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Small molecules which alter biological processes or disease states are of significant interest. In-silico drug discovery

commonly uses measures of structural similarity for identifying the “right” small molecule for a given task. Because
explicit structure similarity determination is a very difficult task, modern chemoinformatics solutions typically use

“quantitative structure-activity relationships” (QSAR), in the context of which small molecules are described with

real valued descriptor arrays. In this paper we show how to identify the bioactivity exhibited by compounds of interest
through Centroid based Nearest Neighbor (CBNN) classifiers, in which, on a given training set, the ”best” represen-

tative compounds of each specific bioactivity need to be selected. For that purpose we introduce the Combinatorial

Centroid Nearest Neighbor (CCNN) method which determines the representative compounds in a way that would
yield no classification errors on the training set. On a number of data sets CCNN method was applied, we observed

that CCNN provides the highest accuracy over the data sets of three different bioactivities among all classifiers we

tested.

1. INTRODUCTION

Small molecules are chemical compounds with molec-
ular weight less than 500; they are commonly used
as drugs - in fact most drugs are small molecules -
and also used for purposes of better understanding
molecular and cellular functions.

Although small molecules which alter biological
processes or disease states are of significant interest,
finding the right molecule for a given task is very
challenging. For purposes of in-silico drug discov-
ery, the most common computational tools used are
based on structural similarity determination. Chem-
ical compounds are usually structurally similar if and
only if their physiochemical properties and/or bio-
logical activities are similar 18. As a result, it is
many times possible to predict the specific bioactiv-
ity exhibited by compounds via structural similarity
search among biomolecules whose bioactivities are

known.
In the field of cheminformatics, “quantitative

structure-activity relationships” (QSAR) provide
various means for enumerating chemical similarity.
In fact modern structure-activity cheminformatics
relies on a variety of parameters called descriptors re-
flecting different aspects of possible intra- and inter-
molecular interactions a molecule may be engaged in.
Interestingly, while the number of available QSAR
descriptors is very large and is constantly expand-
ing, the set of available algorithms, used to relate
the descriptors to bioactivity is very limited. In gen-
eral, finding novel analytical approaches for the field
of QSAR (including novel ways to enumerate chemi-
cal similarity) is an important and challenging task.

Descriptor-based structural similarity. Given two
descriptor arrays X and Y representing two small
molecules, each with n real dimensions, it is com-
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mon to use Minkowski distances to measure structure
similarity. Minkowski distance of order p, denoted by
Lp is defined as Lp(X,Y ) = (

∑n
i=1 |X[i]−Y [i]|p)1/p.

Clearly, for p = 2, the Minkowski distance is the Eu-
clidean distance. For p = 1, the Minkowski distance
becomes the Hamming distance, when X and Y are
binary descriptor arrays 36.

Small molecule classification methods. A variety of
statistical learning methods have been successfully
applied to structural classification.

In many of these methods, chemical structures
of molecules are modeled as labeled graphs. Micheli
et al. 15, for example, first convert chemical struc-
tures into trees and then use a standard recursive
neural network for relating the structure and activ-
ity of molecules.

There are also a number of kernel methods
which are designed for small molecule classification
32, 38, 21, 20, 25, 3, 28, 27. Kashima et al. 21 introduce
Marginalized Kernel (MK) which is based on count-
ing the number of labeled paths in random walks,
and consider those as feature vectors. The similarity
measure they use between two graphs is proportional
to the number of labeled random walks they share.
Mahe et al. 27 improve the computational cost of MK
feature extraction. In addition, they modify random
walks in MK to avoid ’totters’ (walks that visit a
node which was visited in two previous stages), us-
ing a second-order Markov chain. Swamidass et al.
32 introduce a kernel that takes 3D Euclidean coor-
dinates of atoms in small molecules into account; for
each pair of atoms they consider the ”histogram” dis-
tance. Similarity between two molecules can then be
computed based on the similarities in the histograms.
Decomposition of kernels have been used by Ceroni
et al. 3 to combine 2D and 3D kernels in order to
reach better accuracy in classification.

Recently, Cao et al.38 consider to measure the
similarity between two molecules via the maximum
common substructure (MCS) of two graphs repre-
senting these molecules. Although computing MCS
in general is intractable, a backtracking algorithm
and various heuristics are applied to compute the
MCS between small molecules. Unfortunately, com-
puting MCS between a compound to all other com-
pounds is still time consuming: if there are n com-

pounds in the data set we need to perform O(n2)
MCS comparisons. This method thus computes a
subset of randomly picked ”basis” compounds. For
each compound, only MCSes between the compound
and all basis compounds are computed and used as
features for the purposes of classification.

One of the most common tools for identify-
ing bioactivity levels of small molecules is k-Nearest
Neighbor (kNN) classification method. Given a small
molecule with an unknown bioactivity, the Nearest
Neighbor classifier estimates its bioactivity as that of
its “nearest neighbor”, or the structurally most sim-
ilar compound with known activity. Similarly, the
k-Nearest Neighbor(kNN) classifier would estimate
the bioactivity of a compound as the majority activ-
ity of the k compounds which are structurally most
similar to the query compound 11.

It is well known that the (asymptotic) expected
error returned by the NN classifier is bounded above
by twice the “Bayes error” (the minimum error
achieved by having complete knowledge of underly-
ing probability density functions of the classes) 11.
This and other desirable properties of the NN classi-
fier have turned it into a powerful method with many
applications in bioinformatics. Unfortunately, NN
also has a number of well known drawbacks espe-
cially in high dimensional vector spaces - typically
referred to as the curse of dimensionality:

1) Speed/memory: among a set of points in a
high-dimensional vector space, finding the nearest
neighbor of a query point is costly in terms of either
time and/or space.

2) Accuracy: in high-dimensional vector spaces,
NN method has a tendency to do overfitting.

The above problems become particularly acute
if the number of points in the vector space of inter-
est is “high”. As a result, the bulk of the research
for improving NN classification focuses on sparsify-
ing (obtaining a small subset of) the input set of
points (named centroids) on which NN classification
is then performed much faster. Overfitting in NN
is due to the “non-smooth” decision boundary in a
high-dimensional vector space 29 and sparsification
of the input data set can make the decision bound-
ary “smoother”.



Centroid based NN method. Centroid based NN
(CBNN) classification is a modified version of NN in
which the bioactivity of an unknown compound is de-
termined according to its nearest centroid. Although
it is desirable to have as few centroids as possible,
for improving the speed, the “optimal” trade-off be-
tween speed and accuracy may be obtained when a
non-trivial fraction of the points in the training set
are maintained as centroids.

The CBNN problem has been considered by
both the machine learning and computational ge-
ometry communities. On the machine learning side,
Hart, for example 26 introduced CNN (Condensed
Nearest-Neighbor) method, which suggests to itera-
tively build the “centroid set” S as follows. Initially
S includes exactly one randomly picked point from
the training set. At each iteration, the points whose
nearest neighbor in S has the opposite class is added
to S - until no such point remains in the training set.
It is shown experimentally 37 that the CNN method
typically has a worse accuracy in comparison to the
standard NN classifier employing the complete train-
ing set. Furthermore, the initial set S has a signifi-
cant role in determining how CNN method performs.
One recent method in this direction, FCNN (Fast
Condensed Nearest-Neighbor) 16, initially sets S to
the collection of medoids of each classa. In each iter-
ation, for every p ∈ S, FCNN adds to S one point q
in p’s Voronoi cell which belongs to a different class.
The method terminates when no such q remains in
the training set.

On the computational geometry side, arguably
two most popular approaches are the “Relative
Neighborhood” and “Gabriel” graphs. The rela-
tive neighborhood graph(RNG) 34 is a graph con-
structed from the points in the training set. Each
point is represented by a node, and an edge exists
between two nodes i and j if for any other node k:
distance(i, j) < max{distance(i, k), distance(j, k)}.
After constructing the graph, each node with an edge
to another node from a different class is chosen as a
centroid. The Gabriel graph(GG) 9, 23, on the other
hand, uses the same general idea with RNG with
the exception that two nodes have an edge between
them, if there is no other point in their diametrical

sphere.
Interestingly, Support Vector Machine (SVM)

another popular classification method commonly
used in QSAR analysis, when used with a linear ker-
nel, is equivalent to a centroid based NN classifier
with two centroids: here the two centroids are on
the opposite sides of a normal line to the separating
plane, and are equidistant to the plane.

Our contributions. The main contribution of this
paper is on the Combinatorial Centroid Selection
(CCS) problem which we define as follows. Given a
training set of points (compounds) in a metric space,
CCS problem asks to find the minimum number of
centroids (selected compounds) such that for every
point (compound) p in the training set its nearest
centroid (one of the selected compounds) is in the
same class. CCS can be applied after initial screen-
ing or High-Throughput screening phase to obtain
a small subset of compounds. NN based or other
QSAR models can then be built on this set of com-
pounds to filter the library of huge number of com-
pounds for experimental screening.

This paper focuses on classification in general
Minkowski distances and binary classification prob-
lems - although our methods can be generalized to
cases with more than two classes. Note that for 2D
Euclidean space, Wilfong 19 showed that the Mini-
mum Consistent Subset problem with three “labels”
(a problem very similar to the CCS problem with
three classes) is NP-hard. Here we prove that the
CCS problem for general metric spaces is NP-hard
even when there are two classes to consider - our
proof also indicates that no algorithm is likely to ap-
proximate the CCS problem with an approximation
factor better than Ω(log n) where n is the number
of points. We then describe an integer program-
ming formulation to the CCS problem for (weighted)
Minkowski distances and provide a number of LP re-
laxations to solve it in practice.

In many in-silico drug discovery applications,
there are typically very few compounds that have
the particular bioactivity of interest; the majority of
the data set does not exhibit the bioactivity. Thus
a simpler variant of the CCS problem in which one

aa medoid in a set T is a point p ∈ T whose distance to all other points is smallest possible



may want to maintain all members of a particular
class as centroids and aim to minimize the number
of centroids in the opposite class is of significant in-
terest. Although for the general CCS problem no
approximation algorithm is available, for this sim-
pler version we provide an O(log n)-approximation
algorithm in this paper.

We have tested our methods on publicly avail-
able data sets of three different bioactivities for small
molecules: mutagenicity, toxicity and (being a) drug.
Details on these data sets are provided in Section 3.
A set 30 inductive 3D QSAR descriptors and 32 con-
ventional QSAR descriptors are employed in all three
data sets. These inductive descriptors have been
used in several studies 4, 6, 7, 5, 14 and have been
calculated by a SVL script that can be freely down-
loaded through the SVL exchange 40. The conven-
tional QSAR descriptors are implemented within the
MOE (Molecular Operating Environment) 22. More
details about these descriptors are presented in Sec-
tion 3.

There are three main methods we have compared
against NN classification: SVM, MK by Kashima
et al. 21 and MCS by Cao et al. 38. MK has
been commonly used as a benchmark to compare
with other graph kernel methods 27, 32 while MCS is
one of the most recent methods for classification of
small molecules. Experimental results show that our
CCS based classification methods outperform all the
above classifiers (including the standard NN classi-
fier) in all data sets - maintaining only small fraction
of chemical compounds in the training set.

2. Methods

For simplicity, we focus on the binary classification
problem; our methods can easily be generalized for
multi-class classification. Consider a training set of
points T in a metric space V with distance d. Sup-
pose each point p ∈ V belongs to one of the two
classes C1 and C2. Let C1i

and C2j
each denote a

point in class C1 and class C2 respectively. Given
an integer k, the k-Combinatorial Centroid Selection
(k-CCS) problem asks whether there is a set of k
points in T , namely S ⊂ T such that for each p ∈ T ,
its nearest neighbor in S is in the same class with
p. Below, we show that the k-CCS problem is NP-
Complete in a general metric space even when there

are two classes through a slight generalization of the
proof by Wilfong 19 for three classes.

Lemma 2.1. The k-CCS problem is NP-Complete
in a general metric space with two classes.

Proof. The k-CCS problem is obviously in NP. Let
S1 and S2 respectively denote the set of centroids
from the classes C1 and C2; it is trivial to check
whether |S1 ∪ S2| ≤ k. It is also trivial to check
for each point p ∈ T whether its nearest centroid
is in the same class with p. We now show that
k-Dominating Set ≤P k-CCS. Given an undirected
graphG = (V,E) and an integer k, the k-Dominating
Set problem asks whether there is a subset V ′ ∈ V
such that |V ′| ≤ k and for each vertex v, either
v ∈ V ′ or there is an edge (u, v) ∈ E and u ∈ V ′.
From an instance of k-Dominating Set problem, we
construct an equivalent k-CCS problem with two sets
of points C1 = {C11 , C12 , . . . , C1|V |}, C2 = {C21}
and a distance function d(., .) as follows. Let c be an
arbitrary constant:

• d(C21 , C21) = d(C1i
, C1i

) = 0
• d(C1i

, C1j
) = c if (vi, vj) ∈ E

• d(C1i
, C1j

) = 2c if (vi, vj) /∈ E
• d(C21 , C1i

) = 3
2c

It is not hard to see that d is a metric. If G

has a dominating set V ′, S1 = {C1i |vi ∈ V ′} and
S2 = {C21} is a solution to k-CCS problem of size
|V ′| + 1. Otherwise, there is some C1l

∈ C1 such
that for every C1i

∈ S1, d(C1l
, C21) < d(C1l

, C1i
)

i.e. the closest centroid of C1l
is C21 . This is

not the case since there must be some vj ∈ V ′ or
C1j
∈ S1 such that (vj , vl) ∈ E, thus, d(C1l

, C21) =
2c > d(C1l

, C1j ) = c. If we pick k points as cen-
troids, there are k − 1 centroids from C1 due to
the fact that we always need to pick the one cen-
troid C21 from C2. Let V ′ = {vi|C1i

∈ S1} of
size k − 1, for every vertex vt /∈ V ′ or C1t

/∈ S1

there is a vertex vl ∈ V ′ or C1l
∈ S1 such that

d(C1t
, C1l

) = c < d(C1t
, C21) = 3

2c or (vt, vl) ∈ E.
Thus, V ′ is a dominating set of G of size k − 1. In
conclusion, G has a dominating set of size k − 1 if
and only if we can pick k centroids for the equivalent
k-CCS problem.



minimize
∑

C1i
∈C1

δ(C1i
) +

∑
C2j
∈C2

δ(C2j
)

s.t. ∑
C1k
∈R(C1i

,d(C1i
,C2j

))

δ(C1k
) ≥ δ(C2j

) C1i
∈ C1,C2j

∈ C2∑
C2l
∈R(C2p ,d(C2p ,C1q ))

δ(C2l
) ≥ δ(C1q

) C2p
∈ C2, C1q

∈ C1∑
C1i
∈C1

δ(C1i
) ≥ 1∑

C2j
∈C2

δ(C2j
) ≥ 1

δ(X) ∈ {0, 1} X ∈ C1 ∪ C2

(1)

The minimum number of centroids is one more
than the size of minimum dominating set. The Min-
imum Dominating Set problem is equivalent to the
Minimum Set Cover under an L-reduction 31. There
is no approximation algorithm for the Minimum Set
Cover problem with an approximation factor better
than (1− ε) ln |V | unless NP ∈ DTIME[|V |log log |V |]
35. Thus, it is unlikely that one can obtain an ap-
proximation algorithm for the CCS problem with an
approximation factor better than (1 − ε) ln(|C1| +
|C2|) in a general metric space.

An Integer Linear Program Based Solution. In this
section, we present an integer linear program (IP)
formulation Combinatorial Centroid Selection (CCS)
problem for two classes. The generalization of this
formulation for three classes or more is quite easy,
but is not presented here for brevity.

The objective of the IP formulation is to mini-
mize the total number of centroids in the two classes.
We will denote by δ(X) the indicator variable for
the point X i.e. δ(X) = 1 if X is chosen as a cen-
troid, otherwise δ(X) = 0. For each point Cki

of
each class k, we will denote by R(Cki , r) the set
of all points in class k which are within distance
r from Cki

; more formally R(Cki
, r) = {Ckj

|Ckj
∈

Ck and d(Cki
, Ckj

) ≤ r}. In the IP formulation be-
low, the first and second set of constraints ensure
that (one of) the nearest centroid(s) of a point is a
point from the same class - this constraint ensures
that each “ball” centered at a point from one of the

classes which includes a centroid from an opposite
class should also include a centroid from the class of
the center point itself. The third and fourth set of
constraints ensure that for each class, at least one
centroid is picked. The final constraint simply de-
fines the indicator variable as one with values 0 or
1.

It is not difficult to see that a solution to the
IP formulation (1) above corresponds to a solution
to the centroid problem and vice versa. Hence, the
minimum number of centroids picked by the above
formulation is equal to the optimal solution of (1).
Unfortunately solving the IP problem (1) is quite
costly due to the fact that the number of binary vari-
ables are linear with the number of points and the
number of constraints are quadratic with the number
of points. Although for smaller data sets the above
formulation works quite well in practice, for large
data sets of interest the standard way to address the
problem is to solve it as a standard Linear Program
(LP).

LP formulation for the CCS problem differs from
the IP formulation in the way the indicator variable
δ(X) is treated: in the LP formulation it becomes a
real valued variable in the range [0, 1]. Once the LP
solver determines real values for δ(X) for all points
X, one can simply pick X as a centroid if δ(X) > t

for some threshold value 0 < t ≤ 1. Note that be-
cause the CCS problem is hard to approximate, this
LP formulation can not provide a guaranteed approx-
imation to the CCS problem. Furthermore, because



minimize
∑

C1i
∈C1

δ(C1i
) +

∑
C2

i′
∈C2

δ(C2i′ )

s.t. ∑
d(C1i

,C1k
)≤d(C1i

,f(C1i
,t))

δ(C1k
) ≥ δ(f(C1i , t)) t ≤ T , C1i ∈ C1∑

d(C2p ,C2l
)≤d(C2p ,f(C2p ,t))

δ(C2l
) ≥ δ(f(C2p , t)) t ≤ T , C2p ∈ C2∑

d(C1i
,C1j

)≤d(C1i
,f(C1i

,T ))

δ(C1j
) ≥ 1 C1i

∈ C1∑
d(C2p ,C2q )≤d(C1p ,f(C1p ,T ))

δ(C2q ) ≥ 1 C2p‘ ∈ C2

0 ≤ δ(X) ≤ 1 X ∈ C1 ∪ C2

(2)

the number of constraints are still quadratic with the
number of points, the LP formulation, even when
tackled with some of the best known LP solvers,
takes considerable amount of time and the classifica-
tion results obtained are not very accurate. Finally it
is quite likely that an LP solver may return the triv-
ial solution to the above problem, i.e. if |C1| = |C2|,
δ(X) = 1/|C1| for all X. Note that this solution not
only satisfies all constraints but also ensures that the
sum of the indicator variables of points in each class
is exactly 1, which is as small as it can get due to
the last constraint. Obviously this is not a solution
of interest.

In the remainder of the paper we describe the
relaxation to the above IP formulation which is not
only faster to solve, but also have no trivial solutions.

Fixed Size Neighborhood Based Solution. In the
LP formulation (2) below, we fix the number of con-
straints per point X to a user defined value T as
follows. Let f(X, t) be t-th nearest neighbor of point
X from the opposite class. By the first and second
set of constraints we ensure that, given a point X,
for each centroid f(X, t) such that t ≤ T , there is
a centroid from the same class of X which is closer
to X than f(X, t). By the third and fourth set of
constraints, we ensure that for each point X, there
is at least one centroid from the same class which is
closer to X than f(X,T ). As a result, for each point
X there are T + 1 constraints in the LP formulation
(2).

The solution of the linear programs (1) and (2)
can be used for choosing centroids from the training
data set and with the aim of classifying points of un-
known classes. This is achieved by picking each point
X whose δ(X) > 0 as a centroid, which ensures, for
both formulations, that not only the nearest centroid
for each point Y is in its own class but there is at
least one centroid within the desired distance to Y -
we prove this below.

Lemma 2.2. Picking each point X for which
δ(X) > 0 as a centroid satisfies all constraints in
the linear program (2).

Proof. We prove the above lemma for LP formula-
tion (2). Consider for each point Y , all X = f(Y, t)
from the opposite class with δ(X) > 0 such that
d(X,Y ) = d(Y, f(Y, t)) ≤ d(Y, f(Y, T )). The solu-
tion of LP formulation (2) ensures that there is at
least one point Z in the same class with Y which is
closer to Y than X and δ(Z) > 0. This implies that
Z will be picked as a centroid guaranteeing that Y
will have a centroid in its own class which is at least
as close to Y as each centroid in the opposite class.
Furthermore, the solution to the LP formulation (2)
ensures that there will be at least one point Z with
δ(Z) > 0 in the same class with Y whose distance to
Y is at most d(Y, f(Y, T ). Thus all constraints for
LP formulation (2) will be satisfied after rounding.

The above LP formulation and its correspond-
ing solution typically give more accurate solutions



Table 1. Distribution of positive and negative examples in the PTC, Mutag, and Drug data sets

MM FM MR FR Mutag Drug

No. of Pos. 129(38.4%) 143(41.0%) 152(44.2%) 121(34.5%) 125(66.5%) 958(12.8%)
No. of Neg. 207(61.6%) 206(59.0%) 192(55.8%) 230(65.5%) 63(33.5%) 6550(87.2%)

Total 336 349 344 351 188 7508

to the small molecule classification problems we ex-
perimented with.

This particular LP formulation will represent the
CCNN method in Section 4 where we discuss our ex-
perimental results.

We finally note that although the general CCS
problem is difficult to approximate, for the special
case that one of the classes is much smaller than the
other, it is possible to obtain a guaranteed approx-
imation. We show how to approximate this special
version of the CCS problem below and report results
obtained by this algorithm in Section 4.

When one of the classes is small: a logarithmic

approximation to CCS problem. In many in-silico
drug discovery applications, there are typically very
few compounds that have the particular bioactivity
of interest; the majority of the data set will be “neg-
ative examples”, i.e. those which do not exhibit the
bioactivity. Our approach is particularly useful for
these applications as it enables to eliminate a vast
majority of the negative examples which may have no
particular effect in the accuracy obtained, yet which
would slow down the classification task. Here we fo-
cus on the CCS problem in which we may want to
maintain all members of a particular class as cen-
troids but aim to minimize the number of centroids
in the opposite class so as to achieve perfect accuracy
in the classification of the training set. Interestingly
this seemingly simpler version of the problem yields a
simple O(log n)-approximation algorithm as follows.

Given that all points C1i ∈ C1 will be picked as
centroids, we need to pick the minimum number of
points C2j

∈ C2 such that for any point X, the clos-
est centroid to X should be from the same class of X.
Let S(C2j

) = {C2k
|∀C1i

, d(C2j
, C2k

) < d(C2k
, C1i

)}
i.e. S(C2j ) is the set of points in C2 that are cor-
rectly classified by choosing C2j

as a centroid. Now
the problem of picking minimum number of points
C2j
∈ C2 reduces to choosing the minimum number

of sets S(C2j
) that cover C2 - with the exception of

the sets S(C2`
) such that picking C2`

as a centroid

missclassifies one or more of the points in class C1.
A simple greedy algorithm, which, in each step picks
the set that covers the maximum number of uncov-
ered points gives an approximation factor of O(log n)
12.

The above greedy approach will be denoted as
CCNN2 in Section 4.

3. Data Sets

To test the performance of our proposed methods,
we performed experiments on three well known, pub-
licly available data sets on mutagenicity, toxicity
and drug bioactivities of chemical compounds. The
mutagenicity and toxicity data sets have been com-
monly used as benchmarks to access the performance
of new classification methods for small molecules
32, 27, 28, 39. There are also a number of studies on
the whole or part of the dataset of drug activity
13, 4, 14.

Mutageniticy data set. There are originally 230
chemical compounds in this data set including aro-
matic and hetero-aromatic nitro compounds that are
tested for mutagenicity on Salmonella typhimurium
8. Small molecules with positive levels of log muta-
genicity are considered as positive examples and neg-
ative ones do not have mutagenic activity or in low
level. However, the first analysis 8 showed that 188
compounds (125 positive and 63 negative examples
as shown Table1) could be fitted by regression. Only
these compounds are considered in our experiments.

Predictive Toxicology Challenge data set. This
Predictive Toxicology Challenge (PTC) data set 10

reports experimental results of US National Toxi-
cology Program on the carcinogenicity of chemical
compounds for male mice (MM), female mice (FM)
male rats (MR) and female rats (FR)(Table1). MM
has 129 positive and 207 negative examples; FM has
143 positive and 206 negative examples; MR has 152
positive and 192 negative examples, and FR has 121
positive and 230 negative examples.



Table 2. Comparison between our methods and other centroid based nearest
neighbor classifiers as applied on Drug data set. The best value in each category

of comparison is highlighted.

Method # Centroids % Training Set Accuracy Precision Recall

RNG 1705 28.39 89.00 72.00 58.00
CG 4804 79.99 92.00 68.5 68.8

CCNN 1489 24.79 89.89 56.36 61.18

CCNN2 1052 17.51 92.17 69.12 69.70
NN(L1) 6006 100.0 91.02 64.70 65.30

Drug data set. The last data set (denoted as
“Drug”) is the complete small molecule collection
from 4, 14, which includes 958 drug compounds and
6550 non-drug compounds including antibiotics, hu-
man, bacterial, plant, fungal metabolites and drug-
like compounds (Table1). The redundancy in the
data set has been eliminated through the SMILES
records as follows. All duplicate entries have been
removed and all organometallic structures as well as
inorganic components have also been eliminated. All
molecules containing basic and/or acidic groups have
been converted into un-ionized form. All molecu-
lar structures have been further optimized with the
MMFF94 force-field as it is implemented within the
MOE modeling package 22.

Descriptors. We used the same set of descriptors for
all three data sets. The optimized structures of the
compounds have been used for calculating 30 3D in-
ductive QSAR descriptors also used in our previous
studies 4, 6, 7, 5, 14 and about 32 conventional QSAR
descriptors implemented within the MOE (Molec-
ular Operating Environment) 22. These 3D induc-
tive’ QSAR descriptors include various local param-
eters calculated for certain kinds of bound atoms
(for instance most positively/negatively charges,
etc), groups of atoms (for substituent with the
largest/smallest inductive or steric effect within a
molecule, etc) or for the entire molecule. One com-
mon feature for all of the introduced inductive de-
scriptors is in their relation to atomic electronega-
tivity, covalent radii and interatomic distances. It
should also be noted, that all descriptors (except
the total formal charge) depend on the actual spa-
tial structure of molecules. All the inductive QSAR
descriptors have been calculated by the custom SVL
scripts that can be freely downloaded through the
SVL exchange 40. The readers can contact us for the
list of these inductive parameters and conventional

QSAR descriptors. Also on each of the three data
sets, each descriptor is normalized according the ob-
served maximum and minimum value of that descrip-
tor in order to remove the bias towards descriptors
with larger values.

4. Experimental Results

In this section we aim to assess the performance of
our methods in terms of the number of centroids they
pick and their accuracy in comparison to state of art
methods for classification of small molecules.

All the experiments for each data set are re-
ported based on 20 independently run experiments
each of which splits the data into training and test
sets consisting of 80% and 20% of the data set re-
spectively. The reported values are the averages over
these 20 runs. For solving the linear program in
CCNN, we used Coin-OR linear programming solver
version 1.5 24.

We note that T = 19 was the setting used for
CCNN: for larger values of T , the number of cen-
troids returned do not change substantially. All
the experiments with our classifiers as well as other
methods were performed on a Pentium IV with 3.2
Ghz speed and 2 Gb of RAM.

Centroid selection comparison. In this experiment
we compare our classifiers with alternative, state of
art algorithms for centroid selection, namely, Rel-
ative Neighborhood Graph (RNG), Gabriel Graph
(GG). Since the number of compounds in Mutag
and PTC data sets is small (in the order of hun-
dreds) we only compare the number of centroids of
all the methods picked from Drug data set. For
each centroid nearest neighbor classifier, Table2 re-
ports the number of centroids it picks from the train-
ing set on the average, percentage of the number
centroids, accuracy (TP+TN)/(TP+TN+FP+FN),



Table 3. Comparison between our methods and other popular classifiers as applied on Mutag,
PTC and Drug data sets. The highest accuracy for each data set is highlighted.

Data set Method Precision Recall Accuracy Running time (mins)

Mutag

NN(L1) 87.80 92.00 86.17 6

CCNN 92.00 92.74 89.94 6

CCNN2 92.13 94.35 90.91* 6

SVM-Linear 92.00 92.00 89.36 6

SVM-Poly (degree 2) 91.30 92.00 88.83 6
SVM-Radial (γ = 1.0) 86.60 92.80 85.63 6

Cao et al. 88.2 77.8 82.35 20

MK Kashima et al. 94.4 88.7 89.10 6

FM

NN(L1) 55.00 49.70 62.64 26
CCNN 56.13 60.84 64.37 26

CCNN2 58.11 60.14 65.80 26
SVM-Linear 59.10 38.50 63.79 26

SVM-Poly (degree 2) 49.00 51.00 58.05 26

SVM-Radial (γ = 1.0) 65.20 31.50 64.94 26
Cao et al. 60.00 38.00 64.6 30

MK Kashima et al. 14.00 80.00 63.30 7

MM

NN(L1) 45.30 45.30 58.21 26

CCNN 50.35 55.47 62.09 26

CCNN2 52.76 52.34 63.88 26
SVM-Linear 53.70 34.40 63.58 26

SVM-Poly (degree 2) 47.50 51.60 59.70 26

SVM-Radial (γ = 1.0) 48.10 19.50 61.19 26
Cao et al. 54.20 25.00 63.28 30

MK Kashima et al. 27.1 50.1 61.9 7

FR

NN(L1) 47.00 45.80 63.71 26
CCNN 46.97 51.67 63.43 26
CCNN2 51.24 51.67 66.57 26

SVM-Linear 45.60 21.70 63.58 26
SVM-Poly (degree 2) 44.40 45.80 61.71 26
SVM-Radial (γ = 1.0) 42.30 9.20 64.57 26

Cao et al. 49.2 26.2 65.52 30
MK Kashima et al. 51.24 50.12 66.10 7

MR

NN(L1) 55.20 59.90 60.64 26
CCNN 56.36 61.18 61.81 26

CCNN2 57.32 61.84 62.68 26
SVM-Linear 57.80 58.60 62.68 26

SVM-Poly (degree 2) 52.60 53.30 58.02 26

SVM-Radial (γ = 1.0) 59.10 36.20 60.64 26

Cao et al. 53.80 55.60 59.47 30
MK Kashima et al. 56.00 46.00 59.01 7

Drug

NN(L1) 64.70 65.30 91.02 121

CCNN 56.36 61.18 89.89 181

CCNN2 69.12 69.70 92.17 150
SVM-Linear 76.10 8.70 87.89 121

SVM-Poly (degree 2) 77.10 38.30 90.17 180

SVM-Radial (γ = 1.0) 80.10 35.00 90.60 121
Cao et al. 81.20 56.20 92.00 5760(≈ 5days )

MK Kashima et al. 53.70 57.00 89.10 1080(≈ 1day )

* Although CCNN2 is always better than CCNN, but unfortunately CCNN2 is applicable only
to cases we have binary classification; for classification problem which has more than two classes

we have to use the CCNN.

precision TP/(TP+FP) and recall TP/(TP+FN).
Observe that CCNN and CCNN2 pick much fewer
centroids compared to CG; the accuracy is almost
the same in the case of CCNN and better in the case

of CCNN2. Although the number of centroids RNG
picks is close to ours, the accuracy of CCNN2 is much
better.



Comparison with small molecule classification

methods. Here we compare the performance of our
methods with a popular classifier used in QSAR
modelling such as SVM, Marginalized Kernel (MK
by Kashima et al. 21) which is one of kernel machines
that we could obtain the software package and Maxi-
mum Common Substructure (MCS by Cao et al. 38)
which is one of the most recent methods for clas-
sification of small molecules. MK has been usually
used to compare with other graph kernel methods
27, 32. The performance of the methods are assessed
through their accuracies and running times as per
Table3.

We use the SVM implementation from the ma-
chine learning software suite WEKA, version 3.5.8
33. We use three types of kernels: linear kernel
(SVM-Linear), polynomial kernel of degree 2 (SVM-
Poly) and Radial basis kernel (SVM-Radial) with
γ = 1.0 and all kernels with the complexity parame-
ter c = 1.0.(value of c and γ was chosen such that the
best accuracy is achieved) For using MCS Cao et al.,
we choose 10, 20, and 100 basis compounds for Mu-
tag, PTC and Drug data sets respectively. Note that
30 inductive and 32 conventional QSAR descriptors
used by our methods and by different kernels of SVM
are different from MK and MCS. Also note that the
running time reported on the table includes the time
for computing descriptors as well. It takes 5, 25, 120
mins to compute 62 descriptors for Mutag, PTC and
Drug data sets respectively.

In general, CCNN2 performs the best in term of
accuracy compared to all other methods. It is always
better than the NN method. Although we can only
apply CCNN2 on data sets of two kinds of bioactiv-
ities, CCNN can be applied to multiclass data sets.
Even though CCNN falls behind NN classification in
Drug and FR data sets, it is the second best after
CCNN2 on the average.

We note that for Mutag and PTC data sets, the
accuracy of CCNN2 may be slightly lower than the
best method reported in the literature: Swamidass
et al. 32 report an accuracy of 91.5 on Mutag, 66.4
on MM, 65.7 on MR. However because this method
is not publicly available we could not verify these
figures and hence do not report them in Table3. Fi-
nally, we note that the running time of our methods,
especially in bigger data sets such as Drug, is many

times better than both MCS and MK.

Fig. 1. Accuracy vs. Number of Centroids

The trade-off between the accuracy and the num-

ber of centroids. We explore the trade-off between
the number chosen centroids and accuracy obtained
from test and training sets in Figure 1. Note that the
accuracy on the test and training set both decrease
as we decrease the number of centroids picked from
the training set. In order to pick t centroids, first we
solve the fixed size neighborhood version of CCNN -
then we pick the top t compounds as centroids.

5. Conclusion

Nearest Neighbor based classification is one of the
most commonly used methods for QSAR modelling.
However, the standard NN methods suffer from sev-
eral drawbacks such as being slow and over-fitting in
high dimensional data. These two issues are present
in all available NN based classification methods for
small molecules. In order to address these issues,
we introduce Combinatorial Centroid Nearest Neigh-
bor method which determines a few representative
compounds for each bioactivity class in a way that
yields no classification errors on the training set.
Experimental results on three public data sets on
mutagenicity, toxicity and drug activities show that
CCNN classifiers outperform other kernel methods
and SVM in terms of accuracy and retain only a
small fraction of the training sets. Moreover, our
methods run several times faster than other meth-
ods in bigger datasets.
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