

A CLOSE-TO OPTIMUM BI-CLUSTERING ALGORITHM FOR MICROARRAY GENE

EXPRESSION DATA

Guojun Li1*, 3, Qin Ma1,3, Bingqiang Liu1,3, Haibao Tang2, Andrew H. Paterson2, and Ying Xu1

1Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics,

University of Georgia, Athens, GA 30605. USA

2Department of Plant Biology, University of Georgia, USA

3School of Mathematics, Shandong University, China

*Email: guojun@csbl.bmb.uga.edu

Motivation: Bi-clustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar

expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. The bi-clustering

strategy has been widely used for analyses of gene expression data and beyond since it was first proposed in 2000 since it provides

much increased flexibility and analysis power in identifying co-expressed genes under some but not necessarily all conditions,

compared to traditional clustering methods. Still the real power of this clustering strategy is yet to be fully realized due to the lack of

effective and efficient algorithms for reliably solving the bi-clustering problem.

Results: We present a novel method to solve a bi-clustering problem, using a (traditional) clustering algorithm combined with a

combinatorial technique. The algorithm achieves the same asymptotic computational complexity of the underlying clustering algorithm.

While it is a heuristic algorithm in nature, the algorithm achieves close-to optimum classification results across a large collection of

benchmark sets.

1. INTRODUCTION

DNA microarrays provide a powerful means for

probing the functional states of a cell population by

allowing simultaneous observation of mRNA expression

patterns of all their genes collected over time and/or

under different experimental conditions. By comparing

the gene expression patterns collected under different

conditions such as cancerous versus healthy tissues, one

can possibly derive information about genes associated

with a particular cellular condition (e.g., cancerous cells

at a specific developmental stage). To analyze the

complex microarray data, a large number of

computational tools have been developed. Among them,

clustering of genes based on their similar expression

patterns (co-expressed genes) using (traditional)

clustering strategies
6,18,27

 represents one of the most

popular techniques for microarray data analyses.

The traditional clustering techniques attempt to, in

the context of microarray data analyses, partition a set of

genes into ―clusters‖ with similar expression patterns

under specified conditions
26

 or identify such clusters

from an otherwise unstructured microarray dataset
6
.

While useful, such clustering algorithms are known to

be inadequate for handling the general gene-expression

analysis problems, which often need to identify co-

expressed genes under some to-be-identified conditions

in contrast to finding co-expressed genes under all given

conditions. The difficulty in handling the general co-

expression identification problem is that for any n given

conditions, there are 2
n
subsets of conditions to consider,

making this general clustering problem much more

difficult to solve. The first algorithm for attempting to

solve this problem, called a bi-clustering problem, was

developed by Cheng and Church
5
, which attempts to

find subsets of conditions under which some (to be

identified) subsets of genes have similar expression

patterns, using an iterative heuristic strategy. This work

inspired further development of more effective bi-

clustering algorithms in the past few years, including the

work by Kung et al
14

and the work by Li et al. using a

Markov Chain Monte Carlo algorithm to search for bi-

clusters
15

, having led to a number of publicly available

mailto:guojun@csbl.bmb.uga.edu

computer servers for bi-clustering analyses of

microarray data
22, 24

.

A popular way to visualize microarray data for bi-

clustering analyses is to represent the dataset as a matrix

with rows representing the genes and columns

representing the conditions (or the other way around)

with each element of the matrix representing the relative

mRNA abundance of a gene under a specific condition.

Intuitively, a bi-cluster can be identified through row- as

well as column-swapping of the original matrix, leading

to a sub-matrix in a rearranged matrix consisting of

genes with similar expression patterns. When multiple

(non-overlapping) bi-clusters are identified through such

row and column swappings, the resulting matrix is

called to have a ―checker-board structure‖
13, 17

.

Formally a bi-clustering problem can be defined as

to find one or all (possibly overlapping) sub-matrices of

a given matrix, each of which shares a pre-defined

property over the elements across all its columns (or

rows). Each such sub-matrix is called a bi-cluster.

Examples may include sub-matrices with similar

columns (or rows) or sharing more complex column-

wise (or row-wise) relationships. One simple example is

the one used in
17

 in which each column of a to-be-

identified sub-matrix should consist of elements of the

same numerical value. In this paper, we first present an

algorithm for solving a class of bi-clustering problems

with the following property: each to-be-identified sub-

matrix of a given matrix should have almost identical

rows, defined in terms of an additive error, and will then

explain how to generalize the algorithm to solve more

general bi-clustering problems.

Prior to our work, several bi-clustering methods

have been developed using combinatorial techniques,

such as SAMBA
23

. A central idea of most of these

algorithms is to formulate the bi-clustering problem as a

maximum balanced bipartite subgraph problem. Though

intuitive, this problem formulation is intrinsically

computationally intractable, even for a 0-1 matrix,

indicating that there are no effective and efficient

algorithms for solving the problem. Though our

algorithm is a heuristic one, it can generally achieve the

optimal bi-clustering results on the test sets of our study,

and does so efficiently. The basic idea of the algorithm

is to first create a weighted complete graph G with genes

represented as vertices and with edges connecting every

pair of genes with their weights representing similarities

between the corresponding genes‘ expression patterns.

Intuitively, genes in a bi-cluster should induce a heavier

subgraph because under the ―right‖ conditions, these

genes have the same or highly similar expression

patterns. Our goal is to identify the heavy subgraphs in

G corresponding to such bi-clusters hidden in the

microarray data. The effectiveness of our algorithm lies

in our ability to quickly zoom on such conditions that

give rise to a bi-cluster in each iteration of the

algorithm.

We have assessed the performance of our algorithm

on a benchmark set developed by Prelic et al
19

, and

found that our algorithm performs better than all the

popular bi-clustering algorithms, such as ISA
10

,

BIMAX
19

, SAMBA
23

 and RMSBE
16

. We have then

further applied our algorithm to a number of microarray

datasets for cancer type classification, and the results

have led to a number of new insights about these cancer

microarray data.

2. METHODS

Consider an n×m matrix M of microarray gene

expression data with n genes collected under m

conditions, with each gene corresponding to a row and

each condition to a column. For the simplicity of

discussion, we assume, without loss of generality, that

the numerical values of the matrix M are from a finite

set (this can be achieved through discretization) Σ with

its cardinality σ = |Σ|, and each value is referred to as a

letter. We assume that the background expression

values, i.e. the entries outside the (bi-cluster) sub-

matrices of M to be identified, are uniformly and

independently distributed over Σ. Define a weighted

graph G on M, in which the vertex set V consists of

genes and the edge set E consists of all pairs of genes.

Each edge, connecting two genes, has a weight, defined

as the number of common letters in the corresponding

positions between the two corresponding rows of M.

Throughout the paper, we use ―the number of common

letters‖ between two rows (genes) to mean the above. It

is known that a special case of this bi-clustering

problem, i.e., when M is a binary matrix, is NP-hard

through reducing a maximum balanced bipartite

subgraph problem to it
23

. Hence our general bi-

clustering problem is NP-hard.

Intuitively, a bi-cluster in M corresponds to a

―heavier‖ (connected) subgraph of G compared to an

arbitrary subgraph not overlapping such bi-cluster

subgraphs, whose total weight is stochastic, and should

in general follow a normal distribution (based on the

Central Limit Theorem). Specifically, two genes from

the same bi-cluster should have a heavy weight by

nature while two arbitrary genes may have a heavy edge

only by chance. Our bi-clustering algorithm is built on

this observation. It is not difficult to convince ourselves

that not all heavy subgraphs represent bi-clusters. The

key to effectively solving the bi-clustering problem is to

efficiently identify such heavy subgraphs under

consistent sets of conditions, i.e., that may correspond to

bi-clusters.

Our algorithm iteratively identifies heavy subgraphs

as follows. In each iteration, the algorithm starts with the

heaviest available edge as the seed of a new bi-cluster,

labels as the (current) consensus the maximal subset of

letters common to the two corresponding rows, and then

extends it to a bi-cluster with a maximal size by

repeatedly adding the next gene whose expression

pattern is most consistent with the current consensus and

updating the consensus if needed. We do this using

every edge as a seed unless the edge has been included

in a previously found bi-cluster or deemed to be

ineligible as a seed (see the following paragraph); then

we pick the one with the largest cardinality as the bi-

cluster prediction for the current iteration. The algorithm

iterates until no eligible seed is left. Though our

algorithm is greedy in nature, it does not in general

suffer from the issue of getting stuck in local optima

since it considers all possible seeds of a to-be-identified

bi-cluster.

The algorithm uses a parameter k as the lower

bound on the dimension of the bi-clusters to be

identified, possibly provided by the user. In our

program, the edges with weights lower than k were first

filtered out from the edge set E(G) since they will

clearly not be in any to-be-identified bi-clusters. Note

that after the filtering step, the graph G may not be

complete any more. We assume that the edges of E(G)

are given as a sorted list S=e1, e2,…, e|E| with

w(e1)≧w(e2)≧…≧w(e|E|). Our algorithm consists of the

following three steps:

Step 1 (Seeding): We maintain a dynamic set S of

candidate seeds (edges). Initially S is set to be a sorted

list of edges in the decreasing order of weights. In each

iteration of the algorithm, we choose the first element of

S as the seed, which will be deleted from S after the

Expansion step. If the seed is part of a previously found

bi-cluster, we will skip it and remove it from S;

otherwise it will be used to produce a consensus as

follows. Find all the conditions under which the two

genes of the seed have identical letters and set this to be

the current consensus C. Let V* be the vertex set V after

removing the two vertices of the seed. We then find the

next gene from V* whose expression pattern is most

consistent with C and then update the consensus pattern

C taking the new gene into consideration (the updated

consensus may change its width). Repeat the above until

five genes are included in C, which will be expanded in

the Expansion step. We call the corresponding

submatrix as the current bi-cluster. The updated

consensus size is set to be its current width multiplied by

five.

We use 5 instead of 2 elements as the initial bi-

cluster candidate to avoid examining many spurious

small ―bi-clusters‖. ―5‖ is determined empirically. In the

Expansion step, we use two parameters c and d defined

as the column-wise and row-wise conservation levels,

respectively. c is defined as the minimum ratio between

the number of identical elements in a column and the

total number of rows in the current bi-cluster, while the

d is defined as the minimum ratio between the number

of identical elements between two rows and the length

of the current consensus. Let r=min{c,d} be the overall

conservation level with default value set to be 0.9 (the

user can select his/her own value). r is used to deal with

the situation of almost identical values in our bi-

clustering problem. Throughout our algorithm, we only

keep those consensuses whose conservation levels are

greater than or equal to r.

Step 2 (Expansion): We first update the current bi-

cluster obtained in the Seeding step according to the

parameters c and d. We then expand the current bi-

cluster as follows: add a gene from outside of the

current bi-cluster whose expression pattern has the

highest consistency with the current C, and update the

current bi-cluster consistent with the parameters c and

d. If C’s width is greater than or equal to k, we compare

the current bi-cluster to the best one obtained so far

using the current seed and then store the one with the

larger size. Repeat the procedure until the consensus

width is shorter than k or nothing is left from outside of

the current bi-cluster. We then retrieve the best bi-

cluster for the current seed.

For each predicted bi-cluster of size t × s, the

smaller the size of M, the more significant the bi-cluster

is. However, it is difficult to calculate the accurate

(statistical) significance of a bi-cluster for the general

case where t≦n and s≦m. Since the significance of a

bi-cluster can be easily evaluated when t=n, we are able

to approximately evaluate the significance of an

arbitrary bi-cluster. Let X be a random variable denoting

the number of columns with identical letters for a

random t×m matrix defined on Σ. We know that X

follows a binomial distribution, i.e., X～B(m, 1
1

t


).

The probability that M has at least s columns with

identical letters can be calculated as follows:

km
t

k
t

m

sk

k
mCsXmtP










)
1

1
1()

1

1
()(,


 (1)

In our program, the probability that a submatrix of size

at least t×s occurs in n×m matrix M was approximated

by)(,)/(sXmtPtn  , i.e.,

km
t

k
t

m

sk

k
mC

t

n
tYsXmnP










)
1

1
1()

1

1
(),(,



 (2)

where Y is a random variable representing the number of

rows of a bi-cluster.

Step 3 (Significance evaluation): Each identified

bi-cluster of size t ×s is output as a candidate when the

following

km

t
k

t

m

sk

k
mC

t

n 








)
1

1
1()

1

1
(


 (3)

is lower than a pre-specified threshold (the default is

0.01).

The following gives a pseudo-code of our bi-

clustering algorithm that implements the above three

steps:

GCLUSTER

Input: data matrix— a discretized microarray data; k—a

specified lower bound on the width of the to-be-

identified bi-clustersr (the default value is 2); c, d—

conservation rates specified by the user (the default

value is 1); n—the number of different candidates output

by the algorithm; and P-value cutoff α.

Output: bi-clusters output in the decreasing order of

their significance.

Initialization: Create a weighted graph G(V, E) as

described above. Sort the edges in E(G) as a sequence

S=e1, e2, …, e|E| such that w(e1)≧w(e2)≧…≧w(e|E|).

WHILE i < n and S≠φ

Choose the first element in S as a seed.

1) Call the Seeding step to calculate the initial consensus

pattern with five genes (the current bi-cluster).

2) Call the Expansion step to expand the current bi-

cluster until the maximum one is reached.

3) Call the Significance evaluation step to determine if

the maximum bi-cluster output by the Expansion step is

statistically significant based on if the value of Eq.(3) is

lower than the threshold α.

 If (more significant)

output the bi-cluster;

Set i = i + 1; and remove the current seed from S

and continue.

It should be intuitively apparent that the algorithm

has the following two distinct features: a) if a significant

bi-cluster is being built but not completed in Step 2 due

to some reason, leading to a failure of not recognizing

the bicluster, this problem could be remedied later with

multiple chances by using other edges of the bicluster as

seeds. It can find all the statistically significant bi-

clusters because any pair of genes in a significant bi-

cluster has the opportunity to be a seed and the

algorithm always works on the same input data set no

mater how many bi-clusters have been output; b) The

Expansion step ensures that it always outputs the most

significant bi-cluster for each eligible seed, and

therefore almost always gets close-to optimum bi-

clustering results.

As mentioned in the Introduction section, our

algorithm can be extended to solve more general bi-

clustering problems, such as finding bi-clusters with

rows (or columns) are linearly proportional to each

other, i.e., each row can be represented by another row

multiplied by some factor. In this case, we only need to

redefine the weight of the graph G where each edge,

connecting two genes, has a weight, defined as the

maximum number of positions at which the expression

patterns of the two genes are linearly proportional.

From the argument of the algorithm, the

computational complexity of the algorithm has the same

asymptotic complexity to that of its underlying

clustering algorithm because each bi-cluster is greedily

expanded from a seed just as traditional clustering

methods did.

3. RESULTS

We have assessed the performance of our bi-

clustering algorithm on several benchmark sets that have

been used by previous algorithms, which we now

describe. We will then discuss two applications of the

algorithm on biological data.

3.1. Tests on synthetic benchmark

datasets

To assess the performance of our bi-clustering

algorithm GCLUSTER, we first tested it on well-

controlled datasets. We applied GCLUSTER to a

synthetic benchmark set first used by Prelic et al
19

.

Prelic et al. simulated two types of bi-clusters –

‗constant‘ bi-clusters and ‗coherent‘ bi-clusters
17

, where

‗constant‘ bi-clusters refer to sub-matrices containing

identical values for all entries, while the more general

model – ‗coherent‘ bi-clusters are sub-matrices with

values identical in each column but varying across the

columns
19

. Both problems are solvable by GCLUSTER

since our algorithm is based on the more general

‗coherent‘ model.

The benchmark set was generated by implanting bi-

cluster matrices into a larger background matrix. When

implanting a bi-cluster matrix, the values of the bi-

cluster matrix were used to replace the value in the

implanted location in the background matrix,

maintaining the property that elements from the same

row (and column) of the bi-cluster matrix are on the

same row (and column) in the implanted matrix. Under

‗constant‘ and ‗coherent‘ models, Prelic‘s benchmark

can be used to compare the performance of bi-clustering

algorithms considering the two scenarios: 1) matrices

with varying levels of noise and 2) matrices with varying

degrees of overlap among the bi-clusters in the same

background matrix. The whole benchmark set comprises

four sets of data.

The sub-matrices were implanted into the

background matrices whose values follow normal

distributions with varying standard deviations σ – used

to model the different level of ‗noise‘ (scenario 1) and

the level of overlaps among the bi-clusters (scenario 2).

In scenario 1, ten non-overlapping bi-clusters of size

10(genes)×5(conditions) were implanted into

background matrices of size 100×50 while the level of

background noise (controlled by σ) range from 0 to 0.25

for the ‗constant‘ model (Figure 1A) and 0 to 0.10 for

the ‗coherent‘ model (Figure 1B). In scenario 2, the

background noise parameter σ was 0, and the bi-clusters

with size (10+d)×(10+d) were implanted into a

(100+d)×(100+d) matrix at the interval of 10 genes and

10 conditions, thereby forcing the bi-clusters to be

overlapping with each other at different levels

(controlled by d) for both the ‗constant‘ (Figure 1C) and

‗coherent‘ (Figure 1D) models. Further details about

construction of the benchmark sets can be found in

reference
19

.

For comparative studies between our algorithm and

the previous ones, we did not include three earlier bi-

clustering algorithms, Cheng-Church method (CC)
5
,

xMotif and OPSM in our study, because they were

shown to have fairly low performance accuracy (below

50%) in recovering implanted bi-clusters by previous

studies
16, 19

. Three algorithms, BIMAX
19

, Iterative

Signature Algorithm (ISA)
9
, and SAMBA

23
, achieved

relatively good performance therefore we compared the

performance of GCLUSTER with these methods. We

used the BIMAX and ISA algorithms implemented in

BICAT
3
 and the SAMBA algorithm implemented in

EXPANDER
21

; both software packages are publicly

available. In addition, we also included a recently

published bi-clustering algorithm RMSBE based on

mining maximum-similarity bi-clusters
16

. The

parameters for running these bi-clustering algorithms

were taken either from their default settings or following

the parameters suggested by the original authors (see

supplementary information on our website). Pre-

processing and post-processing were performed in a

consistent manner with the previous benchmark study
19

.

We first compared the bi-clustering results for

scenario 1. Surprisingly, we found that the most recent

method, RMSBE shows the poorest performance (at an

accuracy level below 80%) among the five tested

algorithms. This was also noted by Wu, et al.
25

 possibly

because RMSBE is not appropriate for the situations

where the noise levels within bi-clusters and the

background are very similar. The other four algorithms

except for BIMAX identified all the implanted bi-

clusters for the ‗constant‘ model, as shown in Figure 1A.

From Figure 1B, for the ‗coherent‘ case, we can see that

ISA has the best performance among the five programs

while GCLUSTER consistently ranks the second after

ISA. The performances of all these algorithms are

reduced proportionally to the level of noise in the

background matrix. In the test case with the most ‗noise‘

(σ=0.10, ‗coherent‘ model), the 90% accuracy by

GCLUSTER is lower than 98% of ISA, but is better

than both BIMAX and SAMBA with 84% and 80%

accuracy, respectively. Then we considered situations

where there are overlapping clusters – scenario 2

(Figure 1C, 1D). RMSBE continues to show relatively

low accuracy in recovering the implanted bi-clusters

compared to the other four programs. The performances

of SAMBA and ISA are affected by the presence of

overlapping bi-clusters. Specifically, as the overlap

between bi-clusters increases, the performances of both

programs drop substantially and the extent of the

performance drop is correlated with the degree of

overlap d. On the same datasets, neither GCLUSTER

nor BIMAX is affected by the increasing degree of

overlap as we see from the same figure that both

methods have identified all the overlapping bi-clusters.

Indeed, the ISA method, while performing very well in

scenario 1, has the worst performance when bi-clusters

overlap, in some cases (d=10, ‗coherent‘ model)

suffering a 90% performance reduction compared to

GCLUSTER/BIMAX.

Overall on the Prelic datasets, we found that

GCLUSTER has consistently performed in the best in

the most general case. It appears that as though ISA has

the marginal advantage (up to 8%) over GCLUSTER on

the ‗noisy‘ case, its performance drops up to 90% when

the bi-clusters overlap.

 A. B.

 C. D.

Fig. 1. Comparison of recovery accuracy of GCLUSTER with four other bi-clustering algorithms on the Prelic benchmark [9]. The

analysis reveals both the effects of increasing noise levels (scenario 1) for ‗constant‘ (A) and ‗coherent‘ (B) models and varying degrees of

overlapping (scenario 2) for ‗constant‘ (C) and ‗coherent‘ (D) models. Note that the recovery score is calculated similarly to (Prelic, et al.,

2006) using


 







optMoptG GoptG

GoptG

MGoptM

MoptMGS

||

||

max
||

1
),(

*
,

where Mopt is the set of implanted bi-clusters; M is the set of recovered bi-clusters; G stands for genes sets within the bi-cluster.

3.2. Tests on global transcriptional

datasets

We now compare and evaluate the aforementioned

algorithms on global microarray data collected on two

different organisms (E. coli and yeast). When analyzing

the whole transcriptome microarray data, one

challenging problem is to find the ―transcriptional

modules‖, which represent modular components in the

(global) gene regulatory network, defined as a set of

tightly co-regulated genes along with a set of associated

conditions that trigger the co-regulation
10

, making it a

natural application problem for the bi-clustering

methods. It is known that some transcriptional modules

show co-regulations only under a narrow range of

conditions and have weak global correlations among

their gene expression patterns, therefore not easily

detectable by the traditional clustering methods. In

addition, some transcriptional modules may overlap due

to the combinatorial regulation by multiple

transcriptional factor
10

, which would also complicate the

use of the traditional clustering techniques. The goal of

this exercise is to test the effectiveness of the bi-

clustering algorithms in identifying such transcriptional

modules.

Our first test case includes the microarray gene

expression data for 4217 E. coli genes collected under

264 conditions from the M3D database (E. coli array

version 4 build 3)
7
. The values in the original

microarray dataset are log-2 values of the fluorescence

intensities. As a pre-processing step, we centered these

values by subtracting the median for each gene so that

each entry was transformed to log-2 ratio with respect to

the median intensity. We then transformed this 4217 ×

264 matrix to a simplified matrix with three distinct

values, -1, 0, 1 as follows. For each column in the

matrix, the values of the top 5 percentile of the most up-

regulated genes were converted to 1 (up-regulated) and

the values of the 5 percentile of the most down-regulated

genes were converted to -1 (down-regulated) and the

rest were assigned 0 (unchanged). The goals of our

analysis is to identify bi-clusters hidden in the

microarray data, and study their relationships to

biological pathways, as defined in terms of biological

processes by the GO functional classification scheme
2
.

In addition, we have also considered two other

functional classification schemes, namely KEGG

A B

Fig. 2. Evaluation and comparison of different bi-clustering algorithms on E. coli and yeast microarray data. (A) Proportions of E. coli

bi-clusters that have significant overlap (p<0.01) with GO biological processes, KEGG pathways, and experimentally verified regulons. (B)

Proportions of yeast bi-clusters that are statistically enriched (p<0.01) in GO biological processes, KEGG pathway and MIPS functional

catalog.

pathways
11

 and experimentally validated regulons from

the EcoCyc database
12

.

For each identified bi-cluster, we calculate the p-

value using Fisher‘s exact test as defined in GeneMerge

program
4

as follows: suppose we have a functional

classification that partitions the total N genes into k

classes C1, …, Ck. Let B be a bi-cluster of n genes, with

nj genes belonging to class Cj. The p-value of B can be

calculated as

)

||||

(
..1

min)(


































n

N

jnn

jCN

jn

jC

kj
Bp (4)

which essentially measures the statistical significance of

the functional enrichment by B‘s most dominating

functional class of genes, i.e., genes in the same

biological process. Clearly the smaller the p-value of a B

is, the more likely that B‘s genes are from the same

biological process.

 We have run the five bi-clustering algorithms like

before on this dataset. For each algorithm, we calculate

the proportions of bi-clusters that have significant p-

values (below a pre-selected p-value cutoff) and

compare these sub-matrices as a way to compare their

performance. To facilitate better comparisons among the

bi-clustering results from different algorithms, we

applied a procedure following Prelic et al.
19

 to remove

the substantially overlapped bi-clusters so that no two

bi-clusters overlap more than 25% of their sizes. In

addition, we restrain our comparisons to the 100 best

scoring bi-clusters for each algorithm.

Among the five tested algorithms, GCLUSTER

consistently show the highest enrichment based on the

three functional classifications, with BIMAX ranking

the second after GCLUSTER on this dataset.

Specifically, 99% of the GCLUSTER bi-clusters show

substantial enrichment with GO biological processes,

95% of the GCLUSTER results show significant overlap

(p<0.01) with known regulons, and 68% enriched in

KEGG pathways
11

, while the detailed comparisons with

other programs are given in Figure 2A.

As our second test, we used yeast (S. cerevisiae)

microarray data. The test data is derived from a study of

transcriptional responses of 2993 genes under 173

different stress conditions
8
. This dataset has been used

to validate bi-clustering algorithms in several previous

studies
16, 19

. The data entries represent log-2 test-to-

reference ratios in the dual-channel chips, and are

already normalized so there is no need for further pre-

processing. Similar to the E. coli data analysis, we

evaluated each bi-cluster generated by different bi-

clustering algorithms in terms of functional enrichments

based on GO biological processes, MIPS yeast

functional catalog
20

 and KEGG pathways (Figure 2B).

From Figure 2B, we can see that GCLUSTER has the

highest functional enrichment among the five tested

algorithms.

Through the above comparative analyses on the

performance of five bi-clustering algorithms on the two

sets of microarray data, we have shown that

GCLUSTER is capable of revealing high quality bi-

clusters in both prokaryotic and eukaryotic expression

profiles, and the genes within the bi-clusters show good

correlations with known functions and pathways. This

study thus suggests the potential of extracting and

applying the sub-structures in the global expression data

when annotating metabolic pathways and regulatory

networks. The combination of microarray-based bi-

clusters and empirical knowledge of shared functional

groups or regulatory elements would allow for more

accurate detection of transcriptional modules.

Fig. 3. Visualization of three bi-clusters (BC000, BC002, BC054),

which were selected based on the specificity to certain subtype of

leukemia (ALL/MLL/AML). The IDs shown to the right of the heat-

map are Affymetrix probe IDs.

3.3. Identifying signatures for cancer

subtyping

We now extend the application of our bi-clustering

algorithm to the problem of cancer subtype

classification. The basis of this analysis is that we expect

that some pathways unique to each cancer subtype may

get activated across the majority of the patients of this

cancer subtype, and hence the activation of the genes in

these pathways can be possibly used as a signature for

cancer subtyping. By finding such activated gene groups

for each cancer type, we can possibly do cancer

classification based on their molecular signatures.

Apparently this problem could be formulated as a bi-

clustering problem on microarray gene expression data.

Actually, there have been several studies that used bi-

clustering as part of a larger analysis pipeline to do

cancer subtyping
13

.

We have used the leukemia data collected by

Armstrong et al
1
 and searched for bi-clusters that might

be characteristic of different leukemia subtypes (ALL,

MLL and AML). This dataset consists of 12,533 probes

from 72 patients of different subtypes of leukemia (44

ALL, 20 MLL and 28 AML patients, respectively),

which were produced on Affymetrix U95A oligo-

nucleotide arrays. We did the same pre-processing on

the array data as we have done on the previous test case,

and then carried out bi-clustering analyses on the

transformed matrix consisting of three different values, -

1, 0, and 1 like before.

Using GCLUSTER, we have identified a total of

463 bi-clusters in the dataset (outputs available on our

website). We made the following observations about the

predicted bi-clusters: 5 bi-clusters contain samples from

only one cancer subtype, 121 bi-clusters have samples

from two subtypes and 338 bi-clusters from all three

subtypes. Although only 5 bi-clusters were found to

have specificity for a particular sub-type, these bi-

clusters are highly significant and distinct. Figure 3

gives an example of three selected bi-clusters that each

shows subtype-specificity (BC000, BC002, BC054; with

p-values 6.3e-154, 7.2e-84, 5.5e-38 respectively). In this

example, GCLUSTER identifies the classical ‗checker-

board‘ sub-structures inside the original microarray data,

where the three selected bi-clusters each corresponds to

a particular leukemia sub-type, with BC000 specific to

ALL, BC054 specific to MLL and BC002 specific to

AML. It remains interesting for future testing how the

genes within these bi-clusters are related and how they

establish the cancer sub-type as a unique entity.

The bi-clusters that contain samples between two or

more sub-types are probably clinically as informative as

the subtype-specific bi-clusters. For example, we have

found that among the resulting bi-clusters, a few bi-

clusters (e.g. BC005, BC006 etc.) show opposite trend

for different ALL and AML. In particular within bi-

cluster BC005, samples from ALL patients are all up-

regulated while samples from AML patients are all

down-regulated; BC006 show exactly the opposite

pattern where ALL samples are down-regulated and

AML samples are up-regulated. These bi-clusters would

contain candidates of selectively expressed genes for

needed molecular targets. Note that this was not possible

using some other bi-clustering algorithms such as

BIMAX, since BIMAX only deals with binary

discretizations (change vs. no- change)
19

 as opposed to

multi-class discretizations (up-regulated, no-change and

down-regulated in our analysis).

As result of bi-clustering on the cancer data, we

have shown that GCLUSTER is capable of uncovering

genes that uniquely characterize or differentiate specific

clinical groups. Future work could be focused on

refining the subtype-specific bi-clusters, based on which

we can further integrate into more accurate supervised

classification pipeline for cancer diagnostics and

classification problems.

Acknowledgments

This research was supported in part by National

Science Foundation (#NSF/DBI-0354771, #NSF/ITR-

IIS-0407204, #NSF/DBI-0542119, and #NSF/CCF-

0621700), by a ―distinguished scholar‖ grant from

Georgia Cancer Coalition and by the U.S. Department

of Energy‘s BioEnergy Science Center (BESC) grant

through the Office of Biological and Environmental

Research. GJ Li's work was supported in part by grants

(60673059, 10631070 and 60373025) from NSFC and

the Taishan Scholar Fund from Shandong Province,

China. We also thank Dongsheng Che and Kun Xu for

their help and insightful discussions on the work.

References

1. Armstrong, S.A., Staunton, J.E., Silverman, L.B.,

Pieters, R., den Boer, M.L., Minden, M.D., Sallan,

S.E., Lander, E.S., Golub, T.R. and Korsmeyer, S.J.

(2002) MLL translocations specify a distinct gene

expression profile that distinguishes a unique

leukemia, Nature genetics, 30, 41-47.

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D.,

Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K.,

Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P.,

Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,

J.C., Richardson, J.E., Ringwald, M., Rubin, G.M.

and Sherlock, G. (2000) Gene ontology: tool for the

unification of biology. The Gene Ontology

Consortium, Nature genetics, 25, 25-29.

3. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P.

and Zitzler, E. (2006) BicAT: a biclustering

analysis toolbox, Bioinformatics (Oxford, England),

22, 1282-1283.

4. Castillo-Davis, C.I. and Hartl, D.L. (2003)

GeneMerge--post-genomic analysis, data mining,

and hypothesis testing, Bioinformatics (Oxford,

England), 19, 891-892.

5. Cheng, Y. and Church, G.M. (2000) Biclustering of

expression data, Proceedings / ... International

Conference on Intelligent Systems for Molecular

Biology ; ISMB, 8, 93-103.

6. Eisen, M.B., Spellman, P.T., Brown, P.O. and

Botstein, D. (1998) Cluster analysis and display of

genome-wide expression patterns, Proc Natl Acad

Sci U S A, 95, 14863-14868.

7. Faith, J.J., Driscoll, M.E., Fusaro, V.A., Cosgrove,

E.J., Hayete, B., Juhn, F.S., Schneider, S.J. and

Gardner, T.S. (2007) Many Microbe Microarrays

Database: uniformly normalized Affymetrix

compendia with structured experimental metadata,

Nucleic acids research.

8. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-

Harel, O., Eisen, M.B., Storz, G., Botstein, D. and

Brown, P.O. (2000) Genomic expression programs

in the response of yeast cells to environmental

changes, Molecular biology of the cell, 11, 4241-

4257.

9. Ihmels, J., Bergmann, S. and Barkai, N. (2004)

Defining transcription modules using large-scale

gene expression data, Bioinformatics, 20, 1993-

2003.

10. Ihmels, J., Friedlander, G., Bergmann, S., Sarig,

O., Ziv, Y. and Barkai, N. (2002) Revealing

modular organization in the yeast transcriptional

network, Nat Genet, 31, 370-377.

11. Kanehisa, M. (2002) The KEGG database,

Novartis Foundation symposium, 247, 91-101;

discussion 101-103, 119-128, 244-152.

12. Keseler, I.M., Collado-Vides, J., Gama-Castro, S.,

Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil,

M. and Karp, P.D. (2005) EcoCyc: a

comprehensive database resource for Escherichia

coli, Nucleic acids research, 33, D334-337.

13. Kluger, Y., Basri, R., Chang, J.T. and Gerstein, M.

(2003) Spectral biclustering of microarray data:

coclustering genes and conditions, Genome Res, 13,

703-716.

14. Kung, S.Y., Mak, M.W. and Tagkopoulos, I.

(2006) Symmetric and asymmetric multi-modality

biclustering analysis for microarray data matrix,

Journal of bioinformatics and computational

biology, 4, 275-298.

15. Li, H., Chen, X., Zhang, K. and Jiang, T. (2006) A

general framework for biclustering gene expression

data, J Bioinform Comput Biol, 4, 911-933.

16. Liu, X. and Wang, L. (2007) Computing the

maximum similarity bi-clusters of gene expression

data, Bioinformatics (Oxford, England), 23, 50-56.

17. Madeira, S.C. and Oliveira, A.L. (2004)

Biclustering algorithms for biological data analysis:

a survey, IEEE/ACM transactions on computational

biology and bioinformatics / IEEE, ACM, 1, 24-45.

18. McLachlan, G.J., Bean, R.W. and Peel, D. (2002)

A mixture model-based approach to the clustering

of microarray expression data, Bioinformatics, 18,

413-422.

19. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A.,

Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L.

and Zitzler, E. (2006) A systematic comparison and

evaluation of biclustering methods for gene

expression data, Bioinformatics, 22, 1122-1129.

20. Ruepp, A., Zollner, A., Maier, D., Albermann, K.,

Hani, J., Mokrejs, M., Tetko, I., Guldener, U.,

Mannhaupt, G., Munsterkotter, M. and Mewes,

H.W. (2004) The FunCat, a functional annotation

scheme for systematic classification of proteins

from whole genomes, Nucleic acids research, 32,

5539-5545.

21. Shamir, R., Maron-Katz, A., Tanay, A., Linhart,

C., Steinfeld, I., Sharan, R., Shiloh, Y. and Elkon,

R. (2005) EXPANDER--an integrative program

suite for microarray data analysis, BMC

bioinformatics, 6, 232.

22. Sheng, Q., Moreau, Y. and De Moor, B. (2003)

Biclustering microarray data by Gibbs sampling,

Bioinformatics, 19 Suppl 2, ii196-205.

23. Tanay, A., Sharan, R. and Shamir, R. (2002)

Discovering statistically significant biclusters in

gene expression data, Bioinformatics, 18 Suppl 1,

S136-144.

24. Wu, C.J. and Kasif, S. (2005) GEMS: a web

server for biclustering analysis of expression data,

Nucleic Acids Res, 33, W596-599.

25. Wu, Z., Ao, J. and Zhang, X. (2007) Finding

distinct biclusters from background in gene

expression matrices, Bioinformation, 2, 207-215.

26. Xu, Y., Olman, V. and Xu, D. (2002) Clustering

gene expression data using a graph-theoretic

approach: an application of minimum spanning

trees, Bioinformatics, 18, 536-545.

27. Yeung, K.Y., Medvedovic, M. and Bumgarner,

R.E. (2003) Clustering gene-expression data with

repeated measurements, Genome Biol, 4, R34.

