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Recent advances in molecular dynamics simulation technologies (e.g., Folding@Home, NAMD, Desmond/Anton) have, for the first
time, enabled scientists to perform all-atom simulations over timescales relevant to protein folding. Unfortunately, the concomitant
increase in the size of the resulting data sets presents a barrier to understanding the molecular basis of folding. In particular, long
simulations make it harder to identify and characterize important microstates, and the collective conformational dynamics that influence
and enable the transitions between them. We address these problems by introducing a novel tensor-based method for performing a
spatio-temporal analysis of protein folding pathways. We applied our method to folding simulations of the villin head-piece generated
by the Pande group using Folding@Home. Using our method, we were able to identify three regions in this protein that exhibit similar
collective behaviors across multiple simulations. We were also able to identify cross-over points in these simulations leading to different
conformational subspaces. Our results indicate that these three regions may act as folding units, and that the observed collective motions
may represent important dynamic invariants in the folding process. Thus, our spatio-temporal analysis method shows promise as a means
for obtaining novel insights into protein folding pathways.

1. INTRODUCTION

The physical process by which a nascent polypeptide
folds into a functional protein is a long standing ques-
tion in biology10. Failure to fold into a functional pro-
tein is linked to cell toxicity as well as several diseases.
Given the enormous importance attached to correct fold-
ing pathways within a cell, there is considerable interest
in understanding all-atom mechanisms of how a protein
folds into its functionally relevant conformations.

Protein folding pathways span over 15 orders of
magnitude in time, ranging from femto-seconds to even
seconds and beyond. Experimental techniques (e.g.,
FRET), while extremely useful in providing certain in-
sights into the folding process, generally probe a nar-
row range of time-scales and lack full atomic detail.
Fortunately, recent advances in both hardware (e.g.,
Anton9) and software (e.g., Folding@Home12, NAMD6,
Desmond1) have enabled, for the first time, all-atom
molecular dynamics (MD) simulations over time scales
relevant to folding. Unfortunately, the concomitant in-

crease in size and complexity of the resulting data sets
presents considerable barrier to understanding the molec-
ular basis of folding pathways. In particular, long simula-
tions make it harder to characterize important microstates
and the collective conformational dynamics that influence
and enable transitions between them.

In this paper, we address this challenge by introduc-
ing a novel tensor-based method for performing spatio-
temporal analysis of protein folding pathways. Previ-
ously, our approach has proven successful in character-
izing collective conformational dynamics in equilibrium
simulations across multiple proteins7, 8. Our method is
also capable of detecting changes in these collective mo-
tions, signaling a change between meta-stable states in
the energy landscape. Taken together, our approach pro-
vides a unique way to analyze MD simulations while pro-
viding biologically relevant insights.

Here, we analyze protein folding pathways of a 35-
residue fast-folding variant of villin head piece which
is known to fold into three α-helices2. A large repos-
itory of folding pathways for this protein has been re-
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cently made available by Pande and co-workers using the
Folding@Home platform. For these folding pathways,
we identify meta-stable states and simultaneously char-
acterize the collective conformational dynamics in these
states.

2. METHODS

Our approach to analyze protein folding pathways builds
a multi-dimensional representation of these trajectories.
Tensors are an extension of matrices beyond two dimen-
sions and provide a convenient means to capture multi-
ple dependencies that may exist in the underlying folding
pathway. Formally, a tensor X of M dimensions can be
defined as a multi-dimensional array of real values,

X ∈ <N1×N2×...×NM (1)

where Ni represents the ith dimension for (1 ≤ i ≤ M).
A protein’s spatial description can be captured as a

distance map. To capture temporal dependencies, we
note that an MD simulation updates the coordinate po-
sitions at every time step t. An entire MD simulation can
be thought of as a discrete collection of the distance maps.
We may also define a discrete window in time, such that
a time-slice from the MD simulation constitutes a third
order tensor, with dimensions Nr ×Nr ×Nw, where Nr

is the number of residues in the protein and Nw is the
size of the window. A time-slice representation provides
us with a mechanism to track collective behavior at short
time scales and also at the time scale of the entire simula-
tion. The end-user may choose an appropriate time-slice
depending on the type of simulation; for this paper, we
chose a time-slice of 100 snapshots from the simulation.

A simple way to detect patterns is to analyze the
overall variance in the underlying data. For tensors, it
is possible to use an extension of PCA in multiple dimen-
sions commonly referred to as tensor analysis11. The ob-
jective function in tensor analysis is very similar to that
of PCA - we minimize the error with respect to the ob-
served variance in every one of the M dimensions. For-
mally, given a collection of tensors X1,X2, . . . ,XT , each
of dimension N1 ×N2 × . . .×NM , tensor analysis will
determine orthogonal matrices Ui for each dimension Ni

such that the error of reconstruction (EoR) e is minimized
as follows:

e =
T∑

t=0

‖Xt −Xt

M∏
i=1

×i(UiUT
i )‖2F (2)

We note that for MD simulations and protein fold-
ing pathways, we need not store any historical informa-
tion about how the simulations have progressed. Hence,
it is possible to analyze the data as and when it becomes
available using an online algorithm called dynamic ten-
sor analysis. The algorithm, at every step constructs the
variance matrix and does a principal component analy-
sis, which provides insights into collective motions in the
MD simulations seen until the current time window.

The eigenvectors from the resulting analyses de-
scribe inter-residue distance fluctuations; lower values in-
dicate residues are constrained while large values indicate
higher flexibility in the protein. The eigenvectors can also
be clustered to identify regions of a protein that show
coupled motions. The EoR defined in Eq. 2 can iden-
tify time-points during which collective motions during
the simulations have significantly changed. Snapshots
between two time-points with significant deviations in
EoR identify meta-stable states along a folding pathway,
which may show collective dynamical in common.

3. RESULTS

The data consists of 8 different runs, each with a unique
starting structure. Each run is in turn comprised of 100
different clones, while having the same starting structure,
differ in their initial velocities. The simulations repre-
sent a total of over 354 µs, with an average length of 863
ns2. This unprecedented scale of data available provides
an ideal platform to understand the nature of collective
conformational dynamics and their effects on the folding
process. Here, we have analyzed a total of 10% of the
total data, corresponding to a total of 35 µs. Even within
this data, we observe considerable diversity in the struc-
tural and dynamical characteristics of the folding path-
ways.

3.1. Dynamic Invariants along Folding
Pathways

The inter-residue distance fluctuations (of Cα atoms)
from the eight folding pathways reveals several similari-
ties in the dynamical nature of several residues (Fig. 1).
For example, runs 4 and 7 exhibit strong similarities in
terms of the average dynamical fluctuations, exhibiting a
correlation coefficient of 0.95. Significantly, the starting
structures for runs 4 and 7 are very different (see Fig. 2).
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Fig. 1. Similarity between fast folding pathways. The maximum
inter-residue distance fluctuations is plotted for the fast folding path-
ways. Run 4 is shown in purple, while run 7 is shown in green.

Fig. 2. Collective dynamics in fast folding pathways. Three dynam-
ically coupled clusters of residues are identified via tensor analysis for
run 4 (top) and run 7 (bottom). The cluster boundaries corresponding to
the folded protein are: α1: 2-10, α2: 13-20 and α3: 21-33. Note, the
clusters are shown on the starting structures, but correspond to the three
α helices in the folded structure.

This similarity in collective conformational dynam-
ics becomes clearer when we examine the dynamically
coupled regions along these two folding pathways. In a
majority of the clones from runs 4 and 7, the residues
cluster into three regions. These clusters are destined to
form the three α helices in the native state ensemble (Fig.
2). An obvious question, therefore, is to ask whether
such collective behaviors constitute “dynamic invariants”
along the folding pathways.

To answer this question, we examined those runs that
eventually led to the native folded structure (runs 0, 2, 3, 5

and 6), albeit more slowly than runs 4 and 7. We observed
that the slow pathways did, in fact, exhibit collective be-
haviors similar to those of the fast pathways. Specifically,
the collective behaviors of three regions (residues 19-22,
27-30, and 32-25; Fig. 3 highlighted in blue rectangles),
which flank the hydrophobic core of the folded protein
have similar dynamics in both slow and fast pathways.

There are also significant dynamic differences be-
tween the various runs. For example, the dynamics of
residues 6-16 exhibit considerable diversity among the
runs (see Fig. 3, orange rectangle). Moreover, dynamic
differences are observed between the fast and slow fold-
ing pathways. Specifically, dynamic couplings exist be-
tween residues destined to form the three α-helices are
observed in the slow folding pathways, that are not seen
in the fast folding pathways (Fig. 1). Conversely, fast
folding pathways exhibit a distinct collective pattern that
defines the three helices to be independent folding units
early on in the simulations.
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Fig. 3. Comparing slow folding pathways. Three stretches of
residues highlighted by blue rectangles show similar collective distance
fluctuations over the course of the folding. In contrast, residues 6-16
exhibit diverse collective distance fluctuations in all the simulations.

We also compared the dynamics of those runs that
did not lead to folded structures to those that did (see Fig.
4. When we compared run 1, for example, to those that
did fold, we observed that the distance fluctuations be-
tween residues that formed α2 and α3 in the folded pro-
tein were much larger compared to the other pathways.
This feature is not observed in any other run, raising the
possibility that the inability of the two regions to come to-
gether (and satisfy the dynamic invariant) leads to a mis-
folded state.



Fig. 4. Comparing a non-folding pathway to fast folding pathway.
Non-folding run 1 shows distance fluctuations in residues from α1 and
α2 that are substantially larger than those from run 4.

3.2. Identifying of meta-stable states
along Folding Pathways

The error of reconstruction (EoR) metric from Eq. 2 can
be used to identify the presence of meta-stable states in
the folding pathways. For this paper, we present an analy-
sis of the EoR metric to identify meta-stable states along
the fast folding pathways (4 and 7), since they are of par-
ticular interest. In Figs. 5 and 6, we show two clones
selected from runs 4 and 7 for which the EoR metric is
plotted.
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Fig. 5. Meta-stable states in run 4. The EoR plot vs. time reveals
the complex dynamics of the folding pathway. Four meta-stable states
can be identified (V1 through V4). Note each of the meta-stable states
spans a certain time-scale indicated by the blue arrows.

The meta-stable states in each of these folding path-
ways were identified by examining the structural transi-

tions at each of the peaks in Figs. 5 and 6. Based on
our analysis, we were able to identify four regions (V1
through V4) in run 4 and six regions (V1 through V6) in
run 7.
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Fig. 6. Meta-stable states in run 7. The EoR plot vs. time reveals
the complex dynamics of the folding pathway. Six meta-stable states
can be identified (V1 through V6). Note each of the meta-stable states
spans a certain time-scale indicated by the blue arrows.

Fig. 7. Structural characteristics of meta-stable states in run 4.
The initial structure for run 4 is shown in green ribbon representation.
Meta-stable state 1 (V1) is identified by the presence of a partial α1.
Meta-stable state 2 (V2) is comprised of α1 and α3 coming closer to
each other. Note, here we have shown the average backbone structure
of the two states.

Closer examination of the structures in V1 in run 4
revealed the presence of a partial α1 and a partial α2. This
feature remains invariant until the folding protein makes
a transition to a second meta-stable state (V2), where we
observe a partial movement of a well-formed α1 towards
α3 (see Fig. 7). Further, the meta-stable states in run 4
are more stable; the average timescale of V1 through V4
is about 1.6 µs (computed from the width between EoR



spikes). In run 7, we observe that V1, V5 and V6 have
an average timescale of 1.1 µs, where as V2, V3 and V4
have a lifetime of about 0.4 µs. This diverse sampling of
the folding landscape by run 7 may explain the experi-
mentally observed double exponential kinetics2.

4. CONCLUSIONS

We have presented a novel approach to analyze collec-
tive conformational dynamics along folding pathway for
a small autonomously folding protein. Our method has
the benefit of being run online and in parallel. It can be
used to suitably analyze and monitor large-scale folding
simulations for (a) characterizing collective behavior, (b)
identifying meta-stable states and (c) comparing multi-
ple folding simulations for identifying common dynami-
cal patterns.

Previous studies had revealed the heterogeneity in
the kinetics of villin folding. Our analysis complements
the analysis of kinetics by revealing the complex nature
of collective dynamics involved in protein folding. Even
though the initial conditions for several folding pathways
were very different, we observed that there is significant
similarity in collective dynamics exhibited by fast folding
pathways (runs 4 and 7). Further, folding pathways that
did not show the collective dynamics exhibited by the fast
folding pathways either took a long time to converge to
the folded ensemble (runs 0, 2, 3, 5 and 6) or did not sam-
ple the native state (run 1). This suggests the possibility
that certain dynamical features might accelerate the fold-
ing process. In case of the villin head piece, we identified
some dynamic invariants involving residues flanking the
hydrophobic core. These same residues are known to sta-
bilize the interactions necessary to sample the native state
ensemble.

Along the folding pathways, we were also able to
analyze and characterize multiple meta-stable states that
show both common structural and dynamical features.
For the two fast folding pathways, we observe that even
though the collective dynamics is similar, the two path-
ways exhibit considerable variation in the timescales re-
lated to the transitions and existence of meta-stable states.
Taken together, our analysis shows promise in revealing
novel insights into the dynamical features of the folding
landscape of this protein.

5. ONGOING WORK

We are in the process of analyzing multiple protein fold-
ing pathways to characterize the overall collective dy-
namical features for villin folding. Future work on the
computational aspects will involve making the analysis
platform compatible with multiple simulation software as
well as parallelizing the code for exploiting both Fold-
ing@Home platform as well as supercomputers. Since
the tensor analysis is a variant of principal component
analysis, it would also be possible to compress and store
only the essential aspects of a simulation, without having
to store large trajectory files.

On the scientific front, the use of tensor analysis of-
fers several exciting opportunities. It is well known that
solvent fluctuations enslave the protein folding process3.
Hence, one important aspect of our study would be to an-
alyze the collective behavior of the solvent and its effect
on the folding process. It will also be interesting to ana-
lyze effects of mutations to the villin head piece5 and how
that affects the collective conformational dynamics in the
folding process. Further, our rigorous statistical mechan-
ics based approach to model the protein ensembles4 could
be used here to reason about the enthalpic, entropic and
free-energetic contributions that allow the protein to sam-
ple the native state ensemble.

We also note that the feature that we chose to analyze
here was the collective distance fluctuations across mul-
tiple folding pathways. However, tensor analysis is quite
flexible and can allow for the analysis of even more in-
teresting features such as electrostatics, forces, and even
energy flux. We are in the process of extending the code
to handle these features to further our understanding of
the protein folding process.
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