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A metabolic network describes how different cellular processes (i.e., pathways) are connected and work together as part of a 

metabolism. The complexity of metabolisms and their working principles increase dramatically in higher order organisms (e.g., 

mammalians) in comparison to relatively lower level organisms (e.g., prokaryotes). As the complexity increases, managing, querying, 

and visualizing metabolic network data computationally in a manner that is faithful to the underlying biochemistry becomes more and 

more challenging. In this paper, we present a metabolism query language (MQL). MQL allows the formulation of a wide variety of in-

depth metabolism queries, and its query processing heavily employs metabolic principles. 

1.   INTRODUCTION 

Metabolism of an organism involves biochemical 

processes that perform essential cellular actions, such as 

biosynthesis and degradation of macromolecules, 

supplying energy needs of the cell, and so on. 

Computationally capturing and querying metabolism 

data is useful both in systems biology research as well 

as a teaching tool. In the literature, there are mainly two 

classes of works which study modeling and querying of 

metabolism. The first class includes query languages 

(e.g., PQL [1], bcnQL [2]) on biochemical networks, 

and the second class includes well-known metabolic 

data sources (e.g., KEGG [3], PathCase [4], MetaCyc 

[5], Reactome [6]) which house a number of 

metabolism querying tools built on top of a biochemical 

network knowledgebase. Such query languages and 

metabolic data sources essentially view the metabolism 

as a graph, and mostly focus on querying (i) structural 

properties of metabolic networks (e.g., paths, 

neighborhoods, cycles, etc.), and (ii) entity relationships 

(e.g., inhibitors of a reaction in a particular pathway). 

However, these efforts do not capture detailed 

biochemical working principles of a metabolism, and 

interrelationships between pathways under different 

physiological and dietary states. We compare the related 

work briefly in Section 2. 

In this paper, we propose a a metabolism query 

language (MQL) that considers (i) the behavior of the 

metabolic network under different conditions, (ii) 

metabolic specialization of tissues and 

subcompartments, (iii) interplay between different 

pathways, and (iv) distinct pools of metabolites. MQL 

allows for the specification of different classes of 

queries, such as (i) exploring activated/inactivated paths 

under specified metabolic conditions, (ii) searching for 

potential futile cycles, (iii) querying for regulatory 

changes that prevent a particular futile cycle, (iv) 

searching for conditions which lead to the (in)activation 

of a user-specified metabolic subnetwork, and (v) 

exploring the behavior of a set of (possibly reversible) 

reactions. And,  MQL lets users to input concentration 

change statements on key metabolites, and incorporates 

such input into its query processing.  

To demonstrate the capabilities of this framework, 

we employ as an example computational modeling of 

mammalian (particularly human) metabolism, and 

specifying and processing queries over its metabolic 

network. In this paper, we focus on the class of queries 

regarding exploring activated/ inactivated paths under 

specified metabolic conditions, which we refer to as 

MQLAIP queries.  Please see [8] for the remaining types 

of queries that can be specified in MQL. Next, we 

informally specify MQLAIP queries via a “template”, and 

illustrate with an example. 

1.1.   A Query Template and Its Instance 



 

Given:  

I.      A subset P of pathways in the human metabolic 

network 

II.     A set of biological compartments 

III. A set C of conditions specifying metabolic and 

dietary  states/physiological conditions, such as fasting, 

exercise, or specific disease states like diabetes,  and/or 

concentration changes (increases/ decreases) of “key 

metabolites” such as increases in lactate, pyruvate, or 

amino acids. 

(a) Find activated (increased flux) and inactivated 

(decreased flux) paths in pathways of P.  

(b) Visualize a selected subset of 

pathways in P in full and remainder in 

collapsed form, for simplicity in 

visualization. 

(c) Using the biochemical networks, 

explain the reasons for blocked (i.e., 

inactivated) reaction directions in the 

selected subnetwork. 

1.2.   A Sample MQLAIP Query 

Instance and Its Output:  

Given:  

I. Selected pathways P: Glycolysis, 

Gluconeogenesis, TCA Cycle, Beta 

Oxidation, Ketone Body Synthesis, and 

Fatty Acid Synthesis 

II.  Selected biological compartment(s): 

Mitochondrion, Cytosol, and Endoplasmic 

Reticulum in Liver 

III. A set C of conditions:  

Dietary state(s) and/or physiological 

condition(s): Fasting 

Some key metabolite concentration 

changes (increases/decreases): lactate↑, 

alanine↑, triglyceride constituents↑ (i.e., 

fatty acids↑ and glycerol↑) 

(a) Find activated/inactivated paths in the 

metabolic subnetwork that includes 

pathways in P. 

(b) Visualize Glycolysis, 

Gluconeogenesis, and TCA cycle in full 

and the remainder of the pathways in 

collapsed form. 

(c) Explain the reasons for blocked 

reaction directions in pathways of P. 

Query Result:  

(a) Paths with increased flux rate are shown with bold 

edges in Figure 1.1. 

(b) Collapsed (multi-step edges) and full forms of 

pathways are visualized in Figure 1.1.  

(c) Explanations for blocked reaction directions in the 

selected subnetwork: 

 TCA cycle is inhibited due to increased NADH 

synthesis in Beta Oxidation. 

 Fatty Acid Synthesis is inhibited due to:                  

(1) Increased concentration of fatty acids, and        

(2) Elevated glucagon/insulin ratio in fasting state. 

 In Glycolysis, the regulated enzymes (i.e., PFK1, 

Figure 1.1: A partial human metabolic network in liver 



        

pyruvate kinase, and glucokinase) are inhibited by 

elevated ATP, alanine, and glucagon/insulin ratio. 

 Pyruvate dehydrogenase is inhibited by increased 

NADH, acetyl CoA, and ATP. 

In Section 2, we briefly discuss the related work and our 

contributions. Section 3 presents an overview of the 

control mechanisms for the mammalian metabolism. In 

section 4, we summarize our data and graph models. 

Section 5 describes the formulation of MQL queries. 

Section 6 elaborates on processing MQL queries, and 

Section 7 concludes. 

2.   RELATED WORK AND CONTRIBUTIONS 

Two studies in the literature focus on the design of 

query languages for biochemical networks. PQL, the 

pathway query language, [1] employs a basic graph 

model where nodes represent metabolites, enzymes, or 

processes, and edges represent participation of a 

metabolite in a reaction in different roles, or 

inhibition/activation relationships between two different 

enzymes. PQL allows formulation of different query 

types that include relationship queries (e.g., reactions 

catalyzed by an enzyme), neighborhood queries, and 

path queries. bcnQL [2] is another query language with 

XQuery-like syntax designed for biochemical networks. 

bcnQL employs an object oriented graph model where 

nodes and edges have the same semantics as in PQL. 

bcnQL supports the formulation of almost the same 

types of queries as PQL with the improvement that 

bcnQL provides additional capabilities to specify 

multiple predicates on path queries. Both PQL and 

bcnQL employ simpler models of metabolic networks, 

not sufficiently capturing the metabolism: they do not 

accommodate (i) dynamic behavior of the metabolism 

under different physiological or dietary conditions, (ii) 

the compartmentalized structure of the metabolism over 

tissues and organelles, and (iii) regulatory relationships 

between pathways. And, neither PQL nor bcnQL 

provide a capability to specify an initial set of 

concentration changes on key metabolites to guide 

query processing, and do not eliminate biologically 

infeasible query results.  

There are also many web-based metabolic 

databases (e.g., KEGG [3], MetaCyc [5], Reactome [6], 

PathCase [4], etc.) with query languages. Such data 

sources serve well for basic database querying via built-

in or dynamically constructed queries (e.g., AQI [13], 

Structured Advanced Query Page and Advanced Query 

Form [15]). KEGG [3] provides basic keyword search, 

while MetaCyc [5] and Reactome [6] include advanced 

query forms. LISP framework in Pathway 

Tools/BioCyc/MetaCyc provides a custom metabolism-

specific query capability [15]. However, the query 

languages and forms of these data sources also have the 

same drawbacks listed for PQL and bcnQL. Besides, 

data models of these data sources do not capture 

different trigger mechanisms for pathways and/or 

regulators, distinct contributions of each pathway/ 

reaction into a particular metabolite pool, and varying 

occurrences of the same pathway in different tissues. 

Qualitative Physics [16] and Qualitative Reasoning 

(QR) [17, 18] are employed to model systems and 

environments where measured quantitative information 

is not available or appropriate to use, but there exists 

high level (i.e., commonsense) knowledge about the 

working principles of underlying systems. Studies that 

adapt qualitative reasoning (or physics) into 

biochemistry and molecular biology [19, 20] (see [21] 

for a review) are, at a high level, related to the MQL 

framework. BioSim [19] is a QR application for 

simulation of pathways via automated creation of 

“process” and “object” models based on reactions and 

their participants (i.e., substrates, products, enzymes), 

respectively, in a pathway. Then these created modelsof 

BioSim are executed by a Prolog-based simulation 

engine which creates a “behavior tree” describing 

concentration changes for each involved metabolite and 

enzyme. King et al. [20] extends BioSim’s simulation 

approach, and proposes a model identification 

framework, where given a qualitative time series set of 

metabolite measurements, the goal is to identify the 

structure of the metabolic subnetwork. GenSim [22] is 

another simulation environment proposed for 

biochemical systems. In GenSim, users manually 

construct object (i.e., molecules) and process (i.e., 

reaction) knowledgebases via a Lisp-based 

representation scheme, and define preconditions for the 

processes to be active, as well as their effects, once they 

are active. There are also many other similar qualitative 

simulation studies [23-30], which we do not discuss in 

this paper for the lack of space.  

MQL does not directly compare to these simulation 

works, as it is not designed as a simulation system, but 

as a query language and its query processing engine. 

However, MQL employs similar ideas regarding the 

qualitative reasoning, and (pre)conditions (constraints) 



 

that are checked for reactions to decide their activity 

status. MQL is different from these simulation studies in 

that it employs (i) an extensive and detailed metabolism 

data model, and (ii) fine-tuned biochemical principles, 

which are not considered by the above-listed works. 

2.1.   Contributions 

In order to process MQL queries, such as the one in 

Section 1, in a manner that is accurate and consistent 

with the underlying biochemistry, major biochemical 

principles that govern the interplay between different 

metabolic processes should be computationally captured 

and incorporated into the data model and query 

processing. Contributions of this paper are as follows.  

 Computationally capturing and modeling 

mammalian metabolic networks by employing the 

underlying biochemistry principles, 

 Design of a metabolism query language (MQL), 

which allows in-depth biochemical queries, 

 Development of query processing strategies for 

MQL queries. 

Additionally, the work described in this paper expands 

beyond MQL, and constitutes a computational 

infrastructure for a more informed reasoning of 

metabolomics data [7]. 

3.   BIOCHEMISTRY-BASED QUERY 

PROCESSING PRINCIPLES 

The processing of an MQL query such as the one in 

Section 1.1 requires an in-depth application of the 

underlying metabolic principles, which we itemize and 

review next.  

3.1.   Substrate Availability 

Principle 1. The availability of substrates for a 

particular pathway is a major driving factor that controls 

the rate of metabolic processes (i.e., pathways) and 

biochemical reactions ([9], p. 863).  

Example 3.1. Concentration of fatty acids entering liver 

from blood determines the rate of ketone body 

synthesis.  

Query Processing Rule (QPR) 1: If a substrate 

concentration increases (decreases), in the absence of 

other factors, the product concentration also increases 

(decreases). 

Cofactors are small metabolites that bind enzymes 

and are necessary for biochemical reactions to occur 

([9], p. 378). In this work, cofactor in and cofactor out 

metabolites are considered as specialized substrates and 

products, respectively. 

3.2.   Regulation of Key Enzymes 

Principle 2. Enzymes are regulated through three major 

mechanisms: (i) allosteric effects, (ii) covalent 

modifications, and (iii) expression-level regulation. 

Regulators either act as inhibitors or activators ([10], 

p.63). (Regulation through product inhibition is 

discussed in Section 3.10) 

Example 3.2: Citrate activates acetyl-CoA carboxylase 

which increases fatty acid synthesis.  

Query Processing Rule 2: If an activator increases 

(decreases), the reaction rate increases (decreases). And, 

if an inhibitor increases (decreases), the reaction rate 

decreases (increases). 

Principle 3. Allosteric effects take place immediately; 

covalent modification may require minutes; and 

regulation through gene expression may require hours to 

days ([10], p. 64). 

Query Processing Rule 3: With multiple regulators in 

effect, consider the one with the quickest mechanism as 

the “dominant” regulator. 

3.3.   Regulator Precedence 

Principle 4. An enzyme may have multiple regulators 

which control the enzyme rate with varying degrees of 

effect. In such cases, usually one of the regulators 

dominates the other(s) for the final effect (i.e., inhibition 

or activation) on the enzyme. 

Example 3.3: Pyruvate is an activator of pyruvate 

dehydrogenase (PDH), and acetyl CoA is an inhibitor of 

PDH. During the fasting state, concentrations of both 

pyruvate and acetyl CoA increase. However, acetyl-

CoA takes the precedence, and the activity of PDH is 

inhibited. 

Query Processing Rule 4: In cases where multiple 

regulators are in effect, employ the regulator with the 

strongest effect (highest precedence) on the enzyme, 

and ignore the other regulators. If no precedence value 

is available in the database, apply QPR (Query 

Processing Rule) 3. 

3.4.   Pathway-Level Regulation 

Principle 5. Only a subset of reactions in a pathway is 

subject to regulation (i.e., regulatory steps or points), 

and the others simply follow the regulated reactions. In 



        

order for a pathway to have increased flux (or be 

activated), none of its regulatory reactions should be 

inhibited.  

Example 3.4: In Section 1.1, the regulatory steps of 

TCA cycle is inhibited by NADH. 

Query Processing Rule 5: Do not mark a pathway 

completely active, if at least one of its regulatory steps 

(which are pre-captured and made available in the 

database) is inhibited. 

Regulatory steps can further be classified as rate-

limiting and commitment steps. 

Example 3.5. Both the rate-limiting and commitment 

step of Glycolysis is catalyzed by PFK1.  

Principle 6. A rate-limiting step in a pathway is the 

slowest step ([9], p. 404).  

Principle 7. Once the commitment step in a pathway 

takes place, substrates of a pathway are irreversibly 

committed to this route in the metabolism ([9], p. 404).  

Query Processing Rule 6: A pathway cannot be active 

if its rate-limiting step is inhibited. 

Query Processing Rule 7: If the commitment step of a 

pathway is blocked (i.e., inactive), then mark the 

pathway “inactive” as well. 

3.5.   Metabolite Pools  

Principle 8. Due to biological compartmentalization 

([9], p. 405) as well as different functional roles [14], a 

metabolite may have more than one pool. 

Example 3.6: Malate is located in both cytosol and 

mitochondrion. Hence, it has separate pools for each 

biological compartment that it resides. And, Malonyl 

CoA is reported [14] to possibly have two pools in 

cytosol due to distinct functional roles as substrate and 

regulator. 

Query Processing Rule 8: Connect two reactions, r1 

and r2 in the metabolic network if (i) r1 and r2 have at 

least one shared metabolite m, and (ii) r1 and r2 are 

associated with the same pool of m.  

Principle 9. The relative contribution (or consumption) 

of each metabolic reaction into (from) a specific 

metabolite pool may differ from one metabolic reaction 

to another.  

Example 3.7: In the fasting state, in liver 

mitochondrion, the acetyl CoA pool is minimally 

consumed by TCA Cycle, and the majority of it is used 

by Ketone Body Synthesis ([9], p. 856).  

Query Processing Rule 9: While the direction of 

change for a particular metabolite pool is computed, 

take into consideration each contributor’s or consumer’s 

rate. 

Principle 10. Different pools of the same metabolite 

may have distinct proportional sizes.  

Example 3.8: In the fasting state, the amounts (pool 

sizes) of different aminoacids released from muscle into 

blood are not the same, e.g., alanine and glutamine 

account for 80% of all AAs. 

Query Processing Rule 10: Given a metabolite m, if 

the total size of pools of m with increased (decreased) 

amounts is larger than the total size of pools of m with 

decreased (increased) amounts, then overall 

concentration change of m is considered to increase 

(decrease). 

3.6.   Energy State of Cells 

Def’n (Energy Currency Metabolite): Certain 

metabolites serve as carriers of energy in the body. Such 

metabolites are considered as “energy currency” of 

cells. Most common energy currency metabolites are 

NADH, NADPH, FADH2, ATP, and GTP (and their 

oxidized pairs, i.e., NAD+, NADP+, FAD, AMP, ADP, 

and GDP, which represent low-energy currencies). 

Principle 11. The energy state of the cell can be 

determined by considering the relative changes in the 

amounts of high-energy metabolites. 

Query Processing Rule 11. Determine the energy state 

of the metabolism based on the overall change in 

individual ratios of energy currency metabolite pairs, 

e.g.,
𝑁𝐴𝐷𝐻

𝑁𝐴𝐷+
, 
𝐴𝑇𝑃

𝐴𝑀𝑃
, and so on.  

3.7.   Functional Specialization of 

Biological Compartments 

Principle 12. Enzymes in pathways of the human 

metabolism are highly specialized in terms of biological 

compartments (e.g., organs, organelles, membranes, 

etc.) that they reside.  

Example 3.10: Urea cycle and ketone body synthesis 

take place only in liver.   

Query Processing Rule 12: Identify enzymes by their 

biological compartments, and consider their isoforms in 

different compartments as distinct entities. 

Principle 13. Biological compartments are often 

organized in a hierarchical manner, where one 

compartment contains another compartment. 

Example 3.11: Liver contains mitochondrion which in 

turn contains mitochondrial matrix.  



 

Query Processing Rule 13: Whenever a compartment 

is specified in a query, automatically include all of its 

child (descendant) compartments (if any) in the query.  

3.8.   Availability vs. Accumulation 

Principle 14. Availability of a metabolite m to a 

pathway or a reaction p means that m is produced, and 

instantly and fully consumed by p. However, in order 

for m to accumulate, the rate of m’s overall 

consumption should be less than the rate of its overall 

production.  

Example 3.14: In the fed state, in liver, acetyl CoA is 

available, through Glycolysis, to Fatty Acid Synthesis 

and the TCA Cycle, but it does not accumulate. 

Nevertheless, in the fasting state, acetyl CoA 

accumulates due to excessive production by Beta 

Oxidation. 

Query Processing Rule 14: Given a metabolite pool m, 

let ProductionRate(m) be the total production rate of m, 

ConsumptionRate(m) be the total consumption rate of 

m. Then, mark m as 

 “severely accumulating” if ProductionRate(m)  0 

and ConsumptionRate(m) = 0.  

 “accumulating” if ProductionRate(m)  

Consumption Rate(m).  

 “available” if ProductionRate(m)  Consumption 

Rate(m) and ProductionRate(m) ≠ 0. 

 “unavailable” if ProductionRate(m) = 0. 

Our metabolite labels above should be interpreted 

as approximations of the real-world where in reality, 

due to homeostasis, there is no such thing as “zero” 

consumption/production rate. 

Principle 15. Some reactions require “availability” and 

some others “accumulation” of a participant metabolite 

m to assume “substrate availability” (QPR 1) or the 

regulating effect of m.  

Example 3.15: Acetyl CoA is an activator of pyruvate 

carboxylase. In the fed state, acetyl CoA is available, 

but it does not accumulate. Thus, pyruvate carboxylase 

is not activated. 

Query Processing Rule 15: During query processing, 

check the “trigger conditions” (i.e., accumulation vs. 

availability) required by each reaction to make sure that 

they are satisfied.  

3.9.   Signatures for Dietary States and 

Physiological Conditions 

Principle 16. In different physiological and dietary 

states, concentration and/or production rate of certain 

molecules increase or decrease, which are signatures of 

the corresponding states.  

Example 3.16: In the fasting state, glucose levels 

decrease, and increased amounts of fatty acids and 

glycerol are released, which leads to increased ketone 

body production. Also, insulin level decreases and 

glucagon level increases. Then, signature for the fasting 

state can be represented as follows: S = {insulin↓, 

glucagon↑, glucose↓, fatty acids↑, ketone bodies↑, 

glycerol ↑}. 

Query Processing Rule 16: Whenever a user query 

involves a built-in dietary state or physiological 

condition predicate, (i) map these predicates to their 

corresponding signatures, (ii) combine signature 

changes with the user-provided set of concentration 

changes, and (iii) over-ride pool contribution rates in the 

database with those rate changes included in a signature.  

3.10.   Product Inhibition 

Due to similarities in the way they bind to enzymes, 

products and substrates are in competition to bind to 

their enzymes, which may lead to inhibition of the 

corresponding enzyme ([9], p. 405).  

Principle 17. As the product concentration of a reaction 

increases, the reaction rate slows down. 

Example 3.17. In the fasting state, due to inhibition of 

fatty acid synthesis in liver, citrate accumulates, which 

in turn inhibits the primary reaction (i.e., citrate 

synthase) that produces it.  

In this work, we take a conservative approach on 

product inhibition by applying it only when a product 

has no active consumer, i.e., “severely accumulates” 

(see QPR 14).  

Query Processing Rule 17. Whenever a metabolite m 

is marked as “severely accumulating”, mark those 

reactions that produce m as “inactive”. 

4.   DATA AND GRAPH MODEL 

4.1.   Data Model 

We adopt an object-oriented data model to represent the 

mammalian metabolism. Objects are structured data 

types which contain basic types (e.g., string, int, etc.) or 

other structured data types (i.e., objects) as their fields. 

We employ the metabolic principles that are 

summarized in Section 3 as the main motivation, and as 



        

a guide in our modeling effort. Figure 4.1 

shows the object definitions and their 

fields for the essential constituents of the 

metabolism. Please refer to [8] for an 

elaborate discussion of the objects and 

their relation to the principles in Section 3. 

4.2.   Graph Model 

In our graph representation model, 

compartments are modeled as large 

“super-nodes” which contain subnetworks 

of the metabolism, as well as other 

compartments. In each subnetwork, nodes 

represent metabolite pools. Reactions are 

represented as hyper-edges, which connect 

multiple end-points (i.e., substrates and 

products). Regulation is represented by an 

edge between a metabolite pool (i.e., a 

regulator) and a hyper-edge (i.e., a 

reaction). 

5.   QUERY SPECIFICATION 

In this section, we discuss the formulation 

of MQLAIP queries. Please see [8] for the 

specification of the remaining types of 

queries that can be formulated in MQL. 

MQLAIP queries involve finding 

activated/inactivated paths in a particular 

subnetwork of the metabolism in specified 

biological compartments under particular 

dietary or physiological states with a 

given set of concentration changes of key 

metabolites (see Section 1.1). 

We adopt an SQL-like [11] database 

query specification scheme for MQLAIP 

queries where the select clause defines the 

output, the from clause defines the 

objects/relations, and the where clause 

describes additional predicates such as compartment, 

dietary state, and so on. The generic query template is 

formulated as shown in Figure 5.1 where the notation is 

as follows. 

 Names in italics refer to database values, e.g., 

cytosol or TCA-cycle. 

 Names in regular fonts (i.e., non-italic and non-bold-

face) refer to variables, e.g., P1, C1, etc. 

 Bold-face words refer to keywords of the query 

language, e.g., select, paths, etc. 

 [ a | b | c]  denotes exactly one of (a or b or c).  

 { a | b | c}  denotes exactly one or zero of (a or b or 

c).  

 The parenthesis, ( ), has no particular meaning, and 

is used solely for grouping purposes. 

 “..” denotes zero or more repetitions. 

 “*” stands for the quantifier “all” as in the standard 

SQL specification [11].  

 If, for a particular field, nothing is specified as part 

of the query, then default selections are assumed. 

Pathway { name: string 

   reactions: [ReactionStep] 

   (rateLimitingSteps: [ReactionStep]) 

   (committedStep: ReactionStep) 

   substrates: [MetabolitePoolLink] 

   (products: [MetabolitePooLink]) 

   (cofactorsIn:[MetabolitePoolLink]) 

   (cofactorsOut:[MetabolitePoolLink]) 

} 

ReactionStep {reaction: Reaction 

    compartment: Compartment 

    (direction: <forward | backward>) 

} 

Reaction { name: string 

   substrates: [MetabolitePoolLink] 

   products: [MetabolitePoolLink] 

   (cofactorsIn:[MetabolitePoolLink]) 

   (cofactorsOut:[MetabolitePoolLink]) 

   (enzymes: [EnzymeInstance]) 

   (inhibitors: [Regulator]) 

   (activators: [Regulator]) 

   isTransportProcess: boolean 

   isReversible: Boolean 

} 

MetabolitePool{ metabolite: Metabolite 

   compartment: Compartment 

   (name: string) 

   (size: int) 

   (parent: MetabolitePool) 

} 

MetabolitePoolLink { 

    pool: MetabolitePool 

    rate: float 

    triggerCondition: listed in QPR 14 

    stoichiometry: float 

} 

Metabolite {  name: string 

    type: string 

    defaultPools: [MetabolitePool] 

} 

Compartment { name: string 

    (size: int) 

    (parent: Compartment) 

    (transportProcesses:   [Reaction]) 

     type:<tissue | organelle |  

membrane> 

} 

Enzyme{ name: string  } 

EnzymeInstance{ enzymeId: int 

    compartment: Compartment 

} 

DietaryState { name: string 

    concentrationChanges:  

                     [ConcentrationChange] 

} 

ConcentrationChange { 

    pool: MetabolitePool 

    changeDirection: string 

} 

PhysiologicalCondition extends            

                                      DietaryState 

{  

    (rateChanges: [RateChange]) 

} 

RateChange { 

    poolLink: MetabolitePoolLink 

    rateChangeAmount: float 

} 

EnergyCurrencyMetabolite  

                           extends  Metabolite{ 

    peer: EnergyCurrencyMetabolite  

    chargeStatus: <high |  low>                                                                                            

} 

Regulator {(regulator: 

MetabolitePool) 

     triggerCondition: listed in QPR 14 

type: <allosteric | covalent | 

                  expressionRegulation> 

(precedence: int) 

(regulatorRatio: 
𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑃𝑜𝑜𝑙 1

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑃𝑜𝑜𝑙 2
 ) 

} 

Notation: [ ] denotes an array of objects, < a | b | c > denotes an enumeration, and ( ) 

represents optional fields 

Fig. 4.1: Object Data Model 



 

Default selections are marked as “(default)” in the 

query template.  

 . notation in compartments is used to specify root-to-

node path expressions (as in the path expressions of 

object-oriented query languages [12]) in the 

compartment hierarchy. 

 Visualizing pathways in full/collapsed forms or 

providing additional explanations about activated 

and/or inactivated reactions are specified as optional 

separate clauses.  

 a-set-of-conditions refers to a set of database 

physiological conditions, such as diabetes. 

 a-set-of-metabolite-concentration-changes refers to 

a set of database metabolite concentration changes, 

each in a specific compartment. 

 a-subset-of-input-pathways refers to a subset of the 

pathway variables specified in the from clause. 

 The concentration change direction symbols ↑ and ↓ 

are replaced with  and , respectively. 

select {activated | inactivated | * (default)} paths  

from pathways Pi1 P1 in Ck1{.Ck2..Ckm} C1{, Pi2 P2   

                             in Cr1{.Cr2..Crm} C2, .., Pin Pn  

                             in Ct1{.Ct2..Ctm} Cm }  

where {dietaryState = [fasting | after a meal   devoid  

               of AAs | after a meal devoid of carbs |  

               exercise | well-fed ]}                                                

{and physiologicalCondition =  

                                                  a-set-of-conditions} 

{and concentrationChanges =  

            a-set-of-metabolite-concentration-changes}  

{visualize {a-subset-of-input-pathways in P1 [, P2, ..,  

      Pn] | * (default)}  {as collapsed (default) | as full}}  

{explain{ inactivated (default) | activated | regulated}  

                   reactions [ in a-subset-of-pathways | *]} 

Fig. 5.1: MQLAIP query template 

Example 5.1: The following query represents the 

MQLAIP specification of the English query which is 

discussed in Section 1.1. 

select * paths 

from pathways Glycolysis P1 in liver.cytosol C1,  

   Gluconeogenesis P2 in liver.cytosol C1,  

          TCA-Cycle P3 in liver.cytosol.mitochondrion C2,  

          Beta-Oxidation P4 in liver.cytosol.mitochondrion  

          C2, Keone-Body-Synthesis P5 in  

          liver.cytosol.mitochondrion C2, Fatty-Acid- 

         Synthesis P6 in liver.cytosol C1 

      where dietaryState = fasting 

  and concentrationChanges = {lactate  in  

                blood, alanine  in blood, fatty acids  in          

                blood, glycerol  in blood}  

visualize P1, P2, P3 as full   

explain inactivated reactions in *    

6.   PROCESSING OF MQLAIP QUERIES 

In this section, we discuss the query processing of 

MQLAIP queries. We employ the biochemical query 

processing rules (QPRs) of Section 3. Related QPRs are 

often referenced in parentheses. The query processing 

employs an auxiliary data structure, called dependency 

graph. We first define dependency graphs, and then 

move onto the discussion of the query processing 

stages. 

Def’n (Dependency Graph): A dependency graph 

G(V, E) consists of a set V of vertices and a set E of 

edges, where nodes in V correspond to distinct 

pathways, and a directed edge e(p1, p2) represents that 

pathway p1 (i.e., e.source) is dependent on pathway p2 

(i.e., e.destination). 

6.1.   Stages of the Query Processing 

Input to this type of queries are a subnetwork of the 

metabolic network as defined by a set of pathways in 

specific compartments, a dietary state condition, a 

physiological condition, and a set of initial 

concentration changes. The query processing has three 

stages. 

(a) Stage 1 (Query Compilation)  

1.1. Convert dietary state and physiological 

condition predicates in the query into their signature 

concentration change sets (QPR 16). Let S be the union 

of such concentration change sets. 

1.2. Let C be the user-specified concentration 

changes in the where clause of the query. Then, let U = 

S  C. Mark those pools in U with increased 

concentrations as “accumulating”, and those with 

decreased concentrations as “unavailable”. Mark all 

other metabolite pools “unavailable”. 

1.3. Expand user-provided set P of pathways with 

additional pathways that connect user-provided 

metabolites to the pathways in P (e.g., Pyruvate to 

Acetyl CoA pathway in Fig. 1.1).  

1.4. Let M be the compartment set (and their 

descendants) specified in the query. (QPR 13) 

1.5. Build the query subnetwork with the pathways 



        

in P and compartments in M (QPR 8, 12, 13).  

1.6. Create three empty pathway sets, P
active

, P
inactive1

, 

P
inactive2

, and P
sink

. Initialize P
inactive1

 = P.  

In stages 2 and 3, we record the regulation 

information of pathways. Since it does not involve 

much complexity, for brevity, we will not refer to 

keeping track of the regulation information. 

(b) Stage 2 (Identifying completely active pathways) 

In this stage the set P
active

 of completely active pathways 

are identified in two substages.  

b.1. Expansion: Expansion is an iterative process, 

where, in each iteration, the set of active and/or inactive 

pathways are expanded based on the availability of 

substrates and regulators. 

2.1. Identify subset PS of pathways in P
inactive1

 such 

that, for each pathway p in PS, at least one of its 

substrates is available with a matching trigger condition  

(QPR 1, 14, 15). 

2.2. Pactive
 = P

active
  PS   ( denotes set union,  

denotes set intersection, and “–” denotes set difference. 

       P
inactive1

 = P – (P
active

  P
inactive2 

 P
sink

)  

2.3. Update status of pools that are involved in 

pathways in P
active

 (QPR 14). 

2.4. If content of P
active

 has changed in step 2.2, go 

to step 2.1 for another iteration.  

b.2. Shrinking: Shrinking is also an iterative process 

where the set of active pathways is shrunk based on the 

accumulation or availability of energy currencies, 

substrates, and cofactors. 

2.5. Consider pools for energy currency metabolites, 

cofactors, and other regulators (QPR 1, 2, 3, 4, 11, 14). 

Then, consider the reactions that are regulated by these 

pools (QPR 2-7). Next, according to the nature of 

regulation (QPR 15), mark pathways involving such 

reactions “inactive” (QPR 5-7), and move them into 

P
inactive2

. Update the marks of metabolite pools. Next, 

reconsider substrate availability for pathways in P
active

, 

and move those with non-matching trigger conditions 

from P
active

 to P
inactive2

 (QPR 1, 15). Finally, apply 

product inhibition (QPR 17), if applicable. Update 

metabolite pool marks.  

2.6. If content of P
inactive2

 has changed, go to step 

2.5. Otherwise, continue with the next step. 

2.7. Initialize a dependency graph G(V=P, E=). 

Identify each pathway p1P
inactive2

 such that p1 was put 

into P
inactive2

 due to a non-matching trigger condition on 

a metabolite pool m, but p1 is not inhibited anymore due 

to change on the marking of m. Add an edge e(p1, p2) in 

G for each p2P
inactive2

 where p2 is a consumer/producer 

of m. Next, identify cycles in G, move members of each 

cycle into P
sink

. For each edge e that is not part of a 

cycle in G, move e.source into P
inactive1

. 

2.8. If content of P
active

 or P
inactive1

 has changed in 

step 2.5, go to step 2.1, else continue with step 3.1. 

(c) Stage 3 (Identifying partially active pathways) 

The last query processing stage focuses on identifying 

partially active pathways. It builds upon the general idea 

that there will be an active flux through non-regulated 

reactions as long as their substrates are available (or 

accumulate, depending on the trigger condition) given 

that there is no “product inhibition” (QPR 17). 

3.1. Mark all reactions in active pathways as active, 

with one exception: mark all inhibited reactions (by a 

direct inhibitor) as inactive. Let the active reaction set 

be R
active

. Finally, mark all other reactions as maybe-

active (i.e., unknown). Update metabolite pool marks 

accordingly (QPR 14). During the application of QPR 

14, consider maybe-active reactions as inactive.  

3.2. Identify pathway pairs (p1, p2) of pathways 

where (i) p1  P
active

, p2  P
inactive

, (ii) p1 and p2 have a 

shared metabolite m (as product and substrate) (QPR 8). 

Form triplets (p1, p2, m). 

3.3. For each triplet (p1, p2, m) from step 3.2, 

starting with reaction(s) that consume m in p2, navigate 

the query subnetwork reaction-by-reaction by following 

substrate/product relationship, and employ the following 

actions (let r be the currently traced reaction): 

(a)  If r is an active reaction, stop the traversal on this 

path in the query subnetwork. 

(b)  If r is an inactive reaction, stop the traversal (QPR 

17), trace back while marking each reaction inactive on 

the way back until (i) the starting metabolite m, or (ii) 

the first metabolite with maybe-active consuming 

reactions (whichever is encountered first).  

(c)  Otherwise, mark r active, if at least one of its 

substrates is available with a matching trigger condition 

(QPR 1, 14). Continue employing the same 

considerations ((a) through (c)) iteratively with the next 

set of reactions that follow r in the query subnetwork.  

3.4. Similar to step 2.6, consider pools of 



 

metabolites that participate in active reactions as 

substrates, cofactors, or regulators. Accordingly, if 

there are inhibited reactions or ones with unavailable 

substrates (according to its trigger condition), mark 

them as inactive. Apply product inhibition (QPR 17) if 

applicable. Iterate over this step, if new inactive 

reactions are identified. 

3.5. Mark all the remaining maybe-active reactions 

inactive, and add the active ones into R
active

. 

6.2.   A Complete Example (Processing 

the MQL Query in Example 5.1) 

Stage 1:  

 Converting the fasting stage into its signature 

concentration change set: S = {insulin↓, glucagon↑, 

glucose↓, fatty acids↑, ketone bodies↑, glycerol 

↑}. Figure 1.1: Each hormone (e.g., insulin, 

glucagon) has a single pool (not shown in Fig. 1.1); 

glucose in S refers to its pool #1 in blood; fatty acids 

refers to its pool #2 in blood; and, others have single 

pools in blood in Fig. 1.1. 

 User-provided concentration changes are mapped to 

their default pools in blood. Figure 1.1 has only a 

single pool for each of lactate, alanine, and glycerol in 

blood (i.e., default pools). For fatty acids, the default 

pool in blood is pool #2.  

 Take the union of user-provided set of metabolite 

pools and those in S, U = {insulin↓, glucagon↑, 

glucose↓, fatty acids↑, ketone bodies↑, lactate↑, 

alanine↑}, and update their pool marks accordingly. 

 Expand user provided set P of pathways with 

“connection pathways”. Hence, P = {Glycolysis, 

Gluconeogenesis, TCA-Cycle, Beta-Oxidation, 

Ketone-Body-Synthesis, Fatty-Acid-Synthesis, 

Respiratory Chain, Glycerol2Dihyroxyacetone3-P, 

Alanine2Pyruvate, Lactate2Pyruvate, 

Pyruvate2AcetylCoA}. And, P
inactive

 = P. 

Stage 2: 

 Iteration 1:  

1.  PS = {Beta-Oxidation, 

Glycerol2Dihyroxyacetone3-P, 

Alanine2Pyruvate, Lactate2Pyruvate} 

2.  Pactive
 = {Beta-Oxidation, 

Glycerol2Dihyroxyacetone3-P, 

Alanine2Pyruvate, Lactate2Pyruvate} 

       P
inactive1

 = {Glycolysis, Gluconeogenesis, TCA-

Cycle, Ketone-Body-Synthesis, Fatty-Acid-

Synthesis, Pyruvate2AcetylCoA, Respiratory 

Chain} 

3. Update pools: Acetyl CoA↑, NADH↑, Pyruvate↑, 

Dihydroxyacetone 3-P↑. 

4. Since P
active

 has changed, perform another 

iteration over steps 1 through 4. 

 Iteration 2:  

1. PS = {Gluconeogenesis, TCA-Cycle, Fatty-Acid-

Synthesis, Pyruvate2AcetylCoA, Ketone-Body-

Synthesis, Fatty-Acid-Synthesis, 

Pyruvate2AcetylCoA, Respiratory Chain} 

2. P
active

 = {Beta-Oxidation, 

Glycerol2Dihyroxyacetone3-P, 

Alanine2Pyruvate, Lactate2Pyruvate, 

Gluconeogenesis, TCA-Cycle, Ketone-

Body-Synthesis, Fatty-Acid-Synthesis, 

Pyruvate2AcetylCoA, Respiratory 

Chain}  

                 //bold ones are newly added in this iteration 

      P
inactive1

 = {Glycolysis} 

3. Update pools: Glucose↑, Ketone Bodies↑, 

NADH↑. 

4. Since P
active

 has changed, perform another 

iteration over steps 1 through 4. 

 Iteration 3:  

1. PS = { same as the previous iteration} 

2. P
active

 = // the same as in iteration 2. 

      P
inactive1

 = {Glycolysis} 

3. Update pools: no changes. 

4. Since P
active

 has not changed, go to step 5. 

5. Production rate of the energy currency 

metabolite NADH by Beta-Oxidation and TCA-

Cycle is much more than its consumption rate 

through Respiratory Chain. Hence, NADH pool 

accumulates. NADH inhibits two rate limiting 

steps of TCA-Cycle. Fatty Acid Synthesis and 

Pyruvate2AcetylCoA are also inhibited by fatty 

acids and glucagon. Thus, 

     P
active

 = {Beta-Oxidation,       

Glycerol2Dihyroxyacetone3-P, 

Alanine2Pyruvate, 

Lactate2Pyruvate, Gluconeogenesis, 

Ketone-Body-Synthesis, Respiratory 

Chain}  



        

          P
inactive2 

= {TCA-Cycle, Fatty-Acid-Synthesis, 

Pyruvate2AcetylCoA}       

6. Since P
inactive2

 has changed, another iteration 

over step 5 is required, but nothing changes. 

7. Since P
active

 has changed in step 5, iteration 4 is 

performed, but it does not change the set of 

active/inactive pathways. Hence, we do not 

present iteration 4, here. 

Stage 3: There is no partially active pathway in this 

example.  

Query Result: Please see Section 1.1 for query 

results. Step 6 also lists the active pathways. 

6.3.   Handling Inconsistent Input to 

MQLAIP Queries 

It is possible that the user-provided concentration 

change statements in a query may be inconsistent with 

respect to the activated/inactivated set of pathways 

included in the query result. In characterizing such types 

of query input inconsistencies, we employ the closed 

world assumption [11]. 

Def’n (Closed World Assumption): Given (i) a 

metabolite pool m, and (ii) a query subnetwork N, let (a) 

R be the set reactions in N, (b) C(m) be the consumers 

of m, and (c) P(m) be the producers of m. Then, C(m)  

R and P(m)  R always hold. 

Now, we are in a position to formally define query 

input inconsistency based on the Closed World 

Assumption and the Query Processing Rule 14. 

Def’n (Inconsistent Query Input): Given an MQLAIP 

query Q, let C be the set of metabolite concentration 

change pairs (mi, ci) where mi is a metabolite pool, and 

ci is a concentration change statement (i.e., “increase” or 

“decrease”), that are either provided directly by the user, 

or obtained from the signature of a dietary state or 

physiological condition included in the query. Then, Q 

is called an inconsistent query if there is at least one 

concentration change pair (mi, ci)  C such that, in the 

query subnetwork, after the query is processed, (i) mi is 

marked as unavailable, and ci = increase, and/or (ii) mi 

is marked as (severely) accumulating in the query result, 

and ci = decrease. 

At the end of Stage 3 of the query processing, the 

above definition is employed to determine if the query 

is inconsistent. Inconsistent queries return empty result 

sets. However, as an explanation, users are also 

provided with those particular metabolite-concentration 

change pairs that render the query inconsistent. 

6.4.   Discussion 

In this section, we present a brief discussion on the 

termination behavior of our query processing algorithm 

which contains looping structures among/within 

different steps. It is crucial that the algorithm does not 

get into infinite loops. In the algorithm, since there is no 

loop that spans over multiple query processing stages, 

each stage can be analyzed independently. 

Stage 1 does not contain any looping structure. 

In Stage 2, pathways are moved between three 

different sets that may potentially lead to infinite loops:  

P
inactive1

  Steps 2.1 .. 2.4  P
active

  Steps 2.5 .. 2.6 

 P
inactive2 

 Step 2.7  P
inactive1

. If a pathway p is 

continuously circulated through these three sets, then 

the algorithm never terminates. Such cases may happen 

when there is a set of pathways which are inter-

dependent on each other in a cyclic manner through 

regulatory relationships. Hence, such pathways with 

cyclic interdependency should be eliminated from 

consideration in Stage 2. Construction of a dependency 

graph in step 2.7 and removal of pathways (into P
sink

) 

that form cycles is integrated into the algorithm to 

prevent such infinite looping cases. Hence, we have 

Lemma 6.1 (proofs are omitted for brevity). 

Lemma 6.1: Stage 2 of the algorithm always 

terminates, i.e., infinite loops never occur. 

Finally, in Stage 3, the only looping structure takes 

place in step 3.4 which iterates over itself. This step 

performs backtracking due to a product inhibition at 

intermediate steps of a pathway. Hence, it only expands 

the set of inactive reactions, and does not manipulate the 

set of active reactions. Therefore, the number of 

iterations is bounded by the total number of reactions in 

the query subnetwork. Hence, we have Lemma 6.2. 

Lemma 6.2: Stage 3 of the algorithm always 

terminates, i.e., infinite loops never occur. 

7.   CONCLUSION 

In this paper, we have presented the design and query 

processing of a metabolism query language, MQL, 

which allows users to specify detailed metabolism 

queries. Our approach is faithful to the underlying 

biochemistry, and completely guided by the metabolic 

principles. MQL is presently being implemented and 

integrated into the Metabolomics Analysis Workbench 

[7] of PathCase [4]. 
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