

MANAGING AND QUERYING MAMMALIAN METABOLIC NETWORKS:

A METABOLISM QUERY LANGUAGE AND ITS QUERY PROCESSING

Ali Cakmak1*, Gultekin Ozsoyoglu1, and Richard W. Hanson2

1Departmen of Electrical Eng. and Computer Science, Case Western Reserve University
2Department of Biochemistry, Case Western Reserve University

Cleveland, OH 44106, USA
*cakmak@case.edu

A metabolic network describes how different cellular processes (i.e., pathways) are connected and work together as part of a

metabolism. The complexity of metabolisms and their working principles increase dramatically in higher order organisms (e.g.,

mammalians) in comparison to relatively lower level organisms (e.g., prokaryotes). As the complexity increases, managing, querying,

and visualizing metabolic network data computationally in a manner that is faithful to the underlying biochemistry becomes more and

more challenging. In this paper, we present a metabolism query language (MQL). MQL allows the formulation of a wide variety of in-

depth metabolism queries, and its query processing heavily employs metabolic principles.

1. INTRODUCTION

Metabolism of an organism involves biochemical

processes that perform essential cellular actions, such as

biosynthesis and degradation of macromolecules,

supplying energy needs of the cell, and so on.

Computationally capturing and querying metabolism

data is useful both in systems biology research as well

as a teaching tool. In the literature, there are mainly two

classes of works which study modeling and querying of

metabolism. The first class includes query languages

(e.g., PQL [1], bcnQL [2]) on biochemical networks,

and the second class includes well-known metabolic

data sources (e.g., KEGG [3], PathCase [4], MetaCyc

[5], Reactome [6]) which house a number of

metabolism querying tools built on top of a biochemical

network knowledgebase. Such query languages and

metabolic data sources essentially view the metabolism

as a graph, and mostly focus on querying (i) structural

properties of metabolic networks (e.g., paths,

neighborhoods, cycles, etc.), and (ii) entity relationships

(e.g., inhibitors of a reaction in a particular pathway).

However, these efforts do not capture detailed

biochemical working principles of a metabolism, and

interrelationships between pathways under different

physiological and dietary states. We compare the related

work briefly in Section 2.

In this paper, we propose a a metabolism query

language (MQL) that considers (i) the behavior of the

metabolic network under different conditions, (ii)

metabolic specialization of tissues and

subcompartments, (iii) interplay between different

pathways, and (iv) distinct pools of metabolites. MQL

allows for the specification of different classes of

queries, such as (i) exploring activated/inactivated paths

under specified metabolic conditions, (ii) searching for

potential futile cycles, (iii) querying for regulatory

changes that prevent a particular futile cycle, (iv)

searching for conditions which lead to the (in)activation

of a user-specified metabolic subnetwork, and (v)

exploring the behavior of a set of (possibly reversible)

reactions. And, MQL lets users to input concentration

change statements on key metabolites, and incorporates

such input into its query processing.

To demonstrate the capabilities of this framework,

we employ as an example computational modeling of

mammalian (particularly human) metabolism, and

specifying and processing queries over its metabolic

network. In this paper, we focus on the class of queries

regarding exploring activated/ inactivated paths under

specified metabolic conditions, which we refer to as

MQLAIP queries. Please see [8] for the remaining types

of queries that can be specified in MQL. Next, we

informally specify MQLAIP queries via a “template”, and

illustrate with an example.

1.1. A Query Template and Its Instance

Given:

I. A subset P of pathways in the human metabolic

network

II. A set of biological compartments

III. A set C of conditions specifying metabolic and

dietary states/physiological conditions, such as fasting,

exercise, or specific disease states like diabetes, and/or

concentration changes (increases/ decreases) of “key

metabolites” such as increases in lactate, pyruvate, or

amino acids.

(a) Find activated (increased flux) and inactivated

(decreased flux) paths in pathways of P.

(b) Visualize a selected subset of

pathways in P in full and remainder in

collapsed form, for simplicity in

visualization.

(c) Using the biochemical networks,

explain the reasons for blocked (i.e.,

inactivated) reaction directions in the

selected subnetwork.

1.2. A Sample MQLAIP Query

Instance and Its Output:

Given:

I. Selected pathways P: Glycolysis,

Gluconeogenesis, TCA Cycle, Beta

Oxidation, Ketone Body Synthesis, and

Fatty Acid Synthesis

II. Selected biological compartment(s):

Mitochondrion, Cytosol, and Endoplasmic

Reticulum in Liver

III. A set C of conditions:

Dietary state(s) and/or physiological

condition(s): Fasting

Some key metabolite concentration

changes (increases/decreases): lactate↑,

alanine↑, triglyceride constituents↑ (i.e.,

fatty acids↑ and glycerol↑)

(a) Find activated/inactivated paths in the

metabolic subnetwork that includes

pathways in P.

(b) Visualize Glycolysis,

Gluconeogenesis, and TCA cycle in full

and the remainder of the pathways in

collapsed form.

(c) Explain the reasons for blocked

reaction directions in pathways of P.

Query Result:

(a) Paths with increased flux rate are shown with bold

edges in Figure 1.1.

(b) Collapsed (multi-step edges) and full forms of

pathways are visualized in Figure 1.1.

(c) Explanations for blocked reaction directions in the

selected subnetwork:

 TCA cycle is inhibited due to increased NADH

synthesis in Beta Oxidation.

 Fatty Acid Synthesis is inhibited due to:

(1) Increased concentration of fatty acids, and

(2) Elevated glucagon/insulin ratio in fasting state.

 In Glycolysis, the regulated enzymes (i.e., PFK1,

Figure 1.1: A partial human metabolic network in liver

pyruvate kinase, and glucokinase) are inhibited by

elevated ATP, alanine, and glucagon/insulin ratio.

 Pyruvate dehydrogenase is inhibited by increased

NADH, acetyl CoA, and ATP.

In Section 2, we briefly discuss the related work and our

contributions. Section 3 presents an overview of the

control mechanisms for the mammalian metabolism. In

section 4, we summarize our data and graph models.

Section 5 describes the formulation of MQL queries.

Section 6 elaborates on processing MQL queries, and

Section 7 concludes.

2. RELATED WORK AND CONTRIBUTIONS

Two studies in the literature focus on the design of

query languages for biochemical networks. PQL, the

pathway query language, [1] employs a basic graph

model where nodes represent metabolites, enzymes, or

processes, and edges represent participation of a

metabolite in a reaction in different roles, or

inhibition/activation relationships between two different

enzymes. PQL allows formulation of different query

types that include relationship queries (e.g., reactions

catalyzed by an enzyme), neighborhood queries, and

path queries. bcnQL [2] is another query language with

XQuery-like syntax designed for biochemical networks.

bcnQL employs an object oriented graph model where

nodes and edges have the same semantics as in PQL.

bcnQL supports the formulation of almost the same

types of queries as PQL with the improvement that

bcnQL provides additional capabilities to specify

multiple predicates on path queries. Both PQL and

bcnQL employ simpler models of metabolic networks,

not sufficiently capturing the metabolism: they do not

accommodate (i) dynamic behavior of the metabolism

under different physiological or dietary conditions, (ii)

the compartmentalized structure of the metabolism over

tissues and organelles, and (iii) regulatory relationships

between pathways. And, neither PQL nor bcnQL

provide a capability to specify an initial set of

concentration changes on key metabolites to guide

query processing, and do not eliminate biologically

infeasible query results.

There are also many web-based metabolic

databases (e.g., KEGG [3], MetaCyc [5], Reactome [6],

PathCase [4], etc.) with query languages. Such data

sources serve well for basic database querying via built-

in or dynamically constructed queries (e.g., AQI [13],

Structured Advanced Query Page and Advanced Query

Form [15]). KEGG [3] provides basic keyword search,

while MetaCyc [5] and Reactome [6] include advanced

query forms. LISP framework in Pathway

Tools/BioCyc/MetaCyc provides a custom metabolism-

specific query capability [15]. However, the query

languages and forms of these data sources also have the

same drawbacks listed for PQL and bcnQL. Besides,

data models of these data sources do not capture

different trigger mechanisms for pathways and/or

regulators, distinct contributions of each pathway/

reaction into a particular metabolite pool, and varying

occurrences of the same pathway in different tissues.

Qualitative Physics [16] and Qualitative Reasoning

(QR) [17, 18] are employed to model systems and

environments where measured quantitative information

is not available or appropriate to use, but there exists

high level (i.e., commonsense) knowledge about the

working principles of underlying systems. Studies that

adapt qualitative reasoning (or physics) into

biochemistry and molecular biology [19, 20] (see [21]

for a review) are, at a high level, related to the MQL

framework. BioSim [19] is a QR application for

simulation of pathways via automated creation of

“process” and “object” models based on reactions and

their participants (i.e., substrates, products, enzymes),

respectively, in a pathway. Then these created modelsof

BioSim are executed by a Prolog-based simulation

engine which creates a “behavior tree” describing

concentration changes for each involved metabolite and

enzyme. King et al. [20] extends BioSim’s simulation

approach, and proposes a model identification

framework, where given a qualitative time series set of

metabolite measurements, the goal is to identify the

structure of the metabolic subnetwork. GenSim [22] is

another simulation environment proposed for

biochemical systems. In GenSim, users manually

construct object (i.e., molecules) and process (i.e.,

reaction) knowledgebases via a Lisp-based

representation scheme, and define preconditions for the

processes to be active, as well as their effects, once they

are active. There are also many other similar qualitative

simulation studies [23-30], which we do not discuss in

this paper for the lack of space.

MQL does not directly compare to these simulation

works, as it is not designed as a simulation system, but

as a query language and its query processing engine.

However, MQL employs similar ideas regarding the

qualitative reasoning, and (pre)conditions (constraints)

that are checked for reactions to decide their activity

status. MQL is different from these simulation studies in

that it employs (i) an extensive and detailed metabolism

data model, and (ii) fine-tuned biochemical principles,

which are not considered by the above-listed works.

2.1. Contributions

In order to process MQL queries, such as the one in

Section 1, in a manner that is accurate and consistent

with the underlying biochemistry, major biochemical

principles that govern the interplay between different

metabolic processes should be computationally captured

and incorporated into the data model and query

processing. Contributions of this paper are as follows.

 Computationally capturing and modeling

mammalian metabolic networks by employing the

underlying biochemistry principles,

 Design of a metabolism query language (MQL),

which allows in-depth biochemical queries,

 Development of query processing strategies for

MQL queries.

Additionally, the work described in this paper expands

beyond MQL, and constitutes a computational

infrastructure for a more informed reasoning of

metabolomics data [7].

3. BIOCHEMISTRY-BASED QUERY

PROCESSING PRINCIPLES

The processing of an MQL query such as the one in

Section 1.1 requires an in-depth application of the

underlying metabolic principles, which we itemize and

review next.

3.1. Substrate Availability

Principle 1. The availability of substrates for a

particular pathway is a major driving factor that controls

the rate of metabolic processes (i.e., pathways) and

biochemical reactions ([9], p. 863).

Example 3.1. Concentration of fatty acids entering liver

from blood determines the rate of ketone body

synthesis.

Query Processing Rule (QPR) 1: If a substrate

concentration increases (decreases), in the absence of

other factors, the product concentration also increases

(decreases).

Cofactors are small metabolites that bind enzymes

and are necessary for biochemical reactions to occur

([9], p. 378). In this work, cofactor in and cofactor out

metabolites are considered as specialized substrates and

products, respectively.

3.2. Regulation of Key Enzymes

Principle 2. Enzymes are regulated through three major

mechanisms: (i) allosteric effects, (ii) covalent

modifications, and (iii) expression-level regulation.

Regulators either act as inhibitors or activators ([10],

p.63). (Regulation through product inhibition is

discussed in Section 3.10)

Example 3.2: Citrate activates acetyl-CoA carboxylase

which increases fatty acid synthesis.

Query Processing Rule 2: If an activator increases

(decreases), the reaction rate increases (decreases). And,

if an inhibitor increases (decreases), the reaction rate

decreases (increases).

Principle 3. Allosteric effects take place immediately;

covalent modification may require minutes; and

regulation through gene expression may require hours to

days ([10], p. 64).

Query Processing Rule 3: With multiple regulators in

effect, consider the one with the quickest mechanism as

the “dominant” regulator.

3.3. Regulator Precedence

Principle 4. An enzyme may have multiple regulators

which control the enzyme rate with varying degrees of

effect. In such cases, usually one of the regulators

dominates the other(s) for the final effect (i.e., inhibition

or activation) on the enzyme.

Example 3.3: Pyruvate is an activator of pyruvate

dehydrogenase (PDH), and acetyl CoA is an inhibitor of

PDH. During the fasting state, concentrations of both

pyruvate and acetyl CoA increase. However, acetyl-

CoA takes the precedence, and the activity of PDH is

inhibited.

Query Processing Rule 4: In cases where multiple

regulators are in effect, employ the regulator with the

strongest effect (highest precedence) on the enzyme,

and ignore the other regulators. If no precedence value

is available in the database, apply QPR (Query

Processing Rule) 3.

3.4. Pathway-Level Regulation

Principle 5. Only a subset of reactions in a pathway is

subject to regulation (i.e., regulatory steps or points),

and the others simply follow the regulated reactions. In

order for a pathway to have increased flux (or be

activated), none of its regulatory reactions should be

inhibited.

Example 3.4: In Section 1.1, the regulatory steps of

TCA cycle is inhibited by NADH.

Query Processing Rule 5: Do not mark a pathway

completely active, if at least one of its regulatory steps

(which are pre-captured and made available in the

database) is inhibited.

Regulatory steps can further be classified as rate-

limiting and commitment steps.

Example 3.5. Both the rate-limiting and commitment

step of Glycolysis is catalyzed by PFK1.

Principle 6. A rate-limiting step in a pathway is the

slowest step ([9], p. 404).

Principle 7. Once the commitment step in a pathway

takes place, substrates of a pathway are irreversibly

committed to this route in the metabolism ([9], p. 404).

Query Processing Rule 6: A pathway cannot be active

if its rate-limiting step is inhibited.

Query Processing Rule 7: If the commitment step of a

pathway is blocked (i.e., inactive), then mark the

pathway “inactive” as well.

3.5. Metabolite Pools

Principle 8. Due to biological compartmentalization

([9], p. 405) as well as different functional roles [14], a

metabolite may have more than one pool.

Example 3.6: Malate is located in both cytosol and

mitochondrion. Hence, it has separate pools for each

biological compartment that it resides. And, Malonyl

CoA is reported [14] to possibly have two pools in

cytosol due to distinct functional roles as substrate and

regulator.

Query Processing Rule 8: Connect two reactions, r1

and r2 in the metabolic network if (i) r1 and r2 have at

least one shared metabolite m, and (ii) r1 and r2 are

associated with the same pool of m.

Principle 9. The relative contribution (or consumption)

of each metabolic reaction into (from) a specific

metabolite pool may differ from one metabolic reaction

to another.

Example 3.7: In the fasting state, in liver

mitochondrion, the acetyl CoA pool is minimally

consumed by TCA Cycle, and the majority of it is used

by Ketone Body Synthesis ([9], p. 856).

Query Processing Rule 9: While the direction of

change for a particular metabolite pool is computed,

take into consideration each contributor’s or consumer’s

rate.

Principle 10. Different pools of the same metabolite

may have distinct proportional sizes.

Example 3.8: In the fasting state, the amounts (pool

sizes) of different aminoacids released from muscle into

blood are not the same, e.g., alanine and glutamine

account for 80% of all AAs.

Query Processing Rule 10: Given a metabolite m, if

the total size of pools of m with increased (decreased)

amounts is larger than the total size of pools of m with

decreased (increased) amounts, then overall

concentration change of m is considered to increase

(decrease).

3.6. Energy State of Cells

Def’n (Energy Currency Metabolite): Certain

metabolites serve as carriers of energy in the body. Such

metabolites are considered as “energy currency” of

cells. Most common energy currency metabolites are

NADH, NADPH, FADH2, ATP, and GTP (and their

oxidized pairs, i.e., NAD+, NADP+, FAD, AMP, ADP,

and GDP, which represent low-energy currencies).

Principle 11. The energy state of the cell can be

determined by considering the relative changes in the

amounts of high-energy metabolites.

Query Processing Rule 11. Determine the energy state

of the metabolism based on the overall change in

individual ratios of energy currency metabolite pairs,

e.g.,
𝑁𝐴𝐷𝐻

𝑁𝐴𝐷+
,
𝐴𝑇𝑃

𝐴𝑀𝑃
, and so on.

3.7. Functional Specialization of

Biological Compartments

Principle 12. Enzymes in pathways of the human

metabolism are highly specialized in terms of biological

compartments (e.g., organs, organelles, membranes,

etc.) that they reside.

Example 3.10: Urea cycle and ketone body synthesis

take place only in liver.

Query Processing Rule 12: Identify enzymes by their

biological compartments, and consider their isoforms in

different compartments as distinct entities.

Principle 13. Biological compartments are often

organized in a hierarchical manner, where one

compartment contains another compartment.

Example 3.11: Liver contains mitochondrion which in

turn contains mitochondrial matrix.

Query Processing Rule 13: Whenever a compartment

is specified in a query, automatically include all of its

child (descendant) compartments (if any) in the query.

3.8. Availability vs. Accumulation

Principle 14. Availability of a metabolite m to a

pathway or a reaction p means that m is produced, and

instantly and fully consumed by p. However, in order

for m to accumulate, the rate of m’s overall

consumption should be less than the rate of its overall

production.

Example 3.14: In the fed state, in liver, acetyl CoA is

available, through Glycolysis, to Fatty Acid Synthesis

and the TCA Cycle, but it does not accumulate.

Nevertheless, in the fasting state, acetyl CoA

accumulates due to excessive production by Beta

Oxidation.

Query Processing Rule 14: Given a metabolite pool m,

let ProductionRate(m) be the total production rate of m,

ConsumptionRate(m) be the total consumption rate of

m. Then, mark m as

 “severely accumulating” if ProductionRate(m)  0

and ConsumptionRate(m) = 0.

 “accumulating” if ProductionRate(m) 

Consumption Rate(m).

 “available” if ProductionRate(m)  Consumption

Rate(m) and ProductionRate(m) ≠ 0.

 “unavailable” if ProductionRate(m) = 0.

Our metabolite labels above should be interpreted

as approximations of the real-world where in reality,

due to homeostasis, there is no such thing as “zero”

consumption/production rate.

Principle 15. Some reactions require “availability” and

some others “accumulation” of a participant metabolite

m to assume “substrate availability” (QPR 1) or the

regulating effect of m.

Example 3.15: Acetyl CoA is an activator of pyruvate

carboxylase. In the fed state, acetyl CoA is available,

but it does not accumulate. Thus, pyruvate carboxylase

is not activated.

Query Processing Rule 15: During query processing,

check the “trigger conditions” (i.e., accumulation vs.

availability) required by each reaction to make sure that

they are satisfied.

3.9. Signatures for Dietary States and

Physiological Conditions

Principle 16. In different physiological and dietary

states, concentration and/or production rate of certain

molecules increase or decrease, which are signatures of

the corresponding states.

Example 3.16: In the fasting state, glucose levels

decrease, and increased amounts of fatty acids and

glycerol are released, which leads to increased ketone

body production. Also, insulin level decreases and

glucagon level increases. Then, signature for the fasting

state can be represented as follows: S = {insulin↓,

glucagon↑, glucose↓, fatty acids↑, ketone bodies↑,

glycerol ↑}.

Query Processing Rule 16: Whenever a user query

involves a built-in dietary state or physiological

condition predicate, (i) map these predicates to their

corresponding signatures, (ii) combine signature

changes with the user-provided set of concentration

changes, and (iii) over-ride pool contribution rates in the

database with those rate changes included in a signature.

3.10. Product Inhibition

Due to similarities in the way they bind to enzymes,

products and substrates are in competition to bind to

their enzymes, which may lead to inhibition of the

corresponding enzyme ([9], p. 405).

Principle 17. As the product concentration of a reaction

increases, the reaction rate slows down.

Example 3.17. In the fasting state, due to inhibition of

fatty acid synthesis in liver, citrate accumulates, which

in turn inhibits the primary reaction (i.e., citrate

synthase) that produces it.

In this work, we take a conservative approach on

product inhibition by applying it only when a product

has no active consumer, i.e., “severely accumulates”

(see QPR 14).

Query Processing Rule 17. Whenever a metabolite m

is marked as “severely accumulating”, mark those

reactions that produce m as “inactive”.

4. DATA AND GRAPH MODEL

4.1. Data Model

We adopt an object-oriented data model to represent the

mammalian metabolism. Objects are structured data

types which contain basic types (e.g., string, int, etc.) or

other structured data types (i.e., objects) as their fields.

We employ the metabolic principles that are

summarized in Section 3 as the main motivation, and as

a guide in our modeling effort. Figure 4.1

shows the object definitions and their

fields for the essential constituents of the

metabolism. Please refer to [8] for an

elaborate discussion of the objects and

their relation to the principles in Section 3.

4.2. Graph Model

In our graph representation model,

compartments are modeled as large

“super-nodes” which contain subnetworks

of the metabolism, as well as other

compartments. In each subnetwork, nodes

represent metabolite pools. Reactions are

represented as hyper-edges, which connect

multiple end-points (i.e., substrates and

products). Regulation is represented by an

edge between a metabolite pool (i.e., a

regulator) and a hyper-edge (i.e., a

reaction).

5. QUERY SPECIFICATION

In this section, we discuss the formulation

of MQLAIP queries. Please see [8] for the

specification of the remaining types of

queries that can be formulated in MQL.

MQLAIP queries involve finding

activated/inactivated paths in a particular

subnetwork of the metabolism in specified

biological compartments under particular

dietary or physiological states with a

given set of concentration changes of key

metabolites (see Section 1.1).

We adopt an SQL-like [11] database

query specification scheme for MQLAIP

queries where the select clause defines the

output, the from clause defines the

objects/relations, and the where clause

describes additional predicates such as compartment,

dietary state, and so on. The generic query template is

formulated as shown in Figure 5.1 where the notation is

as follows.

 Names in italics refer to database values, e.g.,

cytosol or TCA-cycle.

 Names in regular fonts (i.e., non-italic and non-bold-

face) refer to variables, e.g., P1, C1, etc.

 Bold-face words refer to keywords of the query

language, e.g., select, paths, etc.

 [a | b | c] denotes exactly one of (a or b or c).

 { a | b | c} denotes exactly one or zero of (a or b or

c).

 The parenthesis, (), has no particular meaning, and

is used solely for grouping purposes.

 “..” denotes zero or more repetitions.

 “*” stands for the quantifier “all” as in the standard

SQL specification [11].

 If, for a particular field, nothing is specified as part

of the query, then default selections are assumed.

Pathway { name: string

 reactions: [ReactionStep]

 (rateLimitingSteps: [ReactionStep])

 (committedStep: ReactionStep)

 substrates: [MetabolitePoolLink]

 (products: [MetabolitePooLink])

 (cofactorsIn:[MetabolitePoolLink])

 (cofactorsOut:[MetabolitePoolLink])

}

ReactionStep {reaction: Reaction

 compartment: Compartment

 (direction: <forward | backward>)

}

Reaction { name: string

 substrates: [MetabolitePoolLink]

 products: [MetabolitePoolLink]

 (cofactorsIn:[MetabolitePoolLink])

 (cofactorsOut:[MetabolitePoolLink])

 (enzymes: [EnzymeInstance])

 (inhibitors: [Regulator])

 (activators: [Regulator])

 isTransportProcess: boolean

 isReversible: Boolean

}

MetabolitePool{ metabolite: Metabolite

 compartment: Compartment

 (name: string)

 (size: int)

 (parent: MetabolitePool)

}

MetabolitePoolLink {

 pool: MetabolitePool

 rate: float

 triggerCondition: listed in QPR 14

 stoichiometry: float

}

Metabolite { name: string

 type: string

 defaultPools: [MetabolitePool]

}

Compartment { name: string

 (size: int)

 (parent: Compartment)

 (transportProcesses: [Reaction])

 type:<tissue | organelle |

membrane>

}

Enzyme{ name: string }

EnzymeInstance{ enzymeId: int

 compartment: Compartment

}

DietaryState { name: string

 concentrationChanges:

 [ConcentrationChange]

}

ConcentrationChange {

 pool: MetabolitePool

 changeDirection: string

}

PhysiologicalCondition extends

 DietaryState

{

 (rateChanges: [RateChange])

}

RateChange {

 poolLink: MetabolitePoolLink

 rateChangeAmount: float

}

EnergyCurrencyMetabolite

 extends Metabolite{

 peer: EnergyCurrencyMetabolite

 chargeStatus: <high | low>

}

Regulator {(regulator:

MetabolitePool)

 triggerCondition: listed in QPR 14

type: <allosteric | covalent |

 expressionRegulation>

(precedence: int)

(regulatorRatio:
𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑃𝑜𝑜𝑙 1

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑃𝑜𝑜𝑙 2
)

}

Notation: [] denotes an array of objects, < a | b | c > denotes an enumeration, and ()

represents optional fields

Fig. 4.1: Object Data Model

Default selections are marked as “(default)” in the

query template.

 . notation in compartments is used to specify root-to-

node path expressions (as in the path expressions of

object-oriented query languages [12]) in the

compartment hierarchy.

 Visualizing pathways in full/collapsed forms or

providing additional explanations about activated

and/or inactivated reactions are specified as optional

separate clauses.

 a-set-of-conditions refers to a set of database

physiological conditions, such as diabetes.

 a-set-of-metabolite-concentration-changes refers to

a set of database metabolite concentration changes,

each in a specific compartment.

 a-subset-of-input-pathways refers to a subset of the

pathway variables specified in the from clause.

 The concentration change direction symbols ↑ and ↓

are replaced with  and , respectively.

select {activated | inactivated | * (default)} paths

from pathways Pi1 P1 in Ck1{.Ck2..Ckm} C1{, Pi2 P2

 in Cr1{.Cr2..Crm} C2, .., Pin Pn

 in Ct1{.Ct2..Ctm} Cm }

where {dietaryState = [fasting | after a meal devoid

 of AAs | after a meal devoid of carbs |

 exercise | well-fed]}

{and physiologicalCondition =

 a-set-of-conditions}

{and concentrationChanges =

 a-set-of-metabolite-concentration-changes}

{visualize {a-subset-of-input-pathways in P1 [, P2, ..,

 Pn] | * (default)} {as collapsed (default) | as full}}

{explain{ inactivated (default) | activated | regulated}

 reactions [in a-subset-of-pathways | *]}

Fig. 5.1: MQLAIP query template

Example 5.1: The following query represents the

MQLAIP specification of the English query which is

discussed in Section 1.1.

select * paths

from pathways Glycolysis P1 in liver.cytosol C1,

 Gluconeogenesis P2 in liver.cytosol C1,

 TCA-Cycle P3 in liver.cytosol.mitochondrion C2,

 Beta-Oxidation P4 in liver.cytosol.mitochondrion

 C2, Keone-Body-Synthesis P5 in

 liver.cytosol.mitochondrion C2, Fatty-Acid-

 Synthesis P6 in liver.cytosol C1

 where dietaryState = fasting

 and concentrationChanges = {lactate  in

 blood, alanine  in blood, fatty acids  in

 blood, glycerol  in blood}

visualize P1, P2, P3 as full

explain inactivated reactions in *

6. PROCESSING OF MQLAIP QUERIES

In this section, we discuss the query processing of

MQLAIP queries. We employ the biochemical query

processing rules (QPRs) of Section 3. Related QPRs are

often referenced in parentheses. The query processing

employs an auxiliary data structure, called dependency

graph. We first define dependency graphs, and then

move onto the discussion of the query processing

stages.

Def’n (Dependency Graph): A dependency graph

G(V, E) consists of a set V of vertices and a set E of

edges, where nodes in V correspond to distinct

pathways, and a directed edge e(p1, p2) represents that

pathway p1 (i.e., e.source) is dependent on pathway p2

(i.e., e.destination).

6.1. Stages of the Query Processing

Input to this type of queries are a subnetwork of the

metabolic network as defined by a set of pathways in

specific compartments, a dietary state condition, a

physiological condition, and a set of initial

concentration changes. The query processing has three

stages.

(a) Stage 1 (Query Compilation)

1.1. Convert dietary state and physiological

condition predicates in the query into their signature

concentration change sets (QPR 16). Let S be the union

of such concentration change sets.

1.2. Let C be the user-specified concentration

changes in the where clause of the query. Then, let U =

S  C. Mark those pools in U with increased

concentrations as “accumulating”, and those with

decreased concentrations as “unavailable”. Mark all

other metabolite pools “unavailable”.

1.3. Expand user-provided set P of pathways with

additional pathways that connect user-provided

metabolites to the pathways in P (e.g., Pyruvate to

Acetyl CoA pathway in Fig. 1.1).

1.4. Let M be the compartment set (and their

descendants) specified in the query. (QPR 13)

1.5. Build the query subnetwork with the pathways

in P and compartments in M (QPR 8, 12, 13).

1.6. Create three empty pathway sets, P
active

, P
inactive1

,

P
inactive2

, and P
sink

. Initialize P
inactive1

 = P.

In stages 2 and 3, we record the regulation

information of pathways. Since it does not involve

much complexity, for brevity, we will not refer to

keeping track of the regulation information.

(b) Stage 2 (Identifying completely active pathways)

In this stage the set P
active

 of completely active pathways

are identified in two substages.

b.1. Expansion: Expansion is an iterative process,

where, in each iteration, the set of active and/or inactive

pathways are expanded based on the availability of

substrates and regulators.

2.1. Identify subset PS of pathways in P
inactive1

 such

that, for each pathway p in PS, at least one of its

substrates is available with a matching trigger condition

(QPR 1, 14, 15).

2.2. Pactive
 = P

active
  PS ( denotes set union, 

denotes set intersection, and “–” denotes set difference.

 P
inactive1

 = P – (P
active

  P
inactive2

 P
sink

)

2.3. Update status of pools that are involved in

pathways in P
active

 (QPR 14).

2.4. If content of P
active

 has changed in step 2.2, go

to step 2.1 for another iteration.

b.2. Shrinking: Shrinking is also an iterative process

where the set of active pathways is shrunk based on the

accumulation or availability of energy currencies,

substrates, and cofactors.

2.5. Consider pools for energy currency metabolites,

cofactors, and other regulators (QPR 1, 2, 3, 4, 11, 14).

Then, consider the reactions that are regulated by these

pools (QPR 2-7). Next, according to the nature of

regulation (QPR 15), mark pathways involving such

reactions “inactive” (QPR 5-7), and move them into

P
inactive2

. Update the marks of metabolite pools. Next,

reconsider substrate availability for pathways in P
active

,

and move those with non-matching trigger conditions

from P
active

 to P
inactive2

 (QPR 1, 15). Finally, apply

product inhibition (QPR 17), if applicable. Update

metabolite pool marks.

2.6. If content of P
inactive2

 has changed, go to step

2.5. Otherwise, continue with the next step.

2.7. Initialize a dependency graph G(V=P, E=).

Identify each pathway p1P
inactive2

 such that p1 was put

into P
inactive2

 due to a non-matching trigger condition on

a metabolite pool m, but p1 is not inhibited anymore due

to change on the marking of m. Add an edge e(p1, p2) in

G for each p2P
inactive2

 where p2 is a consumer/producer

of m. Next, identify cycles in G, move members of each

cycle into P
sink

. For each edge e that is not part of a

cycle in G, move e.source into P
inactive1

.

2.8. If content of P
active

 or P
inactive1

 has changed in

step 2.5, go to step 2.1, else continue with step 3.1.

(c) Stage 3 (Identifying partially active pathways)

The last query processing stage focuses on identifying

partially active pathways. It builds upon the general idea

that there will be an active flux through non-regulated

reactions as long as their substrates are available (or

accumulate, depending on the trigger condition) given

that there is no “product inhibition” (QPR 17).

3.1. Mark all reactions in active pathways as active,

with one exception: mark all inhibited reactions (by a

direct inhibitor) as inactive. Let the active reaction set

be R
active

. Finally, mark all other reactions as maybe-

active (i.e., unknown). Update metabolite pool marks

accordingly (QPR 14). During the application of QPR

14, consider maybe-active reactions as inactive.

3.2. Identify pathway pairs (p1, p2) of pathways

where (i) p1  P
active

, p2  P
inactive

, (ii) p1 and p2 have a

shared metabolite m (as product and substrate) (QPR 8).

Form triplets (p1, p2, m).

3.3. For each triplet (p1, p2, m) from step 3.2,

starting with reaction(s) that consume m in p2, navigate

the query subnetwork reaction-by-reaction by following

substrate/product relationship, and employ the following

actions (let r be the currently traced reaction):

(a) If r is an active reaction, stop the traversal on this

path in the query subnetwork.

(b) If r is an inactive reaction, stop the traversal (QPR

17), trace back while marking each reaction inactive on

the way back until (i) the starting metabolite m, or (ii)

the first metabolite with maybe-active consuming

reactions (whichever is encountered first).

(c) Otherwise, mark r active, if at least one of its

substrates is available with a matching trigger condition

(QPR 1, 14). Continue employing the same

considerations ((a) through (c)) iteratively with the next

set of reactions that follow r in the query subnetwork.

3.4. Similar to step 2.6, consider pools of

metabolites that participate in active reactions as

substrates, cofactors, or regulators. Accordingly, if

there are inhibited reactions or ones with unavailable

substrates (according to its trigger condition), mark

them as inactive. Apply product inhibition (QPR 17) if

applicable. Iterate over this step, if new inactive

reactions are identified.

3.5. Mark all the remaining maybe-active reactions

inactive, and add the active ones into R
active

.

6.2. A Complete Example (Processing

the MQL Query in Example 5.1)

Stage 1:

 Converting the fasting stage into its signature

concentration change set: S = {insulin↓, glucagon↑,

glucose↓, fatty acids↑, ketone bodies↑, glycerol

↑}. Figure 1.1: Each hormone (e.g., insulin,

glucagon) has a single pool (not shown in Fig. 1.1);

glucose in S refers to its pool #1 in blood; fatty acids

refers to its pool #2 in blood; and, others have single

pools in blood in Fig. 1.1.

 User-provided concentration changes are mapped to

their default pools in blood. Figure 1.1 has only a

single pool for each of lactate, alanine, and glycerol in

blood (i.e., default pools). For fatty acids, the default

pool in blood is pool #2.

 Take the union of user-provided set of metabolite

pools and those in S, U = {insulin↓, glucagon↑,

glucose↓, fatty acids↑, ketone bodies↑, lactate↑,

alanine↑}, and update their pool marks accordingly.

 Expand user provided set P of pathways with

“connection pathways”. Hence, P = {Glycolysis,

Gluconeogenesis, TCA-Cycle, Beta-Oxidation,

Ketone-Body-Synthesis, Fatty-Acid-Synthesis,

Respiratory Chain, Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate, Lactate2Pyruvate,

Pyruvate2AcetylCoA}. And, P
inactive

 = P.

Stage 2:

 Iteration 1:

1. PS = {Beta-Oxidation,

Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate, Lactate2Pyruvate}

2. Pactive
 = {Beta-Oxidation,

Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate, Lactate2Pyruvate}

 P
inactive1

 = {Glycolysis, Gluconeogenesis, TCA-

Cycle, Ketone-Body-Synthesis, Fatty-Acid-

Synthesis, Pyruvate2AcetylCoA, Respiratory

Chain}

3. Update pools: Acetyl CoA↑, NADH↑, Pyruvate↑,

Dihydroxyacetone 3-P↑.

4. Since P
active

 has changed, perform another

iteration over steps 1 through 4.

 Iteration 2:

1. PS = {Gluconeogenesis, TCA-Cycle, Fatty-Acid-

Synthesis, Pyruvate2AcetylCoA, Ketone-Body-

Synthesis, Fatty-Acid-Synthesis,

Pyruvate2AcetylCoA, Respiratory Chain}

2. P
active

 = {Beta-Oxidation,

Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate, Lactate2Pyruvate,

Gluconeogenesis, TCA-Cycle, Ketone-

Body-Synthesis, Fatty-Acid-Synthesis,

Pyruvate2AcetylCoA, Respiratory

Chain}

 //bold ones are newly added in this iteration

 P
inactive1

 = {Glycolysis}

3. Update pools: Glucose↑, Ketone Bodies↑,

NADH↑.

4. Since P
active

 has changed, perform another

iteration over steps 1 through 4.

 Iteration 3:

1. PS = { same as the previous iteration}

2. P
active

 = // the same as in iteration 2.

 P
inactive1

 = {Glycolysis}

3. Update pools: no changes.

4. Since P
active

 has not changed, go to step 5.

5. Production rate of the energy currency

metabolite NADH by Beta-Oxidation and TCA-

Cycle is much more than its consumption rate

through Respiratory Chain. Hence, NADH pool

accumulates. NADH inhibits two rate limiting

steps of TCA-Cycle. Fatty Acid Synthesis and

Pyruvate2AcetylCoA are also inhibited by fatty

acids and glucagon. Thus,

 P
active

 = {Beta-Oxidation,

Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate,

Lactate2Pyruvate, Gluconeogenesis,

Ketone-Body-Synthesis, Respiratory

Chain}

 P
inactive2

= {TCA-Cycle, Fatty-Acid-Synthesis,

Pyruvate2AcetylCoA}

6. Since P
inactive2

 has changed, another iteration

over step 5 is required, but nothing changes.

7. Since P
active

 has changed in step 5, iteration 4 is

performed, but it does not change the set of

active/inactive pathways. Hence, we do not

present iteration 4, here.

Stage 3: There is no partially active pathway in this

example.

Query Result: Please see Section 1.1 for query

results. Step 6 also lists the active pathways.

6.3. Handling Inconsistent Input to

MQLAIP Queries

It is possible that the user-provided concentration

change statements in a query may be inconsistent with

respect to the activated/inactivated set of pathways

included in the query result. In characterizing such types

of query input inconsistencies, we employ the closed

world assumption [11].

Def’n (Closed World Assumption): Given (i) a

metabolite pool m, and (ii) a query subnetwork N, let (a)

R be the set reactions in N, (b) C(m) be the consumers

of m, and (c) P(m) be the producers of m. Then, C(m) 

R and P(m)  R always hold.

Now, we are in a position to formally define query

input inconsistency based on the Closed World

Assumption and the Query Processing Rule 14.

Def’n (Inconsistent Query Input): Given an MQLAIP

query Q, let C be the set of metabolite concentration

change pairs (mi, ci) where mi is a metabolite pool, and

ci is a concentration change statement (i.e., “increase” or

“decrease”), that are either provided directly by the user,

or obtained from the signature of a dietary state or

physiological condition included in the query. Then, Q

is called an inconsistent query if there is at least one

concentration change pair (mi, ci)  C such that, in the

query subnetwork, after the query is processed, (i) mi is

marked as unavailable, and ci = increase, and/or (ii) mi

is marked as (severely) accumulating in the query result,

and ci = decrease.

At the end of Stage 3 of the query processing, the

above definition is employed to determine if the query

is inconsistent. Inconsistent queries return empty result

sets. However, as an explanation, users are also

provided with those particular metabolite-concentration

change pairs that render the query inconsistent.

6.4. Discussion

In this section, we present a brief discussion on the

termination behavior of our query processing algorithm

which contains looping structures among/within

different steps. It is crucial that the algorithm does not

get into infinite loops. In the algorithm, since there is no

loop that spans over multiple query processing stages,

each stage can be analyzed independently.

Stage 1 does not contain any looping structure.

In Stage 2, pathways are moved between three

different sets that may potentially lead to infinite loops:

P
inactive1

  Steps 2.1 .. 2.4  P
active

  Steps 2.5 .. 2.6

 P
inactive2

 Step 2.7  P
inactive1

. If a pathway p is

continuously circulated through these three sets, then

the algorithm never terminates. Such cases may happen

when there is a set of pathways which are inter-

dependent on each other in a cyclic manner through

regulatory relationships. Hence, such pathways with

cyclic interdependency should be eliminated from

consideration in Stage 2. Construction of a dependency

graph in step 2.7 and removal of pathways (into P
sink

)

that form cycles is integrated into the algorithm to

prevent such infinite looping cases. Hence, we have

Lemma 6.1 (proofs are omitted for brevity).

Lemma 6.1: Stage 2 of the algorithm always

terminates, i.e., infinite loops never occur.

Finally, in Stage 3, the only looping structure takes

place in step 3.4 which iterates over itself. This step

performs backtracking due to a product inhibition at

intermediate steps of a pathway. Hence, it only expands

the set of inactive reactions, and does not manipulate the

set of active reactions. Therefore, the number of

iterations is bounded by the total number of reactions in

the query subnetwork. Hence, we have Lemma 6.2.

Lemma 6.2: Stage 3 of the algorithm always

terminates, i.e., infinite loops never occur.

7. CONCLUSION

In this paper, we have presented the design and query

processing of a metabolism query language, MQL,

which allows users to specify detailed metabolism

queries. Our approach is faithful to the underlying

biochemistry, and completely guided by the metabolic

principles. MQL is presently being implemented and

integrated into the Metabolomics Analysis Workbench

[7] of PathCase [4].

References

1. Leser, U. 2005. A query language for biological

networks. ECCB/JBI 2005: 39, Bioinformatics: 21

(Suppl 2): ii33-ii39.

2. Yang, H, Sunderraman, R, Tian, H. 2008. bcnQL: A

Query Language for Biochemical Network. IEEE

International Conference on Bioinformatics and

Biomedicine, BIBM '08.

3. Kanehisa M et al. 2006. From genomics to chemical

genomics: new developments in KEGG. Nucleic

Acids Res 34:D354–7.

4. Elliott, B., Kirac, M., Cakmak, A. et al. 2008.

PathCase: Pathways Database System.

Bioinformatics 24(21): 2526-2533.

5. Caspi, R et al. 2006. MetaCyc: a multiorganism

database of metabolic pathways and enzymes.

Nucleic Acids Res 34 (Database issue):D511–16.

6. Joshi-Tope G et al. 2005. Reactome: a

knowledgebase of biological pathways. Nucleic

Acids Res 33: D428–32.

7. Cakmak, A., Dsouza, A., Hanson, RW, Ozsoyoglu,

ZM, Ozsoyoglu, G. 2009a. Analyzing Metabolomics

Data for Automated Prediction of Underlying

Biological Mechanisms. BMC Bioinformatics

(Submitted).

8. Cakmak, A, Hanson, RW, Ozsoyoglu, G. 2009b.

Querying Mammalian Metabolism under Different

Physiological Conditions. Journal of Bioinformatics

and Comp. Biology (Invited for April 2010 Issue).

9. Devlin, TM. 2006. Textbook of Biochemistry with

Clinical Correlations, Sixth Edition. Hoboken, NJ,

John Wiley & Sons.

10. Champe, PC, Harvey, RA, Ferrier, DR. (2007).

Lippincott's Illustrated Reviews: Biochemistry.

Lippincott Williams & Wilkins; Fourth Edition.

11. Ramakrishnan, R., Gehrke, J. Database Management

Systems. Third Edition. McGraw-Hill, 2003.

12. Bertino, E. Negri, M. Pelagatti, G. Sbattella, L.

Object-oriented query languages: the notion and the

issues. IEEE Transactions on Knowledge and Data

Engineering. 4(3): 223-237, June 1992.

13. Elliott, B., Mayes, S., Cakmak, A. et al. 2009.

Advanced Querying Interface for Biochemical

Network Databases. BMC Bioinformatics

(Submitted).

14. Saggerson, David. Malonyl-CoA, a Key Signaling.

Molecule in Mammalian Cells. Annu. Rev. Nutr.

2008. 28:253-72.

15. Krummenacker, M., Paley, S., Mueller, L., Yan, T.,

Karp, PD. Querying and Computing with BioCyc

Databases, Bioinformatics 21:3454-5, 2005.

16. Weld, DS, De Kleer, J. (1990). Readings in

Qualitative Reasoning About Physical Systems.

Morgan Kaufmann, San Mateo, CA.

17. Forbus, KD. Qualitative process theory. Artificial

Intelligence, 24:85–168, 1984.

18. Kuipers, B. Qualitative Reasoning: Modeling and

Simulation with Incomplete Knowledge. MIT Press,

1994, Cambridge, MA.

19. Heidtke, KR, Schulze-Kremer, S. BioSim - A New

Qualitative Simulation Environment for Molecular

Biology. In Proc. of 6th Int. Conf. Intell. Syst. Mol.

Biol. (ISMB98), pp. 85–94.

20. King, RD, Garrett, SM, and Coghill, GM. On the use

of qualitative reasoning to simulate and identify

metabolic pathways. Bioinformatics 2005 21: 2017-

2026.

21. De Jong, H. Modeling and simulation of genetic

regulatory systems: a literature review. Journal of

Computational Biology 2002;9(1):67-103.

22. Karp, PD. (1993). A qualitative biochemistry and its

application to the tryptophan operon. In Artificial

Intelligence and Molecular Biology, pp. 289 – 324.

23. Meyers, S. and Friedland, P. (1984). Knowledge

based simulation of genetic regulation in

bacteriophage lambda. Nucleic Acids Research

12(1):1–9.

24. Thomas, R. (1991). Regulatory Networks Seen as

Asynchronous Automata: A Logical Description.

Journal of Theoretical Biology, 153:1 – 23.

25. Brutlag, D. L., Galper, A. R., and Millis, D. H.

(1991). Knowledge-Based Simulation of DNA

Metabolism: Prediction of Enzyme Action.

Computer Applications in Biosciences, 7(1):9 – 19.

26. Shimada, T., Hagiya, M., Arita, M., Nishizaki, S.,

and Tan, C. (1995). Knowledge-based Simulation of

Regulatory Action in Lambda Phage. Journal of

Artificial Intelligence Tools, 4(4):511–524.

27. Clancy, DJ, Kuipers, B. (1997). Model

decomposition and simulation: A component based

qualitative simulation algorithm. 14th National

Conference on Artificial Intelligence (AAAI-97).

28. Karp, P. D. and Mavrovouniotis, M. M. (1994).

Representing, analayzing, and synthesizing

biochemical pathways. IEEE Expert, 9(2):11 – 22.

29. Kazic, T. (1993). Reasoning about biochemical

compounds and processes. In Proceedings of the

International Conference on Bioinformatics,

Supercomputing and the Human Genome Project,

pages 35 – 49, Singapore. World Scientific.

30. Kazic, T. (1993). Representation, reasoning and the

intermediary metabolism of E. coli. In Proceedings

of the Hawaii International Conf. on System

Sciences, volume 1, pages 853 – 862.

