
First, we need to compute the raw similarity scores
between TFs. A TF is characterized by its corre-
sponding transcription factor binding site (TFBS),
which can be quantitatively described by position
weight matrices (PWM) or position frequency ma-
trices (PFM)15. We take the standard approach of
comparing PWM/PFM profiles16, 17 to measure the
similarities between different TFs in an RM building
block. More specifically, we applied MatCompare17

to calculate the Kullback-Leibler divergence18 be-
tween the PWM/PFM matrices. This measures the

information divergence between the matrix entries.
If matrices m and m′ have w columns, indicating
the length of the TFBS sequence, the divergence be-
tween them is:

D(m,m′) =
w∑

i=1

T∑
j=A

(mij −m′
ij) log(mij/m′

ij) (4)

If one of the two matrices has fewer columns, that
matrix is compared to all possible starting columns
in the other matrix to find the best match.

For a building block B, there might be multiple
TFs, each of which might have multiple PWM/PFM
matrices. Let MB1 and MB2 denote the complete set
of PWM/PFM matrices of all bound TFs involved in
B in the two species, respectively. Then the raw TF
similarity between bound TFs is the best match in
all pairs of bound TF PWM/PFM matrices:

STB(B) = max
m∈MB1,m′∈MB2

−D(m,m′) (5)

This similarity is further transformed into a z-score:

ZTB(B) =
STB(B)− µTB

σTB
(6)

where µTB and σTB are the average and standard-
deviation of STB over all possible permuted pairs of
MB1 and MB2.

Similarly, we compute the raw similarity score
between bound TFs in one species and the alterna-
tive TFs in the other species, which is the best match
in all pairs between bound TF PWM/PFM matrices
in one species and the alternative TF PWM/PFM
matrices in the other species:

STU (B) = max{ max
m∈MB1,m′ /∈MB2

−D(m,m′),

max
m/∈MB1,m′∈MB2

−D(m,m′)} (7)

ZTU (B) =
STU (B)− µTU

σTU
(8)

where µTU and σTU are the average and standard-
deviation of STU over all possible permuted pairs of
MB1 and MB2.

3. Data

Reaction definitions were obtained from Re-
lease 42.0 of the KEGG LIGAND composite
database19, updated on Aug. 18, 2008. The



species-specific reactions and enzyme lists were re-
trieved from KEGG/XML and KEGG/PATHWAY.
Protein sequences were downloaded from
UniProtKB/SwissProt20 Release 56.0, updated on
July 22, 2008.

For S. cerevisiae, the experimentally verified TF-
gene binding data is collected from TRANSFAC21

Release 11.4 and Yeastract22 version 2008515.
The PWM or PFM matrices are obtained from
TRANSFAC, Yeastract, SwissRegulon23, IMD24,
and ooTFD25.

For E. coli, the experimentally verified TF-gene
binding data is collected from EcoCyc26 Release 11.6
and RegulonDB27 Release 6.0. The TFBS matrices
are obtained from RegulonDB and SwissRegulon.

4. Experiment and results

Based on 957 enzymatic reactions in yeast and 1175
enzymatic reactions in E. coli, we constructed 697
RM building blocks, including 5 of cases 8-10 in Fig-
ure 3. They are assembled into 8397 length-four
pathways, starting from 259 substrates.

Here we demonstrate our method using three
example queries, to find fully conserved pathways,
missing TF-gene bindings, and differences between
the regulatory and metabolic level. Each query uses
a different parameter setting, including the building
block type bias Z0, four reaction score weights (i.e.
ωc, ωe, ωf and ωq), and two TF score weights (i.e.
ωtb and ωtu). In each query, the similarity scores of
all pathways found are computed using Eq. 1, and
the highest-scoring pathway(s) of a certain substrate
is referred as the best pathway for that substrate.

Table 1 lists the parameter settings in the
queries. The motivations for, and results of the
queries are discussed in the following.

4.1. Identifying conserved
regulatory-metabolic network
elements

In Query 1, all aspects of known information at both
the regulatory and the metabolic level are consid-
ered. Therefore, the resulting pathways represent
elements fully conserved at both levels. Figure 4a
gives an example, which is involved in the citrate
cycle (TCA cycle) and the biosynthesis of several es-

sential amino acids, i.e. valine, leucine and isoleucine.
The addition of TF similarity helps to refine the

results of Query 1 in M-PAS, which only uses re-
action similarity. Consequently, the ranks of found
length-four pathways in RM-PAS might be differ-
ent than those in M-PAS, revealing that regula-
tory mechanisms are not uniformly conserved in
metabolic pathways.

For the 2427 pathways common in the results of
RM-PAS and M-PAS, we calculated the rank of each
pathway among the group of pathways which share
the same starting substrate, using both scoring meth-
ods. This rank was then normalized by dividing by
the size of the group to obtain a normalized rank in
the range of [0,1], i.e. the most conserved pathway in
a group ranks 1. In the end, 52% of pathways have
normalized ranks higher in RM-PAS than in M-PAS,
while 28% have lower ranks. Note that only 16% of
the changes in the ranking is caused solely by changes
in the group size.

In-depth analysis shows the TFs are indeed dif-
ferent in the pathways whose ranks are lower in RM-
PAS. For instance, the pathway in Figure 4b has the
highest score in M-PAS, but its RM-PAS score is the
30th highest. This is because the TFs in the first
building block are quite different; not only in TFBS
matrices, but also in their functional annotations,
binding domains, and protein sequences. In fact, the
binding domain of the E. coli TF fruR is only present
in bacteria.

4.2. Using one level to infer missing
information at another level

Inferring missing reactions Here we use con-
servation at the regulatory level to infer missing
reactions at the metabolic level. Based on the data
collected, we constructed five building blocks cor-
responding to cases 8-10 (see Figure 3), which are
shown in Figure 5. In particular, Figure 5d is found
in six length-four pathways. In each example, al-
though the reaction is not found in the database for
one of the species, we hypothesize that it is actually
present. The evidence comes from both metabolic
and regulatory levels: all involved compounds and
enzymes with the required function are present in
the species, and they are also regulated similarly.



,. b. ,.
.I""._D_GI",,.. ",

"'-'-"1'.'.1.,

,."_D_G~oo"",

'.3.1.' !
,."_D_'"01,,. ",

~
D__"'"

'.'.1.1
D_",""".",

D_E"",,,.4,
lr"~

'.12.13 ( "".,.,...

D_S.",,,,,,,,,,,,_

""", '"~","',.
~

".
'.'.1.<0 >WIoo....""".,.,...'y,,,."
•.3.1.

17t""''.3.1.10

l_S"',,,

;
T"_~'

'.12.1 ',10_....""""'."
. "'_~•• ".oGlyo",

1.....' [,- UroY"""'"
;. CO,

S_Am~om."y"

'Y'''''''~'''''~

•,,,,,._D_R',,.. "
0.<,','10.<.'.'D_R",.. 0,

;
D_"''''''''''''.'.1.1 D_So_~_."

D_Glyoo,,~.'yd. 3,

"''';''''-''''~'1.2.1.\3 + """.

12 "" "ro". H"
3_""$'_D_"YOO"~ ,

~,

'.'.n
'"3_"",',_D_,lyoo,",

,,; "y' '''';''::~-E p" 0<'"~o'"~:'''',.
1...... """"." 2.7."<0]

NuoIooo... t"""'ph~.
Upo ..... '._E p.,,,,,.

1.2.'.' [,.,~=';'_lh" ii~: ~-_."' ...;.,._......_ ...__• '.1.1.1 ;CO'
T~""'" ,~"",".t. 2_"Y'''XY''"~_n.I'''

ii~: ~"_. ~'_Oxroo..-o~.
'.1.1.1 CO, 2.2."' ..-_.",...
2_ Hy' "xy.th~_HI' P (Sj2_Aooto_2_hy' """, ,to no .t.

~
'_Oxw..-o~. 1.1.1.""1

2.2.'" .. H ....3__.",... ""h",h...
(":>3_ Hy' "",,_3_ m.thyl_2_

~j~~~~~~'"~~~+-~~~~~------t-----------
d. e. i f.

S_Ad.",.,._';.",,,,,,,,,,.,,, I
~~ H.03."", I
•~. I.- ,s__••'_l_""""""'_1
~ ......21 i
',(Sj"~_ I
~~_,,3_"""" i

l_H, ""stu. -
=:~'i":' ,."",,,,,,,,..·c_.. ,~",_~,

2.1.1.1< ~ 2.1.1.13

"""- ~~..""._c· ,r"""'y<lrofolot.-- .
l-O"."~~",,

~
".",o

2.2.'" "''''''''''ph~..
"""""'''''''.S_Ad. ",.,.I_l_ m.too~".

'.1.UiO ,1..CO'

S_Ad.M.,.,m.... o~"''''''''' I
------------+------------~------------

Common reaction ~ Unique yeast reaction - -> Unique E. cOofreoction

Fig. 4. Examples in the three queries. For conciseness, a common reaction in two species is drawn only once in each building

block, indicated by a solid-headed arrow. a) An example best pathway in Query 1. b) One pathway which ranks differently in
Query 1 of RM-PAS and M-PAS. c-d) Example best pathways in Query 2. e-f) Example best pathways in Query 3. See text for

details.

a. n. iC. ;n ie._. TlJamin; _. S....mir><>-6-(S·.
G1yc.rol Palmiloy~CoA mo":,pllosphat,, 4--"'mirlObulanal PIlo~PhoriMYI3mirlO}"3Cil

N"'DP'~ 1.1.1.1 M'lony~ • _ H,O ' N"'Oo+ , , H,o
1.1.1.2 • : Co'" 231._ 3.1.3,_ ._ 1,2,1.3 :, - H,O 3.1.3,. _~~

N...OPH 1.1.1.21 CoA 1..1. Orlho- 1l1l91:\. NADH+ j W" Ortllopl>osphale
+H" 1.1.1.72 +CO, VpI>opll VH' ~

I ~G"....•.." ' "....•...." ".....•..0....' 0 " '.." '..'.." ' ' ' A , ' "...•...m " • • , ~.~.~~.~.~~~.~.~~.~;. ~t~:~;:::;~;;.;.~~.=.: ,_,
---+- Unique yeast reaction - ->Unique E. colireaclion

Fig. 5. Five building blocks belonging to cases 8-10 in Figure 3.



Table 1. The parameter settings in the three queries. “i” refers to the identical metabolic building block
type in Figure 2. The cases refer to those in Figure 3, illustrating the scenarios for each query.

Query ωc ωe ωf ωq ωtb ωtu Z0 Target Case

1 1 1 1 1 1 0 0 for all Full conservation 1,2,8,9

2 1 1 1 1 0 1 0 for all Missing TF-gene bindings 1,3,5,8,10
3a 1 1 1 1 -1 1 100 for non-“i” Differences between two levels 3

3b 1 1 1 1 -1 1 100 for “i” Differences between two levels 3

Inferring missing TF-gene bindings In Query
2, we try to use conservation at the metabolic level
to prioritize a list of hypothetical TF-gene bindings
with higher confidence. Overall, the predictions on
yeast TF-gene bindings by RM-PAS are significantly
better than random predictions. This is validated by
a permutation test (see Appendix B), which shows
that the TFs predicted by RM-PAS are more likely
to bind to the respective genes than random predic-
tions for 50% of the genes.

Here, we give two examples. Figure 4c shows
the highest-scoring pathway, involved in glycol-
ysis/gluconeogenesis, pentose phosphate pathway,
and carbon fixation. In the fourth building block,
we find the bound yeast TF GCR1 is similar to an
alternative E. coli TF cueR, with MatCompare score
= 0.3 (the original paper defines two TFs are similar
when this score is <= 1). It suggests cueR might
bind to the E. coli enzyme fbaA.

We applied Regulatory Sequence Analysis Tools
(RSAT28) to see whether the upstream region of
fbaA contains the TFBS of cueR. RSAT scans the
upstream coding sequence of fbaA for the TFBS ma-
trices of cueR. It outputs a segment score for each
sequence segment, which is calculated as the log-ratio
between the probability to generate the sequence seg-
ment given the TFBS matrix, and the probability to
generate the sequence segment given the first-order
Markov chain-based background model. The result
shows not only that there exists one matching site
at -141bp to -120bp, but also that it has a higher
segment score than all TFBS of the bound TFs (i.e.
fruR and crp) with site-wise p-value = 0.0005.

Another example is shown in Figure 4d. In the
first building block, we find the bound E. coli TF Fis
is similar with an alternative yeast TF WAR1, with
MatCompare score = 0.5. It suggests WAR1 might
bind to the yeast enzyme PGM2. RSAT shows that
the TFBS matrix of WAR1 has a higher segment

score than 20 (83%) bound TFs, with site-wise p-
value = 0.00002. In addition, WAR1 shares the same
domain “Zn clus” with six bound TFs, according to
Pfam29.

We applied co-expression analysis to investigate
the likelihood of this latter TF-gene binding. Our
reasoning is that if a particular gene g is regulated
by a particular TF T , then g should be more similar
than random genes r to other genes g′ also regu-
lated by T , in terms of correlation of mRNA expres-
sion. This means the average co-expression coeffi-
cient between g and g′ should be significantly larger
than that between r and g′. We used an mRNA
microarray dataset described earlier30. The result
shows that the average co-expression coefficient be-
tween PGM2 and the set of genes known to be reg-
ulated by WAR1 is significantly higher than the co-
expression between a randomly drawn gene and the
same gene set (p = 0.001).

4.3. Revealing the differences between
two levels

The target pathways in Query 3 are conserved at the
metabolic level, yet differ at the regulatory level. As
depicted in case 3 in Figure 3, the bound TFs are
a “mismatch”, even though there exist “alternative”
TFs. We further refine our investigation by looking
at two types of conservation at metabolic level.

Query 3a looks into the diverse regulation in
non-“identical” metabolic building blocks, which
contain unique reactions with different cofactors in
two species. Therefore, the query actually is de-
signed to find cofactor-specific TFs. Since the en-
zymes catalyze different reactions in two species, we
hypothesize that the different cofactors might have
induced different TFs to bind the enzyme-coding
genes. These enzyme products in turn enable the
same transformation of a particular substrate to



a particular product, when different cofactors are
available.

Another possible explanation is that different
species have evolved separately to produce differ-
ent cofactors, e.g. ATP, which are actually the main
products in some pathways. Several studies show
that mutations in active-site residues produce new
catalytic properties for enzymes, which enable the
formation of new pathways31. In our results, we find
examples of different TF binding domains that have
evolved in different species. For instance, the first
building block in Figure 4e contains unique reactions
in both species, and the yeast TFs have a bHLH do-
main present in eukaryotes, and a Zn(2)-C6 fungal-
type domain only present in fungal TFs. The second
building block contains a unique reaction in E. coli,
and its enzyme metR has a HTH lysR-type DNA-
binding domain unique to bacteria.

Query 3b finds divergent TFBS in the most con-
served pathways at metabolic level, with identical
reactions in both species. This might indicate the
evolution of TFBS32, and the mutational robustness
during the evolution.

Although binding sites are subject to random
mutations, evolution has naturally driven TFBS to
be unspecific so that the functional phenotype is
somewhat insensitive to mutations33. Previous re-
search also shows that orthologous transcription fac-
tors may regulate orthologous genes through diver-
gent TFBS in distantly related species3. This is re-
flected in our results. For example, the TFBS in the
first building block in Figure 4f are very dissimilar in
two species with MatCompare score = 2.1, although
the enzymes share similar sequences with BLAST E-
value = 4× 10−68.

5. Conclusions

RM-PAS combines biological knowledge across
species, and across levels of cellular organization.
By setting different weight parameters in the scoring
function, we showed how RM-PAS can be applied
to identify conserved regulatory-metabolic network
elements, infer missing reactions, prioritize and cor-
roborate TF-gene binding hypotheses, and reveal di-
verse regulation in pathways that are conserved at
metabolic level.

Our findings may be further exploited to ana-

lyze the integrated and aligned network properties,
study evolutionary processes in multiple species, seek
metabolic engineering targets, predict operons, and
provide more possibilities to construct such a multi-
level network for a new genome.
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Appendix A. M-PAS

A.1. Metabolic building blocks

To allow for some variation, we introduce six types of
metabolic building blocks - (1) Identical (i): the two
reactions are identical, i.e. the reaction is present in
both species. (2) Direct (d): the two reactions are
different, but the first two digits of the EC num-
bers of their enzymes are the same. (3) Enzyme
mismatch (em): the first two digits of the EC num-
bers of their enzymes are not the same. (4) Direct-
gap (dg): a direct building block with a gap. A
gap occurs when one species uses one reaction for a
certain substrate-product transformation, while the
other species uses two reactions connected in tandem
to complete the same transformation. (5) Enzyme
mismatch-gap (eg): an enzyme mismatch building
block with a gap. (6) Enzyme crossover match (ec):
both species uses two reactions to transform a com-
mon substrate into a common end product, and the
first two EC number digits of the first and second
reaction in one species are the same as those of the
second and first reaction in the other species, respec-
tively.

Note that for the five types of non-identical
building blocks, we enforce the constraint that they
must contain at least one unique reaction in one of
the species, in order to avoid redundant building
blocks. For instance, if two reactions A and B which
convert the same substrate into the same product



are present in both species, two “identical” build-
ing blocks A1-A2 and B1-B2 are constructed already.
Therefore, any other combinations of these reactions
(i.e. A1-B2 and B1-A2) are just worse matches.

To summarize, these six types of building blocks
emphasize the conservation between species, while
taking alternative pathways, evolutionary diversity,
annotation errors and possible variations in the order
of the catalysis into consideration.

A.2. Compound score

Z(CB) is composed of the substrate similarity
Z(csub) and the product similarity Z(cpro) in build-
ing block B, where csub and cpro denote the substrate
supernode pair and the product supernode pair, re-
spectively (see Figure 2). Each of these can be ex-
pressed by the agreement and specificity of the over-
lap between the paired compound supernodes in two
species:

Z(CB) =
1√
2
[Z(csub) + Z(cpro)]

=
1√
2
{ 1√

2
[ZA(csub) + ZS(csub)]

+
1√
2
[ZA(cpro) + ZS(cpro)]} (A.1)

Let c = {csub, cpro}. The agreement ZA(c) is the ex-
tent of the overlap in number of compounds between
the compound supernodes. This is computed as the
probability of observing the amount of overlap by
chance, according to a hypergeometric distribution:

PA(c) =

(
|c1|

|c1 ∩ c2|

)(
|c1 ∪ c2| − |c1|
|c2| − |c1 ∩ c2|

)
(
|c1 ∪ c2|
|c2|

) =

(
|c1|

|c1 ∩ c2|

)
(
|c1 ∪ c2|
|c2|

)
(A.2)

where c1 and c2 denote the compound supernodes
in the two species which are paired to form c. |x|
denotes the number of compounds in x. To trans-
form this probability to a z-score, the mean µAC

and standard-deviation σAC of PA(c) over all pos-
sible compound supernode pairs in all reactions are
needed:

ZA(c) =
PA(c)− µAC

σAC
(A.3)

The specificity ZS(c) of the overlapping compounds
in c is considered in the scoring function, since some

compounds appear more often than the others in
the background. Therefore, we consider two com-
pound supernodes to be more similar if the overlap is
more specific, i.e. not observed frequently by chance.
ZS(c) is calculated as follows:

PS(c) = 1− #observed (c1 ∩ c2) in the intersection
#all possible compound supernode pairs

(A.4)

ZS(c) =
PS(c)− µSC

σSC
(A.5)

The numerator in (A.4) is the number of times the
specific overlap in compound node in c, i.e. (c1 ∩ c2),
is observed in the intersections of all possible com-
pound supernode pairs. µSC and σSC are the mean
and standard-deviation of PS(c) computed over all
possible compound supernode pairs.

A.3. Enzyme score

Z(EB) is a weighted sum of a functional similarity
score ZF (e) and a sequence similarity score ZQ(e)
for the enzyme supernode pair e, which is formed by
the enzyme supernodes e1 and e2:

Z(EB) =
1√

ω2
f + ω2

q

[ωfZF (e) + ωqZQ(e)] (A.6)

Like other weights, ωf , ωq ∈ [−1, 1] indicate the
the relative importance between functional and se-
quence similarity scores. ZF (e) is computed sim-
ilar to Eqs. (A.1)-(A.5), containing the agreement
and specificity of the EC number overlap, i.e.
the common subclasses between the EC numbers
of e1 and e2. For instance, for e1 = 1.2.3.4
and e2 = 1.2.4.4, the set of all subclasses T =
{1, 1.2, 1.2.3, 1.2.4, 1.2.3.4, 1.2.4.4}, and the common
subclasses M = {1, 1.2}. Then the enzyme func-
tional similarity is calculated as follows:

ZF (e) =
1√
2

[ZA(e) + ZS(e)] (A.7)

PA(e) =

(
4
|M|

)(
|T | − 4
4− |M|

)
(
|T |
4

) =

(
4
|M|

)
(
|T |
4

) (A.8)

ZA(e) =
PA(e)− µAE

σAE
(A.9)



PS(e) = 1−#observed M in the overlapping subclasses
#all possible enzyme supernode pairs

(A.10)

ZS(e) =
PS(e)− µSE

σSE
(A.11)

where {µAE ,σAE} and {µSE ,σSE} are computed
from PA(e) and PS(e) over all possible enzyme su-
pernode pairs, respectively. Finally, the sequence
similarity score ZQ(e) is derived from the BLAST
E -value L(e):

Q(e) = −log10L(e), ZQ(e) =
Q(e)− µq

σq

(A.12)
where µq and σq are the mean and standard-
deviation of Q(e) over all possible enzyme supernode
pairs.

Now we know how to calculate the enzyme sim-
ilarity score for a pair of enzyme supernodes. If
there are two such pairs ea and eb in a building
block, as in “enzyme crossover match”, we integrate
the scores of the two supernode pairs as Z(EB) =
[Z(ea) + Z(eb)]/

√
2.

For enzyme supernodes with multiple EC num-
bers and/or multiple sequences, we first compute all
Z(e) given all possible combinations of EC numbers
and corresponding sequences in enzyme hypernode e,
and take the highest Z(e) to be the enzyme similar-
ity score, which indicates the similarity of the most
conserved part in this enzyme supernode pair. For
the same reason, when gaps are present, we choose
the higher Z(e) of the two enzyme supernode pairs.

B. Permutation test

To validate whether the TFs predicted by RM-PAS
are more likely to bind to a particular gene than ran-
dom predictions, we employed the following proce-
dure:

(1) Generate the RM-PAS prediction dataset. This
dataset contains the TF-gene pairs predicted by
RM-PAS in Query 2. In particular, the genes are
the enzyme-coding genes in the best pathways of
Query 2, with ZTU > 0 (Eq. 8).

(2) Generate the permuted dataset. For each TF-
gene pair in the prediction dataset, fix the gene
and pair it with 10 random TFs that have ma-

trices and that are not known/predicted to bind
to this gene.

(3) Run RSAT on both the prediction dataset and
the permuted dataset, to obtain a segment score
for each TF-gene pair.

(4) For each gene, test whether the segment scores of
predicted TFs are significantly higher than those
of random TFs in permuted dataset. This is a
one-tailed t-test, assuming that two sets of scores
come from normal distributions with unknown
and possibly unequal variances. If p < 0.05, RM-
PAS “wins” this gene test.

(5) Perform (4) for all genes in the prediction
dataset, and obtain the percentage of genes for
which RM-PAS wins.

Results: Given 40 genes in total in the prediction
dataset, RM-PAS is significantly better than random
in predicting TFs for 20 genes. Out of the other 20
genes where p > 0.05, 19 genes only have 2 or 3
predicted TFs, indicating that small sample size is a
major cause of lack of significance.
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