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Array comparative genomic hybridization (aCGH) allows identification of copy number alterations across genomes.
The key computational challenge in analyzing copy number variations (CNVs) using aCGH data or other similar
data generated by a variety of array technologies is the detection of segment boundaries of copy number changes

and inference of the copy number state for each segment. We have developed a novel statistical model based on the
framework of conditional random fields (CRFs) that can effectively combine data smoothing, segmentation and copy
number state decoding into one unified framework. Our approach (termed CRF-CNV) provides great flexibilities
in defining meaningful feature functions, therefore it can effectively integrate local spatial information of arbitrary
sizes into the model. For model parameter estimations, we have adopted the conjugate gradient (CG) method for
likelihood optimization and developed efficient forward/backward algorithms within the CG framework. The method
is evaluated using real data with known copy numbers as well as simulated data with realistic assumptions, and
compared with two popular publicly available programs. Experimental results have demonstrated that CRF-CNV
outperforms a Bayesian Hidden Markov Model-based approach on both datasets in terms of copy number assignments.
Comparing to a non-parametric approach, CRF-CNV has achieved much greater precision while maintaining the same
level of recall on the real data, and their performance on the simulated data is comparable.

1. INTRODUCTION

Structure variations in DNA sequences such as inher-

itable copy number alterations have been reported

to be associated with numerous diseases. It has

also been observed that somatic chromosomal aber-

rations (i.e., amplifications and deletions) in tumor

samples have shown different clinical or pathological

features in different cancer types or subtypes3, 5, 11.

To gain more understanding of the role of inheri-

table copy number polymorphisms (CNPs) in de-

termining disease phenotypes, systematic mapping

and cataloging of CNPs are needed and are being

carried out. Identification of somatic copy num-

ber aberrations in cancer samples may lead to the

discovery of important oncogenes or tumor sup-

press genes. With remarkable capacity from cur-

rent technologies in assessing copy number vari-

ants (CNVs), there is a great wave of interests re-

cently from the research community to investigate in-

heritable as well as somatic CNVs1, 3–5, 9, 11, 12, 17.

Broadly speaking, there are essentially three tech-

nological platforms for copy number variation detec-

tions: array-based technology (including array com-

parative genomic hybridization (aCGH), as well as

many other variants such as oligonucleotide array or

bacterial artificial chromosome array), SNP genotyp-

ing technology1, 11 and next-generation sequencing

technology2. Array-based technology measures DNA

copy number changes from a disease sample relative

to a normal sample, represented by the log2 ratio of

corresponding fluorescence intensities of each clone.

The log2 ratios are expected to be proportional to

copy numbers, though significant noise can be in-

troduced from various sources. Array-based tech-

nologies are primarily for large segments of duplica-

tions/deletions, though different experimental plat-

forms and designs using clones with different sizes,

may give very different resolutions and coverages11.

To identify small CNVs at a finer resolution, re-

searchers have been using raw intensity values of

SNPs that interrogate CNVs. This technique has

gained great popularity with the availability of SNP

chips from major vendors. More recently, new al-

gorithms have been proposed to identify CNVs from

new genotyping platforms by integrating information

from both SNP probes and CNV probes13. Yet an-
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other alternative is on the horizon, i.e., one can use

massively parallel sequencing techniques to identify

CNVs with even finer resolutions. A very few pre-

liminary studies2 have shown it has better power to

localize breakpoints.

Different platforms have different challenges.

Naturally, one should use different approaches for

these platforms by taking advantage of special prop-

erties from different datasets. Not surprisingly, vari-

ous algorithms have been proposed for different data

in recently years. On the other hand, the primary

goal of all such studies is to identify and localize the

copy number changes, therefore, the essential com-

putational task for data from different platforms is

the same: to segment genomes into discrete regions

of CNVs based on the measurements of probe in-

tensity values and/or ratios, or number of sequence

reads. One important commonality in data from

different platforms is the spatial correlation among

clones/probes/sequences. Many existing approaches

have taken advantage of such a property by utiliz-

ing the same methodology, Hidden Markov Mod-

els (HMMs), which can conveniently model spatial

dependence using a chain structure. Results have

shown initial success1, 4, 12, 17 of HMMs. However,

there is an inherited limitation for all these HMMs,

i.e., they are all first order HMMs and cannot take

into consideration long range dependence. We pro-

pose to develop and apply a novel undirected graph-

ical model based on Conditional Random Fields

(CRFs)16 for the segmentation of CNVs. It has been

shown that CRFs consistently outperform HMMs

in a variety of applications, mainly because CRFs

can potentially integrate all information from data16.

This property makes CRFs particularly appealing to

model CNV data since one can define feature func-

tions using data from a region rather than a single

or two data points for emissions and transitions, re-

spectively, in HMMs.

Our major analytical contributions include the

construction of the CRF model, the definition of

effective feature functions using robust statistics,

and the development of efficient computation algo-

rithms for parameter estimations. As an illustra-

tion of our proposed model, we have applied our

approach on real and simulated data based on ar-

ray technology, and compared its performance with

two popular segmentation algorithms. Experimental

results have demonstrated that CRF-CNV outper-

forms a Bayesian Hidden Markov Model-based ap-

proach on both datasets in terms of copy number

assignments, but with little sacrifice of accuracy in

breakpoint identification due to smoothing. Com-

paring to a non-parametric approach, CRF-CNV has

achieved much greater precision while maintaining

the same level of recall on the real data. On the sim-

ulated data, CRF-CNV has obtained better accuracy

in identifying breakpoints with comparable perfor-

mance in copy number assignments. The reminder

of this article is organized as follows. In Section 2, we

give a brief overview of aCGH data and existing ap-

proaches for detecting CNVs from aCGH data. We

also briefly mention the differences between HMMs

and CRFs. Details about model developments and

implementations are provided in Section 3. Our ex-

perimental results on two datasets and comparisons

with other two programs are presented in Section 4.

We conclude the paper with a few discussions in Sec-

tion 5.

2. PRELIMINARY

2.1. aCGH Data and Analysis

Though theoretically, our approach can be applied to

data from different experimental platforms. We fo-

cus primarily on aCGH data in this analysis. Math-

ematically, aCGH data usually consist of an array

of log2 intensity ratios for a set of clones, as well as

the physical position information of each clone along

a genome. Figure 1 plots the normalized log2 ra-

tio of one cell line (GM04435) analyzed by Snijders

et al.14. Each data point represents one clone and

the y-axis represents normalized log2 intensity ratio.

The primary goal in CNV detection based on aCGH

is to segment a genome into discrete regions that

share the same mean log2 ratio pattern (i.e., have

the same copy numbers). Ideally, the log2 ratio of a

clone should be 0 if the cancer sample/cell line has a

normal number (i.e., 2) copies of DNA, and the value

should be around 0.585 (or -1) if it has one copy of

gain (or loss). However, as shown in Figure 1, aCGH

data can be quite noisy with vague boundaries be-

tween different segments. It may also have complex

local spatial dependence structure. These properties



make the segmentation problem intrinsically hard.

Approaches using a global threshold generally do not

work in practice.
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Fig. 1. Array CGH profile of a Corriel cell line (GM04435).
The borders between chromosomes are indicated by grey ver-
tical bars.

2.2. Existing Algorithms

In general, a number of steps are needed to detect

copy number changes from aCGH data. First, raw

log2 ratio data usually needs some preprocessing, in-

cluding normalization and smoothing. Normaliza-

tion is an absolute necessary step to alleviate sys-

temic errors due to experimental factors. Usually

the input data is normalized by making the median

or mean log2 ratio of a selected median set from nor-

mal copy number regions to be zero. Smoothing is

used to reduce noises that are due to random errors

or abrupt changes. Smoothing methods generally fil-

ter the data using a sliding window, attempting to

fit a curve to the data while handling abrupt changes

and reducing random errors. A number of smoothing

methods have been proposed, such as sliding window

smoothing, quantile smoothing, wavelet smoothing,

etc.

The second step in analyzing aCGH data is re-

ferred to as segmentation and it aims to identify con-

tiguous sets of clones (segments) that share the same

mean log2 ratio. Broadly, there are two related es-

timation problems. One is to infer the number and

statistical significance of the alterations; the other is

to locate their boundaries accurately. A few different

algorithms have been proposed to solve these two es-

timation problems. Olshen et al.10 have proposed a

non-parametric approach based on the recursive cir-

cular binary segmentation (CBS) algorithm. Hupe et

al.7 have proposed an approach called GLAD, which

is based on a median absolute deviation model to

separate outliers from their surrounding segments.

Willenbrock and Fridlyand18 have compared the per-

formance of CBS (implemented in DNACopy) and

GLAD using a realistic simulation model, and they

have concluded that CBS in general is better than

GLAD. We will also adopt their simulation model

in our experiment study. After obtaining the seg-

mentation outcomes, a postprocessing step is needed

to combine segmentations with similar mean levels

and to classify them as single-copy gain, single-copy

loss, normal, multiple gains, etc. Methods such as

GLADMerge7 and MergeLevels18 can take the seg-

mentation results and label them accordingly.

As noted by Willenbrock and Fridlyand18, it is

more desirable to perform segmentation and clas-

sification simultaneously. An easy way to merge

these two steps is to use a linear chain HMM. The

underlying hidden states are the real copy num-

bers. Given a state, the log2 ratio can be mod-

eled using a Gaussian distribution. The transition

from one state to another state reveals the like-

lihood of copy number changes between adjacent

clones. Given observed data, standard algorithms

(forward/backward, Baum-Welch and Viterbi) can

be used to estimate parameters and to decode hid-

den states. A few variants of HMMs have been pro-

posed for aCGH data in recent years6, 12. Guha et

al.6 have proposed a Bayesian HMM which can im-

pose biological meaningful priors on the parameters.

Shah et al.12 have extended this Bayesian HMM by

adding robustness to outliers and location-specific

priors, which can be used to model inheritable copy

number polymorphisms. Notice that all these mod-

els are first-order HMMs which cannot capture long

range dependence. Intuitively, it makes sense to con-

sider high-order HMMs to capture informative local

correlation, which is an important property observed

from aCGH data. However, considering higher or-

ders will make HMMs more complex and computa-

tionally intensive.



2.3. Conditional Random Fields

To overcome the limitations of HMMs, we propose a

new model based on the theory of Conditional Ran-

dom Fields (CRFs). CRFs are undirected graphical

models designed for calculating the conditional dis-

tribution of output random variables Y given input

variables X16. It has been extensively applied to

language processing, computer vision, and bioinfor-

matics with remarkable performance comparing with

directed graphical models including HMMs. The key

difference between CRFs and HMMs is that one can

define meaningful feature functions that can effec-

tively capture local spatial dependence among ob-

servations. As illustrated in Figure 2, although we

also use a chain structure in our CRF model for CNV

detection, our feature functions to be defined can use

observed data from a region. Therefore it can cap-

ture abundant local spatial dependence. In addition,

by using a CRF, we can effectively combine smooth-

ing, segmentation and classification into one unified

framework.

Fig. 2. A linear chain conditional random field model for
array CGH data.

3. METHODS

3.1. Linear-Chain CRF Model for aCGH

Data

Our model is based on the linear-chain CRF Model in

Figure 2. Let X = (X1, . . . , Xn) denote the normal-

ized log2 ratio intensities along one chromosome for

an individual, where Xi is the log2 ratio for clone i.

One can assume that these n clones are sequentially

positioned on a chromosome. Let Y = (Y1, . . . , Yn)

denote the corresponding hidden copy number state,

where Yi ∈ {1, .., s} and s is the total number of

copy number states. These states usually indicate

deletion, single-copy loss, neutral, single-copy gain,

two-copy gain or multiple-copy gain. The exact num-

ber of states and their meaning need to be specified

based on specific input data. The conditional proba-

bility of Y given observed log2 ratio X based on our

linear-chain CRF structure can be defined as

P (Y |X) =
1

Zθ(X)
exp{

n
∑

i=1

s
∑

j=1

[λjfj(Yi, X̃i(u)) +

µjgj(Yi, X̃i(u))] +
s

∑

j=1

ωj lj(Y1, X̃1(u)) +

n−1
∑

i=1

s
∑

j=1

s
∑

k=1

νjkhjk(Yi, Yi+1, X̃i,i+1(u))},

(1)

where the partition function

Zθ(X) =
∑

Y

exp{

n
∑

i=1

s
∑

j=1

[λjfj(Yi, X̃i(u)) +

µjgj(Yi, X̃i(u))] +

s
∑

j=1

ωjlj(Y1, X̃1(u)) +

n−1
∑

i=1

s
∑

j=1

s
∑

k=1

νjkhjk(Yi, Yi+1, X̃i,i+1(u))}.

Here θ = {λj , µj , ωj , νjk} are parameters that need

to be estimated. Functions fj , gj, lj and hjk are

feature functions that need to be defined. X̃i(u)

is defined as a neighbor set of Xi around clone i,

i.e., X̃i(u) = {Xi−u, ..., Xi−1, Xi, Xi+1, ..., Xi+u},

where u is a hyper-parameter to define the

dependence length. Similarly, we define

X̃i,i+1(u) = {Xi−u, ..., Xi, Xi+1, ..., Xi+1+u},

X̃−
i,i+1(u) = {Xi−u, ..., Xi−1, Xi} and X̃+

i,i+1(u) =

Xi+1, Xi+2, ..., Xi+1+u}. We will define our feature

functions by integrating all information from these

neighborhood sets. The dependence length u plays

a similar role like the width of a sliding window in

smoothing methods. For notational simplification,

we drop the parameter u in our subsequent discus-

sions and write X̃i(u) as X̃i and etc.

3.2. Feature Functions

One important step to build our model is to define

meaningful feature functions that can capture critical

information from input data. Essentially, we define

two types of feature functions, analogous to the emis-

sion and transition probabilities in HMMs. However,



our feature functions can be of any form, therefore

our model can provide much more flexibilities and be

able to capture long range dependence. The emis-

sion feature functions fj(Yi, X̃i) and gj(Yi, X̃i) are

defined as follows:

fj(Yi, X̃i) =

{

med X̃i if Yi = j

0 otherwise,

gj(Yi, X̃i) =

{

(med X̃i)
2 if Yi = j

0 otherwise,

where med X̃i is defined as the median value of set

X̃i. Our emission features sever two purposes. First

it is used as a median filter that will automatically

smooth the input data. More importantly, the fea-

ture functions based on the first-order and second-

order median statistics are robust sufficient statistics

one can derive from a normal distribution, which re-

semble the emission pattern of log2 ratio intensities

for a given hidden copy number state.

The transition feature function hjk(Yi, Yi+1, X̃i,i+1)

and the initial feature function lj(Y1, X̃1) are defined

as follows(h is on the next page):

lj(Y1, X̃1) =































(aj+1−aj)/2

(aj+1−aj)/2+med X̃1−aj
if Y1 = j,

med X̃1 ≥ aj
(aj−aj−1)/2

(aj−aj−1)/2+aj−med X̃1

if Y1 = j,

med X̃1 < aj

0 otherwise.

Here aj denotes the mean log2 ratio for clones with

copy number state j (j = 1, . . . , s). While a0 and

as+1 denote the greatest lower bound of log2 ratio

for clones with copy number state 1 and the least

upper bound of log2 ratio for clones with copy num-

ber state s, respectively. Without loss of generality,

we assume a0 < a1 < . . . < as+1. We define the

initial feature function lj(Y1, X̃1) in a way such that

data from the clone set X̃1 will only provide infor-

mation to its own labelled state. Furthermore, when

Y1 = j, the closer the med X̃1 to aj , the higher

value for lj(Y1, X̃1), more information data will pro-

vide and more contribution to parameter ωj . It will

achieve the highest value of 1 when med X̃1 = aj .

The transition feature function hjk(Yi, Yi+1, X̃i,i+1)

is similarly defined using the clone set X̃i,i+1. When

Yi = j and Yi+1 = k, the closer the med X̃−
i,i+1

to aj and the med X̃+
i,i+1 to ak, the higher value

for hjk(Yi, Yi+1, X̃i,i+1), and more information the

data will contribute to νjk. Clearly, both types of

our feature functions can capture the local spatial

dependence over a set of adjacent clones thus poten-

tially provide more robust inference about hidden

copy number states.

3.3. Parameter Estimation

Unlike the standard algorithms for HMM train-

ing, there are significant computational challenges

to efficiently and accurately estimate parameters for

CRFs. Implementation of the training algorithms

for our proposed CRF model requires sophisticated

statistical and numerical algorithms. To our best

knowledge, no existing implementations can be used

to solve our problem. We propose the following al-

gorithm for the parameter estimation.

In general, given a set of training data D =

{(X(d), Y (d)), d = 1, . . . , D}, to estimate parameter

θ in model (1), one needs to maximize a penalized

conditional log likelihood which is defined as follows

Lθ =

D
∑

d=1

logP (Y (d)|X(d)) −
‖ θ ‖2

2σ2

=

s
∑

j=1

λj

D
∑

d=1

n
∑

i=1

fj(Y
(d)
i , X̃

(d)
i ) +

s
∑

j=1

µj

D
∑

d=1

n
∑

i=1

gj(Y
(d)
i , X̃

(d)
i ) +

s
∑

j=1

ωj

D
∑

d=1

lj(Y
(d)
1 , X̃

(d)
1 ) +

s
∑

j=1

s
∑

k=1

νjk

D
∑

d=1

n−1
∑

i=1

hjk(Y
(d)
i , Y

(d)
i+1, X̃

(d)
i,i+1) −

D
∑

d=1

logZθ(X
(d)) −

‖ θ ‖2

2σ2
. (2)

Here ‖ θ ‖ is the L2 norm of θ. The penalization term

‖ θ ‖2 /2σ2 is added for regularization purpose. Be-

fore one can solve the optimization problem, one has

to first specify an additional set of hyper-parameters

that include the dependence length u, the mean log2

ratios {aj, j = 0, . . . , s+1} and the penalization coef-

ficient σ2. The set of {aj} can be directly estimated

given the training data set D, i.e., the maximum

likelihood estimate of aj is just the mean value log2

ratios of all clones with copy number state j in D

for j = 1, . . . , s. While a0 and as+1 can be imputed

using the minimum log2 ratio of all clones with copy

number state 1, and the maximum value from all



hjk(Yi, Yi+1, X̃i,i+1) =










































































(aj+1−aj)/2+(ak+1−ak)/2

(aj+1−aj)/2+(ak+1−ak)/2+med X̃−

i,i+1
−aj+med X̃+

i,i+1
−ak

if Yi = j, med X̃−
i,i+1 ≥ aj ,

Yi+1 = k, med X̃+
i,i+1 ≥ ak

(aj+1−aj)/2+(ak−ak−1)/2

(aj+1−aj)/2+(ak−ak−1)/2+med X̃−

i,i+1
−aj+ak−med X̃+

i,i+1

if Yi = j, med X̃−
i,i+1 ≥ aj ,

Yi+1 = k, med X̃+
i,i+1 < ak

(aj−aj−1)/2+(ak+1−ak)/2

(aj−aj−1)/2+(ak+1−ak)/2+aj−med X̃−

i,i+1
+med X̃+

i,i+1
−ak

if Yi = j, med X̃−
i,i+1 < aj ,

Yi+1 = k, med X̃+
i,i+1 ≥ ak

(aj−aj−1)/2+(ak−ak−1)/2

(aj−aj−1)/2+(ak−ak−1)/2+aj−med X̃−

i,i+1
+ak−med X̃+

i,i+1

if Yi = j, med X̃−
i,i+1 < aj ,

Yi+1 = k, med X̃+
i,i+1 < ak

0 otherwise,

clones with copy number state s, respectively. For

the dependent length u and the penalization coeffi-

cient σ2, we rely on a grid search approach through

cross-validation. More specifically, the original train-

ing set D will first be partitioned into two sets D1

and D2. We call D1 the new training set and D2 the

validation set. For a given range of (discrete) param-

eter values of u and σ2, we train the model on D1 and

get estimates of θ for each fixed pair of (u0, σ2
0). The

exact procedure to estimate θ given (u0, σ2
0) will be

discussed shortly. We then apply the trained model

with estimated parameters on the validation set D2

and record the prediction errors under the current

model. The model with the smallest prediction error

as well as their associated parameters (u, σ2, θ) will

be chosen as the final model. The prediction error

is defined as the mean absolute error (MAE) for all

samples in the validation set D2. The absolute er-

ror for a clone i is defined as | Yi − Ŷi |, where Yi is

the known copy number and Ŷi is the predicted copy

number for clone i. This measure not only captures

whether a prediction is exactly the same as the real

copy number, but also reflects how close these two

numbers are.

For a given set of hyper-parameters {aj}, u

and σ2, the optimization of Lθ in equation (2) can

be solved using gradient-based numerical optimiza-

tion methods15. We choose the nonlinear Conju-

gate Gradient (CG) method in our implementation,

which only requires to compute the first derivatives

of Lθ. The partition function Zθ(X) in the log likeli-

hood and the marginal distributions in gradient func-

tions can be computed using forward-backward algo-

rithms. Due to page limitation, technical details of

the CG method and the efficient computation of the

derivatives of Lθ will be provided in the final journal

version.

For graphical model based approaches such as

HMMs, many researchers group both individuals and

chromosomes in the analysis of aCGH data, which

can dramatically reduce the number of parameters

needed without sacrificing much on inference accu-

racy. We also take a similar approach. This is re-

flected by our homogeneous CRF structure.

3.4. Evaluation Methods

We have implemented the above proposed approach

as a Matlab package termed CRF-CNV and eval-

uated its performance using a public available real

data set with known copy numbers14 and a syn-

thetic data set from Willenbrock and Fridlyand18.

Notice that many clones have normal (2) copies of

DNAs, therefore the number of correctly predicted

state labels is not a good measure of performance

of an algorithm. Instead, we compare the perfor-

mance of CRF-CNV with two popular programs in

terms of the number of predicted segments and the

accuracy of segment boundaries, referred to as break-

points. To summarize the performance of an algo-

rithm over multiple chromosomes and individuals,

we use a single value called F−measure, which is

a combination of precision and recall. Recall that

given the true copy number state labels and pre-

dicted labels, precision (P ) is defined as ntp
np and re-

call (R) is defined as ntp
nt , where ntp is the number

of true positive (correctly predicted breakpoints), np

is the number of predicted breakpoints, and nt is



the number of true breakpoints. F−measure is de-

fined as F = 2PR/(P + R), which intends to find a

balance between precision and recall. The two pro-

grams we chose are CBS10 and CNA-HMMer12, both

of which have been implemented as Matlab tools. As

mentioned earlier, CBS is one of the most popular

segmentation algorithms and different groups have

shown it in general performs better than many other

algorithms. CNA-HMMer is chosen because we want

to compare the performance of our CRF model with

HMMs, and CNA-HMMer is an implementation of

Bayesian HMM model with high accuracy12.

4. EXPERIMENTAL RESULTS

4.1. A Real Example

The Coriell data is regarded as a well-known “gold

standard” data set which was originally analyzed by

Snijders et al.14. The data is publicly available and

has been widely used in testing new algorithms and

in comparing different algorithms. The CBS algo-

rithm has been applied on this dataset in the orig-

inal paper. We redo the analysis using the Matlab

code to obtain a complete picture. The Coriell data

consists of 15 cell lines, named GM03563, GM00143,

. . ., GM01524. We simply use number 1, 2, . . . , 15 to

represent these cell lines. For this particular dataset,

there are only three states (s = 3), i.e., loss, neu-

tral and gain. Notice that unlike CBS, CRF-CNV

requires training data to obtain parameters. It is

unfair to directly compare the prediction results of

CRF-CNV on training data with results from CBS.

We take a simple approach which divides the 15 sam-

ples into three groups. Each group consists of 5 sam-

ples. In the first run, we use group 1 as training data

and group 2 as validation data to obtain model pa-

rameters (as discussed in subsection 3.3). We then

use the model to predict data in group 3 (testing

data), and record the prediction results. In the sec-

ond and third run, we alternate the roles of groups

1-3 and obtain prediction results of samples in group

1 and group 2, respectively. Finally we summarize

our results over all 15 samples. For example, for

the first run, we first obtain {aj, j = 0, . . . , 4} di-

rectly based on samples in group 1. The estimates

of {aj} is (-1.348, -0.682, -0.001, 0.497, 0.810). To

search the penalization coefficient σ2 and the de-

pendent length u, we define the search space as

A × B = {0, 1, 2, . . . , 30} × {0, 1, . . . , 5}. For each

data point (m, u0) ∈ A × B, we let σ2 = 400 × 0.8m

and u = u0. Essentially to search σ2 in a broad

range, we use a geometric decay. The upper bounder

on u is set to be 5 because for aCGH data such as

the Coriell dataset, each clone can cover a quite long

range of DNA. The optimal σ2 and u will be cho-

sen by minimizing the prediction errors on samples

in Group 2 (the validation set). Our results indicate

that the model with u = 1 and m = 21 achieves the

lowest prediction error. Notice that u = 1 implies

feature functions are defined based on a window size

of 3. The values of θs can be estimated simultane-

ously. We then apply Viterbi’s algorithm to find the

most possible hidden copy number states for samples

in Group 3, as well as the number and boundaries of

segments. Run 2 and run 3 will obtain results on

group 1 and group 2. For the CNA-HMMer, one can

either use its default priors, or use training data to

obtain informative priors. We have tested the per-

formance of CNA-HMMer both with and without in-

formative priors.

Table 1 shows the segment numbers of each sam-

ple from the Gold Standard, and from the predicted

outcomes of the three algorithms CRF-CNV, CBS

and CNA-HMMer. The segment number detected

by CRF-CNV is exactly the same as the Gold Stan-

dard for almost all samples (except for sample 9 and

10). Further examination of samples 9 and 10 (see

Figure 3) reveals that the segment that we missed

in sample 9 only has one clone, which has been

smoothed out by our algorithm. The segment missed

in sample 10 is also very short and the signal is very

weak. Our results have shown that CBS has gener-

ated many more segments comparing to the ground

truth, which is consistent with the results in the orig-

inal paper. The overall number of segments reported

by CNA-HMMer with default priors is even greater

than the total number from CBS. On the other hand,

once we have used training data to properly assign

informative priors for CNA-HMMer, it almost re-

turns the same number of segments as CRF-CNV.

The only exception is that CNA-HMMer missed one

breakpoint in sample one. This illustrates that by us-

ing correctly labeled training data, both CRF-CNV

and CNA-HMMer can effectively eliminate all false



Table 1. Comparison of segment numbers returned by three algorithms.

method � sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum

Gold 5 3 5 3 5 3 5 5 5 5 3 5 2 3 3 60
CRF-CNV 5 3 5 3 5 3 5 5 3 3 3 5 2 3 3 56

CBS 17 42 7 6 9 5 5 6 5 5 13 7 17 3 9 156
CNA-HMMer(default) 9 83 9 7 11 3 7 5 11 11 21 5 16 10 16 224
CNA-HMMer (trained) 3 3 5 3 5 3 5 5 3 3 3 5 2 3 3 54
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Fig. 3. Predicted breakpoints by CRF-CNV (bottom) vs. true breakpoints (up) on two cell lines GM01535 (a) and GM07081
(b).

positives in this dataset. For the subsequent exper-

iments, we only report the results of CNA-HMMer

with proper training.

Table 2. Comparison of F measure with different match extent
values for three algorithms.

method � match extent CRF-CNV CNA-HMMer CBS

0 0.638 0.877 0.333
1 0.914 0.947 0.500
2 0.948 0.947 0.519
3 0.967 0.947 0.519
4 0.967 0.947 0.519

As a comparison measure, the number of seg-

ments is a very rough index because it does not

contain information about breakpoints. To further

examine how accurate the predicted breakpoints by

each approach, we pool all the breakpoints from all

the samples and use the F measure defined earlier

to compare the performance of the three algorithms.

Notice that even though exact matches are possible,

shifting by a few clones around boundaries is also

likely given noisy input data. Therefore we use a

match extent index D to allow some flexibility in

defining matches of predicted breakpoints to those

given by the gold standard. Table 2 shows F mea-

sures given different match extent values for the three

methods. Clearly, CBS has the worst performance

regardless the match extent values. This partially

reflects that it has many false positives. The results

from CNA-HMMer are very accurate when no match

extent is allowed and then it shows modest increase

when we increase the value of D from 0 to 1. The

results of CRF-CNV lie in between when the match

index D = 0. However, the performance of CRF-

CNV is greatly enhanced when D = 1 and finally

it outperforms CNA-HMMer when D ≥ 2. The pri-

mary reason that CRF-CNV has shifted one or a few

positions for many breakpoints is because of the au-

tomatic median smoothing step. In contrast, CNA-

HMMer directly models outliers using prior distribu-

tions.



4.2. Simulated Data

Though results on the real data have shown that

CRF-CNV has a better performance than CBS and

CNA-HMMer, the experiment is limited because the

sample size is very small. To further evaluate the per-

formance of CRF-CNV, we test the three algorithms

using a simulated dataset obtained from Willenbrock

and Fridlyand18. The dataset consists of 500 samples

each with 20 chromosomes. Each chromosome con-

tains 100 clones. Each clone belongs to one of six

possible copy number states. The authors generated

these samples by sampling segments from a primary

breast tumor data set of 145 samples and used sev-

eral mechanisms (e.g., the fraction of cancer cells in a

sample, the variation of intensity values given a copy

number state) to control the noise level. By using

simulated data from the literature, we can obtain an

un-biased picture about CRF-CNV’s performance.

The original paper also compared three algorithms

and concluded that CBS has the best performance.

To train CRF-CNV, we divide the 500 samples

into three groups as usual. This time, the train-

ing set Group 1 contains sample 1-50, the validation

set Group 2 contains sample 51-100 and the test set

Group 3 contains sample 101-500. We use the same

grid search approach as discussed earlier to obtain

hyper-parameters {aj}, u and σ2. For each fixed

set of hyper-parameters, we use the conjugate gradi-

ent method to obtain parameter θ. Finally, we use

Viterbi’s algorithm to decode the most possible hid-

den copy number state labels for samples in Group

3 and compare the results with the other two algo-

rithms. In addition, we also compare the predictions

by CRF-CNV on group 2 and group 3 to see that

on new testing data, how much deterioration our

model might incur based on sub-optimal parameters

inferred from small number of samples. Results from

CBS and CNA-HMMer are also presented separately

for these two groups for easy comparison. We also

use Group 1 as training data to assign proper priors

for CNA-HMMer.

Table 3. Comparison of number of seg-
ments predicted by three different ap-
proaches.

method � data Group 2 Group 3

Gold 997 8299
CRF-CNV 966 8868

CNA-HMMer 784 6692
CBS 867 7430

Table 3 shows the total number of segments

in Group 2 and Group 3 predicted by CRF-CNV,

CBS and CNA-HMMer, and in comparison with the

known segment number. Interestingly, on this sim-

ulated data, both CBS and CNA-HMMer have pre-

dicted smaller number of segments. CRF-CNV has

predicted smaller number of segments on group 2 and

greater number of segments in group 3. However, the

number of segments does not provide a whole pic-

ture. We therefore examine the accuracy of bound-

ary prediction by each method using the F measure

for both Group 2 and Group 3. Table 4 shows the F

measures for different methods, different groups and

different match extents. As expected, the F measure

increases as D increases from 0 to 4 for all methods

and for both data groups. It is also not surprising

to see that the results of CBS and CNA-HMMer on

Group 2 and Group 3 are consistent. Interestingly,

the performance of CRF-CNV on Group 3 is also

very close to its own performance on Group 2. This

property is desirable because it illustrates the robust-

ness of CRF-CNV. The performance on new testing

data is almost the same as the performance on val-

idation data, which is used to select optimal hyper-

parameters. This observation alleviates the need of

training samples by our approach and makes it more

practical. Notice that the sizes of training data and

validation data are also very small. One can ex-

pect that with small number of training data, our

approach can be used to reliably predict new data

generated under the same experimental conditions.

In terms of the performance of the three approaches,

CNA-HMMer is more accurate then CRF-CNV, and

CBS is the worst for the case of exact match. How-

ever, when we relax the matching criteria by increas-

ing the value of D, both CBS and CRF-CNV achieves

better performance than CNA-HMMer. The results

of CNA-HMMer and CRF-CNV is consistent with

those from the real data. CBS has much better per-



Table 4. Comparison of F measure of different methods with differ-
ent match extent.

method � match extent 0 1 2 3 4

CRF-CNV(Group2) 0.590 0.792 0.875 0.900 0.906
CNA-HMMer(Group2) 0.702 0.801 0.832 0.852 0.855

CBS(Group2) 0.436 0.850 0.885 0.900 0.909
CRF-CNV(Group3) 0.568 0.786 0.864 0.889 0.896

CNA-HMMer(Group3) 0.697 0.805 0.840 0.858 0.869
CBS(Group3) 0.436 0.847 0.893 0.911 0.918

formance comparing to those from the real data. But

this might be attributed to the simulation process

because CBS was used to segment the 145 samples

from the primary breast tumor data set18.

5. CONCLUSION AND DISCUSSIONS

The problem of detecting copy number variations has

drawn much attention in recent years and many ap-

proaches have been proposed to solve the problem.

Among these computational developments, CBS has

gain much popularity and it has been shown that it

generally performs better than other algorithms on

simulated data18. However, as shown in the original

paper (as well as re-discovered by our experiments),

CBS has reported many more false positives on copy

number changes in the standard Coriell data set iden-

tified by spectral karyotyping14. Another commonly

used technique for segmentation is HMMs. HMM

approaches have the advantage of performing pa-

rameter (i.e., means and variances) estimation and

copy number decoding within one framework and

its performance expects to be improving with more

observations. Furthermore, Lai et al.8 have shown

that HMMs performed the best for small aberrations

given a sufficient signal/noise ratio. However, almost

all HMMs for aCGH are first order Markov models

thus cannot incorporate long region spatial correla-

tions within data.

We have presented a novel computational model

based on the theory of conditional random fields. We

have also developed effective forward/backward al-

gorithms within the conjugate gradient method for

efficient computation of model parameters. We eval-

uated our approach using real data as well as sim-

ulated data, and results have shown our approach

performed better than a Bayesian HMM on both

datasets when a small shift is allowed while map-

ping breakpoints. A further discussion on the re-

lationship between our proposed CRF model and a

HMM can be found in APPENDIX. Comparing with

CBS, our approach has much less false positives on

the real data set. On the simulated data set, the

performance of our approach is comparable to CBS,

which has been shown the best among three popular

segmentation approaches.

Like any other CRFs, in order to train our

model, one has to rely on some training data. To

be practically useful, Bayesian HMMs such as CNA-

HMMer also need training data for proper assign-

ments of informative priors. We argue that the prob-

lem is not that serious as it appears to be, primar-

ily for two reasons. First, as illustrated in our ex-

periments, our algorithm is indeed very robust and

performs consistently even one may not find the op-

timal estimates of model parameters. For example,

we used a simplified procedure in the analysis of the

simulated dataset by randomly picking one subset for

training. Theoretically, parameters estimated from

such a procedure might heavily depend on this par-

ticular subset and might not be necessarily globally

optimal. However, results in Table 4 have shown

that the performance on new testing data is almost

the same as the results in the verification data, which

has been used to tune the parameters. Furthermore,

the training size required by our algorithm is very

small, as illustrated by both the real and the simu-

lated data.

In terms of computation costs, CNV-CRF has

two separate portions: time for training and time

for prediction. The training requires intensive com-

putations in optimizing the log-likelihood and in de-

termining the hyper-parameters. In addition, one

can also perform k-fold cross-validations, which will

require much more computational time. On the con-

trary, once the parameters have been estimated, the

prediction phase is rather efficient. Fortunately, the

training phase of our algorithm only requires small



number of samples, which makes the algorithm still

practically useful.
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APPENDIX

Relationship of CRFs and HMMs

A special case of our linear-chain CRF model de-

fined in subsection 3.1 corresponds to a famil-

iar HMM. For example, let λj = cj/d2
j , µj =

−1/(2d2
j), ωj = log P (Y1 = j), νjk = log P (Yi+1 =

k|Yi = j), fj(Yi, X̃i(u)) = I{Yi=j}med X̃i,

gj(Yi, X̃i(u)) = (med X̃i)
2, lj(Y1, X̃1(u)) =

I{Y1=j}, hjk(Yi, Yi+1, X̃i,i+1(u)) = I{Yi=j,Yi+1=k}, let

med X̃i = Ti, then model (1) becomes

P (Y |X) = P (Y1)
Zθ(X)

∏n
i=1 P (Ti|Yi)

∏n−1
i=1 P (Yi+1|Yi), (3)

P (Ti|Yi = j) =
∏n

i=1
1√

2πdi
exp{−

(Ti−bj)
2

2d2
j

},

Zθ(X) =
∑

Y P (Y1)
∏n

i=1 P (Ti|Yi)
∏n−1

i=1 P (Yi+1|Yi).

Model (3) is equivalent to a HMM with normal emis-

sion distribution. In this regard, if model (1) is

built base on median smoothed data {med X̃i}, the

model parameters and feature functions are selected

as above, then the model (1) reduces to model (3).

However, we notice that in our model (1), neither

the initial function lj(Y1, X̃1(u)) nor the transition

function hjk(Yi, Yi+1, X̃i,i+1(u))} is a simple index

function. They depend on the observation X . More-

over, the parameters θ of model (1) are with more

freedom than that of model (3). These properties

make our model (1) more promising.
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